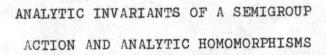
CHAPTER III



The purpose of this chapter is to study some of the properties and the applications of the analytic invariants of a semigroup action and the analytic homomorphisms on the semigroup of real numbers. The first part of this section discuss group invariants. We then extend this concept to invariants of a semigroup action, especially, the analytic invariants. The remainder of this section studies analytic homomorphisms on the semigroup of real numbers.

Let G be a group, X be a set. Suppose that G acts on X on the left. Then there exists a ψ : G \times X \rightarrow X such that for any g, h belonging to G and x belonging to X:

 $\psi(gh,x) = \psi(g,\psi(h,x)) \text{ and}$ $\psi(e,x) = x \text{ where e is the identity in G.}$ Let $\mathcal{H}(X,Y) = \text{set of all maps from X into Y.}$ $= \{f \mid f \colon X \to Y\}.$

Proposition 3.1. If ψ is a left action of G on X, then ψ induces a right action of G on $\mathcal{N}(X,Y)$.

Proof: Let $f \in \mathcal{M}(X,Y)$, $g \in G$ and $x \in X$.

Define $\phi : \mathcal{M}(X,Y) \times G + \mathcal{M}(X,Y)$ by $[\phi(f,g)](x) = f(\psi(g,x)).$

We shall show that Φ is a right action of G on $\mathcal{M}(X,Y)$. Let g, h ϵ G and x ϵ X. Then,

$$\begin{bmatrix} \Phi (f,gh) \end{bmatrix} (x) = f(\psi(gh,x))$$
$$= f(\psi(g,\psi(h,x)))$$

and

$$[\Phi(\Phi(f,g),h)](x) = (\Phi(f,g))(\psi(h,x))$$

$$= f(\psi(g,\psi(h,x))).$$

Therefore, $[\Phi(f,gh)](x) = [\Phi(\Phi(f,g),h)](x)$.

Thus, $\phi(f,gh) = \phi(\phi(f,g),h)$ since x & X is arbitrary.

$$[\Phi(f,e)](x) = f(\psi(e,x))$$
$$= f(x).$$

Therefore, $\Phi(f,e) = f$.

This proves that Φ is right action of G on $\mathcal{M}(X,Y)$. #

Now, suppose G acts on a set X on the left. That is, there exists ψ : G × X \rightarrow X such that ψ (gh,x) = ψ (g, ψ (h,x)), ψ (e,x)=x \forall g,h \in G and \forall x \in X. Let \mathcal{M} (Y,X) = {f|f: Y \rightarrow X}.

Proposition 3.2 If ψ is a left action on X then ψ induces a left action of G on $\mathcal{N}(Y,X)$

Proof: Let $f \in \mathcal{M}(Y,X)$, $g \in G$ and $y \in Y$.

Define $\phi : G \times \mathcal{M}(Y,X) \to \mathcal{M}(Y,X)$ by $[\phi(g,f)](y) = \psi(g,f(y))$.

We want to show ϕ is a left action of G on $\mathcal{M}(Y,X)$.

Let g, h & G and y & Y, then

$$\left[\phi(gh,f) \right] (y) = \psi(gh,f(y))$$

$$= \psi(g,\psi(h,f(y))),$$
and
$$\left[\phi(g,\phi(h,f)) \right] (y) = \psi(g,\phi(h,f)(y))$$

$$= \psi(g,\psi(h,f(y))).$$

Therefore, $\left[\phi(gh,f)\right](y) = \left[\phi(g,\phi(h,f))\right](y)$

Thus, $\Phi(gh,f) = \Phi(g,\Phi(h,f))$ since y is arbitrary.

Now, $[\phi(e,f)](y) = \psi(e,f(y))$

= f(y), this implies that

 $\phi(e,f) = f$. Therefore ϕ is a left action of G on $\mathcal{M}(Y,X)$. #

Proposition 3.3 If ψ is a left action of G on X then ψ induces a left action of G on $\mathcal{M}(X,X)$, where $\mathcal{M}(X,X) = \{f | f \colon X \to X\}$.

Proof: Let $f \in \mathcal{M}(X,X)$, $g \in G$ and $x \in X$.

Define $\Phi : G \times \mathcal{M}_{\cdot}(X,X) \to \mathcal{M}_{\cdot}(X,X)$ by

 $[\Phi(g,f)](x) = \psi(g,f(\psi(g^{-1},x)))$. We want to show that Φ is a left action of G on $\mathcal{M}(X,X)$. Let $g,h\in G$, and $x\in X$, then

$$[\phi(gh,f)](x) = \psi(gh,f(\psi((gh)^{-1},x)))$$

$$= \psi(gh,f(\psi(h^{-1}g^{-1},x)))$$

$$= \psi(gh,f(\psi(h^{-1},\psi(g^{-1},x)))$$

$$= \psi(g,\psi(h,f(\psi(h^{-1},\psi(g^{-1},x))))),$$

and

$$[\Phi(g, \Phi(h, f)](x) = \psi(g, \Phi(h, f)(\psi(g^{-1}, x)))$$

$$= \psi(g, \psi(h, f(\psi(h^{-1}, \psi(g^{-1}, x))))).$$

Therefore, $\Phi(gh,f) = \Phi(g,\Phi(h,f))$. Next, $[\Phi(e,f)](x) = \psi(e,f(\psi(e^{-1},x)))$ $= \psi(e,f(\psi(e,x))) = \psi(e,f(x)) = f(x), \text{ this implies that } \psi(e,f) = f.$ Therefore, Φ is a left action of G on $\mathcal{M}(X,X)$. #

Let $\psi: G \times X \to X$ be a left action, $x \in X$ is an invariant of ψ if $\psi(g,x) = x \quad \forall g \in G$. We sometimes write $g \cdot x$ instead of $\psi(g,x)$. By proposition (3.1) ψ induces a right action $\phi: \mathcal{M}(X,Y)$ $\times G \to \mathcal{M}(X,Y)$ defined by $[\phi(f,g)](x) = f(\psi(g,x))$. Therefore,

 $f \in \mathcal{M}(X,Y) \text{ is an invariant of } \Phi \text{ if } \Phi (f,g) = f \ \forall g \in G \text{ or } [\Phi(f,g)](x) = f(x) \ \forall x \in X, \forall g \in G. \text{ Thus we see that } f \in \mathcal{M}(X,Y)$ is an invariant of Φ if $f(\psi(g,x)) = f(x) \ \forall x \in X, \forall g \in G.$

Therefore f is an invariant of ϕ and $x, y \in X$, $x \circ y$ implies that f(x) = f(y) i.e. f has the same value for all elements of an equivalence class.

Proposition 3.4 f is an invariant of ϕ iff f has the same value for all elements of an equivalence class.

Proof: Assume f is an invariant of Φ . Then $\Phi(f,g) = f \quad \forall g \in G$. Let $x \in X$ then $\left[\Phi(f,g)\right](x) = f(x)$. Therefore $f(\psi(g,x)) = f(x)$. Let $y = \psi(g,x)$ i.e. $x \sim y$. Thus, f(x) = f(y). Therefore f has the same value for all elts of an equivalence class.

Next, assume f has the same value for all elts of an equivalence class. Let $x \in X$, $g \in G$. Therefore $\psi(g,x) \sim x$ and implies that $f(\psi(g,x)) = f(x)$. That is $\Phi(g,f) = f$. Hence f is an invariant of Φ .

Next, by proposition (3.2) ψ induces a left action Φ on $\mathcal{M}(Y,X)$ where $\Phi: G \times \mathcal{M}(Y,X) \to \mathcal{M}(Y,X)$ defined by $[\Phi(g,f)](y)$ $= \psi(g,f(y)). \text{ We see that } f \in \mathcal{M}(Y,X) \text{ is an invariant of } \Phi \text{ if } \Phi(g,f) = f \forall g \in G \text{ or } [\Phi(g,f)](y) = f(y) \forall g \in G \forall y \in Y. \text{ Thus, } f \in \mathcal{M}(Y,X) \text{ is an invariant of } \Phi \text{ if } \psi(g,f(y)) = f(y) \forall g \in G.$ and $\forall y \in Y.$

Proposition 3.5 Let ψ be a left action of G on X and $f \in \mathcal{M}(Y,X)$. Then f is an invariant of ϕ iff f(y) is an invariant of ψ \forall $y \in Y$.

Proof: Assume f is an invariant of Φ . Then $\Phi(g,f) = f \ \forall g \in G$.

Then $[\Phi(g,f)](y) = f(y) \ \forall y \in Y \ \forall g \in G$. Therefore $\psi(g,f(y)) = f(y) \ \forall y \in Y \ \forall g \in G$. Hence f(y) is an invariant of Ψ .

Now, assume f(y) is an invariant of ψ \forall $y \in Y$. Therefore $\psi(g,f(y))=f(y)$ \forall $g \in G$ \forall $y \in Y$. Therefore by definition, $[\phi(g,f)](y)=f(y)$ \forall $g \in G$ \forall $y \in Y$. Thus, $\phi(g,f)=f$ \forall $g \in G$. This proves that f is an invariant of Φ .

By proposition (3.3) ψ induces a left action Φ on $\mathcal{M}(X,X)$ where $\Phi: G \times \mathcal{M}(X,X) \to \mathcal{M}(X,X)$ is defined by $\left[\Phi(g,f)\right](x) = 0$. $\psi(g,f(\psi(g^{-1},x)))$. Therefore, $f \in \mathcal{M}(X,X)$ is an invariant of Φ iff $\Phi(g,f) = f \ \forall g \in G$ or $\left[\Phi(g,f)\right](x) = f(x) \ \forall g \in G \ \forall x \in X$. So we see that $f \in \mathcal{M}(X,X)$ is an invariant of Φ iff $\psi(g,f(\psi(g^{-1},x))) = f(x) \ \forall x \in X \ \forall g \in G$. Let $h = g^{-1}$, therefore $h \in G$. Therefore, $\psi(g,f(\psi(g^{-1},x))) = \psi(h^{-1},f(\psi(h,x)))$. Now, $f \in \mathcal{M}(X,X)$ is an invariant of Φ iff $\psi(h^{-1},f(\psi(h,x))) = f(x) \ \forall h \in G, \ \forall x \in X$.

Proposition 3.6 If ψ is a left action of G on X then $\psi(g,x) = y$ iff $\psi(g^{-1},y) = x$.

Proof: If
$$\psi(g,x) = y$$
 then $\psi(g^{-1},y) = \psi(g^{-1},\psi(g,x)) = \psi(g^{-1}g,x) = \psi(e,x) = x$.

If $\psi(g^{-1},y) = x$ then $\psi(g,x) = \psi(g,\psi(g^{-1},y) = \psi(gg^{-1},y) = \psi(e,y) = y$.

Therefore by proposition (3.6) $\psi(h^{-1}, f(\psi(h,x))) = f(x)$ iff $\psi(h,f(x)) = f(\psi(h,x))$, hence $f \in \mathcal{M}(X,X)$ is an invariant of Φ iff $f(\psi(h,x)) = \psi(h,f(x))$. Therefore f is an invariant of Φ if and only if f is a G-homomorphism.

Now, let $\mathcal{M}(X \times X,Y) = \{f | f: X \times X \to Y\}$. Define $\phi: \mathcal{M}(X \times X) \times G \to \mathcal{M}(X \times X,Y)$ by

 $[\phi(f,g)](x_1,x_2) = f(\psi(g,x_1),\psi(g,x_2)) \quad \forall g \in G, x_1,x_2 \in X.$ and

 $\phi: G \times \mathcal{U}(X \times X, X) \to \mathcal{U}(X \times X, X) \text{ by}$ $\left[\phi(g, f)\right](x_1, x_2) = \psi(g, f(\psi(g^{-1}, x_1), \psi(g^{-1}, x_2))) \text{ then we have}$ the same results as above.

We now extend these concepts to the semigroup with zero case. Let S be a semigroup with zero and ψ be a left semigroup action of S on X. Therefore this left semigroup action of S on X induces a right semigroup action ϕ on $\mathcal{M}(X,Y)$ and induces a left action on $\mathcal{M}(Y,X)$ by defining as above. Moreover, ψ induces a right semigroup action ϕ on $\mathcal{M}(X \times X,Y)$. But for $\mathcal{M}(X,X)$ and $\mathcal{M}(X \times X,X)$ we can't define an action as above because given s ε S, s⁻¹ mightnot exist. We can now give an important definition.

Definition: Let S be a semigroup acting on a set X and let $\psi: S \times X \to X$ be the semigroup action. $f \in \mathcal{M}(X,X)$ is said to be a generalized invariant of S if $f(\psi(s,x)) = \psi(s,f(x))$, $\forall s \in S \quad \forall x \in X$.

of S if $f(\psi(s,x_1), \psi(s,x_2)) = \psi(s,f(x_1,x_2))$. $\forall s \in S \quad \forall x_1,x_2 \in X$.

Fix no N.

and

Define $\psi: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ by $\psi(t,x) = t^{n_0}x$. From previous chapter ψ is a semigroup action of a semigroup \mathbb{R} on \mathbb{R} . We want to find analytic functions $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that f and g are generalized invariants.

We first find an analytic function $f: \mathbb{R} \to \mathbb{R}$ such that $f(\psi(t,x)) = \psi(t,f(x))$. We suppose that $f(x) = C_0 + C_1 x + C_2 x^2 + \cdots$. We need to find C_1 such that the conditions $f(\psi(t,x)) = \psi(t,f(x))$ holds. We see that

$$f(\psi(t,x)) = f(t^{n_0}x)$$

(3.1) $= C_0 + C_1 t^{n_0} x + C_2 (t^{n_0} x)^2 + C_3 (t^{n_0} x)^3 + \dots$

$$\psi(t,f(x)) = t^{n_0}f(x)$$

$$= c_0 t^{n_0} + c_1 t^{n_0} x + c_2 t^{n_0} x^2 + \dots$$
(3.2)

Therefore, we want to find C_i such that (3.1) and (3.2) are equal. Consider the term $t^m x^n$ ($\forall m$, $\forall n \in N$), we see that all the C_i (except C_1) are zero.

Hence $f \in \mathcal{O}(\mathbb{R},\mathbb{R})$ is a generalized invariant iff f(x) = Cx where $C \in \mathbb{R}$, i.e. f is a linear function.

Next, we find analytic functions $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that $g(\psi(t,x_1), \psi(t,x_2)) = \psi(t,g(x_1,x_2)).$ We suppose that

 $g(x_1,x_2) = c_{00} + c_{10}x_1 + c_{01}x_2 + c_{20}x_1^2 + c_{11}x_1x_2 + c_{02}x_2^2 + \cdots$

We need to find C_{ij} such that the condition $g(\psi(t,x_1),\psi(t,x_2))$

= $\psi(t,g(x_1,x_2))$ holds. We have that

$$g(\psi(t,x_{1}),\psi(t,x_{2}) = g(t^{n_{0}}x_{1},t^{n_{0}}x_{2})$$

$$= C_{00}+C_{10}t^{n_{0}}x_{1}+C_{01}t^{n_{0}}x_{2}+C_{20}(t^{n_{0}}x_{1})^{2}$$

$$+C_{11}t^{n_{0}}x_{1}t^{n_{0}}x_{2}+C_{02}(t^{n_{0}}x_{2})^{2}+\cdots$$
(3.3)

and $\psi(t,g(x_1,x_2)) = t^{0}g(x_1,x_2).$

$$= c_{00}t^{n_0} + c_{10}t^{n_0}x_1 + c_{01}t^{n_0}x_2 + c_{20}t^{n_0}x_1^2 + c_{11}t^{n_0}x_1x_2 + c_{02}t^{n_0}x_2^2 + \dots$$

Therefore, we want to find C_{ij} such that (3.3) and (3.4) are equal. We get that $C_{ij} = 0$ $\forall i,j$ except for C_{10} , C_{01} . Therefore $g \in \mathcal{M}(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ is a generalized invariant iff g is in the form:

$$g(x_1, x_2) = Cx_1 + dx_2$$
 where C, $d \in \mathbb{R}$.

That is, g is a linear function.

Hence the analytic generalized invariants $f: \mathbb{R} \to \mathbb{R}$ are written in the form: f(x) = Cx, $C \in \mathbb{R}$ and $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is written in the form $g(x_1, x_2) = Cx_1 + dx_2$, C, $d \in \mathbb{R}$.

Analytic homomorphism:

Definition. Let (S, ., 0) and (S', .', 0') be semigroups with zero.

A mapping f of S into S' is said to be homomorphism

if 1)
$$f(x \cdot y) = f(x) \cdot 'f(y) \quad \forall x, y \in S.$$

2)
$$f(0) = 0$$
.

We first find analytic homomorphism $\psi: \mathbb{R} \to \mathbb{R}$ where \mathbb{R} has the usual multiplication i.e. We want to find $\psi: \mathbb{R} \to \mathbb{R}$ such that $\psi(xy) = \psi(x) \; \psi(y) \; \forall \; x, \; y \in \mathbb{R}$. Suppose $\psi: \mathbb{R} \to \mathbb{R}$ is analytic homomorphism such that $\psi(x) = C_1x + C_2x^2 + C_3x^3 + \dots + C_nx^n + \dots$ It suffices to find C_i such that $\psi(x)\psi(y) = \psi(xy)$.

We have that

(3.5)
$$\psi(xy) = c_1 xy + c_2 x^2 y^2 + c_3 x^3 y^3 + c_4 x^4 y^4 + \dots$$

$$(3.6) \qquad \psi(x)\psi(y) = (c_1x + c_2x^2 + c_3x^3 + \dots)(c_1y + c_2y^2 + c_3y^3 + \dots)$$

$$= c_1c_1xy + c_1c_2xy^2 + c_2c_1x^2y + c_3c_1x^3y + c_2c_2x^2y^2 + \dots$$

$$c_1c_3xy^3 + \dots$$

If $C_i = 0$ \forall i, then $\psi = 0$. Now assume there exists k such that $C_k \neq 0$. Let n be the smallest natural number such that $C_n \neq 0$. We claim that $C_m = 0$ \forall m \neq n. We prove this by comparing the coefficient of the term $x^m y^n$ (m \neq n) in (3.5) and (3.6), respectively. Then,

$$O = C_m C_n$$
.

But $C_n \neq 0$ implying that $C_m = 0$.

Now, we consider the coefficient of the term x^ny^n in (3.5) and (3.6), respectively. Then we get that

 $C_n = C_n C_n \quad \text{which implies that } C_n = 1 \text{ since } C_n \neq 0.$ Hence the analytic homomorphisms $\psi: \mathbb{R} \to \mathbb{R}$ are the function $\psi(x) = x^n$ for some $n \in \mathbb{N}$ and the 0 function.

Next, let $M(2,\mathbb{R}) = \{ \text{two by two matrices with entries in } \mathbb{R} \}$.

We want to find all $\psi \colon \mathbb{R} \to M(2,\mathbb{R})$ such that ψ is an analytic homomorphism. Let $\psi(x) = C_1 x + C_2 x^2 + C_3 x^3 + \dots + C_n x^n + \dots$ where $C_1 \in M(2,\mathbb{R})$. We want to find C_1 such that $\psi(xy) = \psi(x)\psi(y)$. As above, since $\psi(x)\psi(y) = \psi(xy)$, we get two conditions

$$C_n C_n = C_n$$

(3.8)
$$C_n C_m = C_m C_n = 0$$
 if $m \neq n$.
If $C_i = \overline{0}$ \forall i then $\psi(x) = \overline{0}$ $\forall x \in \mathbb{R}$.

Assume there exist k such that $C_k \neq \overline{0}$. Let m be the smallest natural number k such that $C_m \neq \overline{0}$. We now have two cases to consider:

Case 1. We assume that det $C_m \neq 0$. Then C_m^{-1} exists.

Since we have condition $C_{m}C_{m}=C_{m}$, then we get that

$$C_{m}C_{m} = C_{m}$$

$$C_{m}C_{m}C_{m}^{-1} = C_{m}C_{m}^{-1}$$

$$C_{m}I = I$$

C_m = I where I is the identity matrix.

Next, we claim that $C_k = \overline{O}$, $k \neq m$. By using (3.8), therefore $C_k C_m = \overline{O}$, $C_k I = \overline{O}$. So, $C_k = \overline{O}$. Then

$$\psi(\mathbf{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}^{m}.$$

Case 2 We assume that in this case det $C_m = 0$ and $C_m \neq \overline{0}$.

We let $C_m = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, a,b,c,d $\in \mathbb{R}$. We have to find a,b,c,d

such that (3.7) holds. Condition:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 implies that

$$(3.9)$$
 $a^2 + bc = a$

$$(3.10)$$
 ab + bd = b

$$(3.11)$$
 ac + cd = c

(3.12) bc +
$$d^2$$
 = d

From (3.9) and (3.12) we get that $a^2-d^2-a+d=0$, and hence (a-d)(a+d-1) = 0 and from (3.10) and (3.11) we also have that b(a+d-1) = 0, c(a+d-1) = 0.

We can assume that a+d=1. Since $a+d \neq 1$, it follows that a = d, b = 0, c = 0 and hence $\det C_m \neq 0$ or $C_m = \overline{0}$, a contradiction.

Since det C_m = 0, it follows that ad-bc = 0. Therefore, ad = bc and hence a(1-a) = bc. Now consider the following:

If b = 0 and c = 0 then a(1-a) = 0. Therefore,

$$C_{m} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

(3.13) or

$$C_{m} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

If b = 0 but $c \neq 0$ then a(1-a) = 0. Therefore,

$$C_{m} = \begin{pmatrix} 1 & 0 \\ c & 0 \end{pmatrix}$$

(3.14) or

$$C_{m} = \begin{pmatrix} 0 & 0 \\ c & 1 \end{pmatrix}$$

If $b \neq 0$ and c = 0 then we also have that

$$C_{m} = \begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix}$$

(3.15) or

$$C_{m} = \begin{pmatrix} O & b \\ O & 1 \end{pmatrix}$$

Now, assume that $b \neq 0$, $c \neq 0$ then $a \neq 0$, $a \neq 1$ therefore $b = \frac{a(1-a)}{c}$. Then

(3.16)
$$C_{m} = \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix}, a \neq 0, a \neq 1, c \neq 0.$$

If k > m, $C_k = \overline{O}$ then we get that

$$\psi(\mathbf{x}) = \mathbf{C}_{\mathbf{m}} \mathbf{x}^{\mathbf{m}}$$

It is easy to verify that $\psi(\mathbf{x})\psi(\mathbf{y})=\psi(\mathbf{x}\mathbf{y})$ in this case. Now, assume that there exists an ℓ > m such that $C_{\ell}\neq \overline{0}$. Let n be the smallest ℓ such that $C_{\mathbf{n}}\neq \overline{0}$, n > m. We want to find $C_{\mathbf{n}}$, using the conditions in (3.7) and (3.8).

If
$$C_m = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 then we let $C_n = \begin{pmatrix} s & t \\ u & v \end{pmatrix}$.

Therefore, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}\begin{pmatrix} s & t \\ u & v \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ which implies that s=0, t=0

and
$$\begin{pmatrix} s & t \\ u & v \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 which implies that $s = 0$, $u = 0$.

So, we can get that $C_n = \begin{pmatrix} 0 & 0 \\ 0 & v \end{pmatrix}$. Using the fact that $C_n = C_n = C_n$ we get that $\begin{pmatrix} 0 & 0 \\ 0 & v \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & v \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & v \end{pmatrix}$. This implies that

$$C_n = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

In this case we claim that $C_k = 0 \quad \forall k > n$. We prove this

by letting $C_k = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix}$ and using the fact that $C_k C_m = \overline{O} = C_k C_n$.

That is,
$$\binom{m_1}{m_3}$$
 $\binom{m_2}{m_4}\binom{1}{0}$ $\binom{0}{0}$ $\binom{0}{0}$ and $\binom{m_1}{m_3}$ $\binom{m_2}{m_4}\binom{0}{0}$ $\binom{0}{0}$ $\binom{0}{0}$ $\binom{0}{0}$.

Then, m_1 , $m_3 = 0$ and m_2 , $m_4 = 0$ and hence $C_k = 0 \quad \forall k > n$.
Thus,

(3.17)
$$\psi(\mathbf{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x}^m + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}^n.$$

If $C_m = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ then by the same argument as above we

have that

$$C_n = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $C_k = \overline{0} \quad \forall k > n$.

Hence,

(3.18)
$$\psi(\mathbf{x}) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}^{m} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x}^{n}.$$

If $C_{m} = \begin{pmatrix} 1 & 0 \\ c & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & 0 \\ c & 1 \end{pmatrix}$ then by the same proof as above

we get that $C_n = \begin{pmatrix} 0 & 0 \\ -c & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \\ -c & 0 \end{pmatrix}$ and we can also prove that

 $C_k = \overline{O} \quad \forall k > n.$ Hence,

(3.19)
$$\psi(\mathbf{x}) = \begin{pmatrix} 1 & 0 \\ c & 0 \end{pmatrix} \mathbf{x}^{m} + \begin{pmatrix} 0 & 0 \\ -c & 1 \end{pmatrix} \mathbf{x}^{n} \quad \text{or}$$

(3.20)
$$\psi(x) = \begin{pmatrix} 0 & 0 \\ c & 1 \end{pmatrix} x^m + \begin{pmatrix} 1 & 0 \\ -c & 0 \end{pmatrix} x^n, m < n.$$

If $C_{m} = \begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix}$ or $\begin{pmatrix} 0 & b \\ 0 & 1 \end{pmatrix}$ then using the same arguments

as before we can show that $C_n = \begin{pmatrix} 0 & -b \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 1 & -b \\ 0 & 0 \end{pmatrix}$ and we can prove that \forall k > n, $C_k = \overline{0}$. Then,

(3.21)
$$\psi(x) = \begin{pmatrix} 1 & b \\ 0 & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & -b \\ 0 & 1 \end{pmatrix} x^n \text{ or }$$

(3.22)
$$\psi(x) = \begin{pmatrix} 0 & b \\ 0 & 1 \end{pmatrix} x^{m} + \begin{pmatrix} 1 & -b \\ 0 & 0 \end{pmatrix} x^{n}, m < n.$$

In any of the above cases it is easy to verify that $\boldsymbol{\psi}$ is a homomorphism.

Now, we have that $C_m = \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix}$, $a \neq 0$, $a \neq 1$, $c \neq 0$.

Using (3.7) and (3.8) we get that

$$C_n = \begin{pmatrix} 1-a & \frac{-a(1-a)}{c} \\ -c & a \end{pmatrix}$$
 and we also prove that $\forall k > n$

 $C_k = \overline{O}$ by using the fact that $C_k C_n = \overline{O} = C_k C_m$. This gives us:

$$(3.23) \qquad \psi(x) = \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} x^{m} + \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} x^{n}.$$

Therefore,
$$\psi(xy) = \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} x^m y^m + \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} x^n y^n$$
,

and

$$\psi(\mathbf{x})\psi(\mathbf{y}) = \begin{bmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{bmatrix} \mathbf{x}^{m} + \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} \mathbf{x}^{n} \end{bmatrix} \begin{bmatrix} \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} \mathbf{y}^{m} + \\ \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} \mathbf{y}^{n} \end{bmatrix}$$

$$= \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} x^{m}y^{m} + \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix}$$

$$x^{m}y^{n} + \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} x^{n}y^{m} + \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} x^{n}y^{n} .$$

$$= \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} x^{m}y^{m} + \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} x^{n}y^{n} .$$

$$= \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} x^{m}y^{m} + \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} x^{n}y^{n} .$$

= $\psi(xy)$, hence ψ is a homomorphism and obviously $\psi(0)$ = 0.

Theorem Let ψ be analytic homomorphism of $\mathbb R$ into $M(2,\mathbb R)$. If $\psi \not\equiv 0$ and $\psi \not\equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} x^n$ then ψ is equivalent to the homomorphisms ψ_1 or ψ_2 where $\psi_1(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x^m$, $\psi_2(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x^n$, $m \neq n$.

<u>Proof:</u> We recall that two representations ψ and ψ are said to be equivalent if there exist a non-singular matrix A such that

$$\psi'(\mathbf{x}) = \Lambda \psi(\mathbf{x}) \Lambda^{-1} \quad \forall \mathbf{x} \in \mathbb{R}.$$

We claim that $\psi(\mathbf{x}) = C_{\mathbf{m}}^{\mathbf{m}}$ where $C_{\mathbf{m}}$ are in (3.13, 3.14, 3.15, 3.16) is equivalent to $\psi_1(\mathbf{x})$. and $\psi(\mathbf{x})$ in (3.17, 3.18, 3.19, 3.20, 3.21, 3.22, 3.23) is equivalent to $\psi_2(\mathbf{x})$.

It is enough to prove that $\psi(x)$ in (3.17, 3.18, 3.19, 3.20, 3.21, 3.22, 3.23) are equivalent to $\psi_2(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x^n$.

If $\psi(x) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x^n$ then it is obvious by choosing

If
$$\psi(x) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x^m + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x^n$$
, then choose $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Therefore
$$A^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. We see that $A \psi(x) A^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\binom{0}{1} \binom{1}{0} \binom{0}{0} \binom{0}{1} \binom{0}{1} \binom{0}{1} x^{m} + \binom{0}{1} \binom{1}{0} \binom{1}{0} \binom{0}{0} \binom{0}{1} \binom{0}{1} x^{n} = \binom{1}{0} \binom{0}{0} x^{m} + \binom{0}{0} \binom{0}{1} x^{n}.$$

If
$$\psi(x) = \begin{pmatrix} 1 & k \\ 0 & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & -k \\ 0 & 1 \end{pmatrix} x^n$$
, then choose $A = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$

therefore $A^{-1} = \begin{pmatrix} 1 - k \\ 0 \end{pmatrix}$. We see that $A \psi(x) A^{-1} = \begin{pmatrix} 1 - k \\ 0 \end{pmatrix}$

$$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & k \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 - k \\ 0 & 1 \end{pmatrix} x^m + \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 - k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 - k \\ 0 & 1 \end{pmatrix} x^n = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x^n.$$

If
$$\psi(x) = \begin{pmatrix} 0 & k \\ 0 & 1 \end{pmatrix} x^m + \begin{pmatrix} 1 - k \\ 0 & 0 \end{pmatrix} x^n$$
, then choose $A = \begin{pmatrix} 0 & 1 \\ 1 & -k \end{pmatrix}$

therefore $A^{-1} = \begin{pmatrix} k & 1 \\ 1 & 0 \end{pmatrix}$. We see that $A \psi(x) A^{-1} =$

$$\binom{0}{1-k}\binom{0}{0}\binom{k}{1}\binom{k}{1}\binom{k}{1}\binom{k}{1}\binom{k}{1}\binom{k}{1}\binom{1-k}{0}\binom{k-1}{1}\binom{k}{1}\binom{k}{0}\binom{k}{1}\binom{k}{1}\binom{k}{0}\binom$$

If
$$\psi(x) = \begin{pmatrix} 1 & 0 \\ k & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & 0 \\ -k & 1 \end{pmatrix} x^n$$
, then choose $A = \begin{pmatrix} 1 & 0 \\ -k & 1 \end{pmatrix}$

therefore $A^{-1} = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$. We see that $A\psi(x)A^{-1} = \begin{pmatrix} 1 & 0 \\ k & 1 \end{pmatrix}$

$$\binom{1}{-k} \binom{1}{k} \binom{1}{k} \binom{1}{k} \binom{1}{k} \binom{1}{k} \binom{1}{k} \binom{1}{-k} \binom{0}{-k} \binom{0}{k} \binom{1}{k} \binom{1}{k} \binom{0}{k} \binom{1}{k} \binom{0}{0} \binom{1}{k} \binom{0}{0} \binom{1}{k} \binom{0}{0} \binom{1}{k} \binom{0}{0} \binom{0}{0}$$

If
$$\psi(x) = \begin{pmatrix} 0 & 0 \\ k & 1 \end{pmatrix} x^m + \begin{pmatrix} 1 & 0 \\ -k & 0 \end{pmatrix} x^n$$
 then choose $A = \begin{pmatrix} -k & 1 \\ 1 & 0 \end{pmatrix}$

therefore $A^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & k \end{pmatrix}$. Then we see that $A\psi(x) A^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & k \end{pmatrix}$

$$\begin{pmatrix} -k & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ k & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & k \end{pmatrix} x^m + \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -k & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & k \end{pmatrix} x^n = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x^n.$$

$$If \ \psi(x) = \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & 1-a \end{pmatrix} x^m + \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} x^n. \text{ We choose }$$

$$A = \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & -a \end{pmatrix} \text{ then } A^{-1} = \frac{1}{-a} \begin{pmatrix} -a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix}.$$

$$We \text{ see that }$$

$$\frac{1}{-a} \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & -a \end{pmatrix} \begin{pmatrix} a & \frac{a(1-a)}{c} \\ -c & a \end{pmatrix} \begin{pmatrix} -a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and }$$

$$\frac{1}{-a} \begin{pmatrix} a & \frac{a(1-a)}{c} \\ c & -a \end{pmatrix} \begin{pmatrix} 1-a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} \begin{pmatrix} -a & -\frac{a(1-a)}{c} \\ -c & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \text{ which }$$

$$\text{implies that } A\psi(x)A^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x^m + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} x^n.$$

Remark Every details we have discussed are also true in complex numbers.