CHAPTER III ' BN

ANALYTIC INVARIANTS OF A SEMIGROUP \ )

ACTION AND ANALYTIC HOMOMORPHISMS

The purpose of this chapter is to study some of the
properties and the applications of the analytic invariants of a
semigroup action and the analytic homomorphisms on the semigroup
of real numbers. The first part of this section discuss group
invariants. We then extend this concept to invariants of a semi-
group action, especially, the analytic invariants. - The remainder
of this section studies analytic homomorphisms on the semigroup
of real numbers.

Let G be a group, X be a set. Suppose that G acts on X
on the left, Then there exists @ y : G x X+ X such ﬁhat for any

g, h belonging to G and x belonging to X:

v (gh,x) = y(g,¥(h,x)) and
p(e,x) = x where e is the identity in G.
Letc}{(X,Y) = set of 21l maps from X into Y.

{£]£: %X+ 0,

Proposition 3.1. If ¢ is a left action of G on X, then y induces

a right action of G onL}L(X,Y).

Proof: Let fec/!'(,(X,Y), g ¢G and xe X,
Define Q:QAL(X,Y) x G»-OAt(X,Y) by
[e(£,2)](x) = £(y(g,x)).
We shall show that ¢ is a right action of G oncj((X,Y).

Let g, h e G and x € X, Then,
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o (£,gh)] (x)

= f(y(gh,x))
= f(y(g,yp(h,x)))
and ‘
(eCe(£,g),n)] (x) = (o(f,g))(y(h,x))
= f(p(gy¥h,x))).

Therefore, [¢ (£,gh)](x) = [e(o(£,g),h)](x).
Thus, #(f,gh) 8(¢(f,g),h) since x € X is arbitrary.

fo(£,e)](x)

-

flyle,x))

f(x).,

Therefore, ¢ (f,e) = f.

This proves that ¢ is right action of G on(}{(X,Y). #

Now, suppose G acts on a set X on the left. That is,
thereexistsy : G x X+ X such that Y(gh,x) = Wg,¥(h,x)),We,x)=x

VgheGand Vxe X. LetzM(Y,X) = {f]f: ¥ + X},

Proposition 3.2 Ify is a left action on X then ¥ induces a left

k=

action of G on(/L(.(Y,X)

Proof: Let f et,f'/((Y,X), ge Gand y e Y,
Dettnd ¢ ¢ 8 ¥ 1,0 > M(x,0) vy
[e(g, )] (¥) = wlg,£(y)).
We want to show ¢ is a left action of G on(/'!'._.(Y,X).

Let gy he G and ye Y, then

[¢ (gh,£))(y) = y(gh,f(y))
. = Y(g,yp(h,f(y))),
and [e(g,0(n,))] (¥) = ¥(g,0(h,£)(y))

(g (h,£(y))).
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Therefore, .[0(gh,f)] (y) = [o(g,é(h,f))_](y)
Thus, ¢(gh,f) = #(g,®(h,f)) since y is arbitrary.
Now, [0(e,£)](y) = w(e,£(y))
= f(y), this implies that

#(e,f) = £, Therefore ¢ is a left action of G onJ’L(Y,X)- #

Proposifion 3.3 If yis a left action of G on X then ¥ induces

a left action of G ond%(x,x)-, whereOu-z(X,X) = {f|f: X +X}.

Proof: Let £ ecA{(X,X), g e Gond x ¢ Xo

Detine & : GxcM (%, %)+ M (x,0) vy

[o (g,f)] (x) = w(g,f(w(g:'l,x))). We want to show that ¢
is a left action of G ono"(_(x,x). Let g, h e G, and x ¢ X, then

[o(gn,£)(x)

v(gh, 20 ((gn) ™, %))

= Keh, 2 ,x0))

- Cglam ty =t plam 1))

= Wewm, et w00,

and

o(g,0(h, ) (g™, x)))

[e(g,a(n, )] (x)
R FITC I CTC T ¢S DD R
Therefore, ¢(gh,f) = #(g,8(h,f)). Next, [2 (e,£)](x) = vle,£(ple™t,x)))
= y(e,f(y(e,x))) = yp(e,f(x)) = f£f(x), this implies that v(e, ) = ¢,

Therefore, ¢ is a left action of G oncf"L(X,X). #

Let \D : G X X X be a left action, x ¢ X is an invariant
of p if y(g,x) = x Vge G. We sometimes write gex instead of
p(g4x). By proposition (3.1) ¢ induces a right action ¢ :J’(.(X,Y)

x G-H/LL(X,Y) defined by [o(f,g)](x) = f(y(g,x)). Therefore,
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£ eM(X,Y) is an invariant of ¢ if ¢ (f,g) = £ Yge G or
[0(1',3)] (x) = f(x) Yx eX,¥Yge G. Thus we see that fe(}’L(X,Y)
is an invariant of ¢ if f£(y(g,x)) = £(x) ¥V x¢ X, Vg e G
g Define a relation a on X by x A ¥ «—=#3g ¢ G such that
fy = y(g,x). We see that ~ is an equivalence relation. To prove
this, let x, y, 2 € X, x ~ x since p(e,x) = % Assume X m’; then
there exists g € G such that y = ¥(g,x). Since g-l'e G, it
follows that W(gcl,y) = w(g-l,u(g,x)) = w(g‘lg,x) = yle,x) = x.
This implies y ~ x. Next, assume x «,y'énd y 2z, we see that
there exist g, such that y = w(gl,x), z = w(gz,y). Since
8287 € G, we get that z = W(gzgy) = ¢(821¢(81ix)) = W(stlax)-
Therefore x Vv z.

Therefore f is an invariant of ¢andx,ye X, X & ¥ implies

that f(x) = £(y) i.e. f has the same value for all elements of

an equivalence class.

Proposition 3.4 f is an invariant of ¢ iff f has the same value

for all elements of an equivalence class.

Proof: Assx;me f is an invariant of 2. Then ¢(f,g) = f Vg €G-
Let x €X then [@ (£,g)](x) = £(x). Therefore £(y(g,x)) = f(x).
Let .‘I‘"=mp(g,x) i.es X ~ye. Thus, f(x) = f(y). Therefore f has
the same value for all elts of an equivalence classe.

Next, assume f has the same value for all elts of an
equivalence class. Let x ¢ X, g € G. Therefore Y(g,x)~ x and
implies that f(y(g,x)) = f(x). That is ¢(g,f) = f. Hence f is

an invariant of ¢ &
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Next, by proposition’(3.2) ¢ induces a left action @ on
‘ (}'(.(Y,X) where ¢ : Gx('j“(.(Y,X) > JM(Y,X) defined by [¢(g,£)](y)
= Y(gyf(y))s We see that f ea“.(Y,X) is an invariant of ¢ if
¢(g,f)l" =f Yge 6or [0(g,0)(y) = £(y) Vgea Vy € Y. Thus,
£ e M(Y,X) is an invariant of ¢ if w(g,f(y)) = £(¥) Hg £ G

and } y €Y,

Proposition 3.5 Let ¥ be a left action of G on X and f ec){(Y,X).

Then f is an invariant of ¢ iff f_(y) is an invariant of V V ye Y.

Progof: Assume f is an invariant of ¢. Then %(g,f) = f Vege G
Then [#(g,£)](y) = £(y) Ty e¥ Yge G. Therefore w(g,f(y)) =
f(y) Yye YVge G. Hence f(y) is an invariant of V¥ .

Now, assume f(y) is an invariant of ¥ Vy € Y. Therefore
V(g £(y)) = £(y) Y ge GYy €Y. Therefore by definition,
(0(g,)](y) = £(y) Vge GV ye Y. Thus, ¢(g,f) = f Yeg e G

This proves that f is an invariant of ®.

By proposition(3.3) ¢ induces a left action ¢ on M.(X,X)
where ®: G xUM(X,X) +CM(X,X) is defined by [@(g,f)](x) = .t
ll{(g,f(‘b(g-l,x))). Therefore, f ecM (X,X) is an invariant of ¢
ief 0(gy8) = £ Vge G or [0(g,0)](x) = £(x) Vge 6 Vxe X.

So we see that f e(/LL(X,X) is an invariant of & iff q‘,(g,f(w(g-lgxn)
= f(x) Vx eX Vg €¢G. Let h = g—l, therefore he G. Therefore,
Wg 2w (g x))) = p(h™1,2(4(h,x))). Now, £ecM(X,X) is an

invariant of ¢ iff w(h’l,f(w(h,x))) = f£(x) Vh e G, Vx e X.
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Proposition 3.6 If y is a left action of G on X then ¥(g,x) =¥

iff w(g-l,y) = Xe

Proof: If y(gyx) =y then w(g"l,y) = w(g‘1,¢(g,x))

w(s-lg,x) = Ple,x) = x.

1f p(g™l,y) = x then ¥(gyx) = w(g.w(g'l,y)
vige™hy) = wWey) = .
Therefore by proposition(}.G)/ y(h-l,f(w(h.x))) = f(x) iff

v(h,f(x)) = £(¥(h,x)), hence £ eg}{(x,x) is an invariant of ¢ iff

f(y(h,x)) = y(h,f(x)). Therefore f is an invariant of ¢ if and only
if f is a G-homomorphism.

Now, let( M (X x X,¥) = {f|f: Xx X »Y}. Define
o : (X x X) xG »cH(X x X,7) by

[@(f,g)](xl,xz) = £(¥(gox;) 4 ¥(gox,)) Vegea, X, 1%, € X.
and

o: G xcM(x x X, X)» MX*x X,X) by
[o(g,£)]) (xy0x,) = ¥(g 2w (™ 4xy),s w(g™14x,))) then we have

the same results as above.

We now extend these concepts to the semigroup with zero case.
Let S be a semigroup with zero and y be a left semigroup action of
S on X. Therefore this left semigroup action of S on X induces a
right semigroup action ¢ on(C'{(X,Y) and induces a left action on
CA(Y,X) by defining as above. Moreover, ¥ induces a right semigroup
action ® onCM (X x X,Y). But forc/U(X,X) and (X x X,X) we can't
define éh action as above because given s € S, s'-1 mightnot exist.

We can now give an important definition.
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Definition: Let S be a semigroup acting on a set X and let
v : Sx X» X be the semigroup action. fe ¢cM(X,X) is said to

be a generalized invariant of § if f(y(s,x)) = y(s,f(x)),

Vees YxsX.

f ecM(X x X,X) is said to be a generalized invariant

of S if f(w(s,xl), w(s,xz)) = w(s,f(xl,xa))- Vs e85 V*l"‘a e X.

Fix n e N,

Define ¥ : R xR + R by Wt,x) = tnox.. From previous
chapter ¢ is a semigroup action of a semigroup R on R. We want
to find analytic functions f: R *R and g: IR xR + R such that f
and g are generalized invariants.

We first find an analytic function f: R » R such that

f(‘l’(t,x))

y(t,f(x)). We suppose that f(x) = CO+Clx+sz2+‘°’

covd v beniieseivie . W BRpell-COTLIRE Ci such that the conditions

f(p(t,x)) = p(t,f(x)) holds. We see that
n
£(p(t,x)) = £(t °x)
no no 2 no L,
€3.1) = Cy+Cqt x+C2(t x) +03(t T Ll R
and
n

p(t,£(x)) = t °f(x)
» no no no 2
(3.2) = Cot +Clt x+02t VA R o s U O %

Therefore, we want to find Ci such that (3.1) and (3.2)
are equal. Consider the term t"" (Ym, Vn e N), we see that
all the C, (except Cl) are zero.

Hence f € ¢/L(R,R) is a generalized invariant iff f(x) = Cx

where C €R, i.e. f is a linear function.,
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Next, we find analytic functions g : R x R+ R such that

g(w(t,xl). w(t,xz)) W(t,g(xl,xz)). We suppose that

$0s X 40 M. ¥ -C X, X.+C xg+....

2
g(xy1%;) = Coy#Cq X 40 Xo+ CpoXq+0y1%1%5+C)

We need to find Cij such that the condition g(W(t,xl),th,xz))

= y(t,8(x;4%5)) holds. We have that
n n

g (tyx)),0(t,x,) = gt °x1,t °x2)
no no no 2
= COO+Clot xl+COlt x2+020(t xl)
no no no 2
(3'3) +Cllt xlt x2+coz(t x2) 4+ oo0ceceece ©@ecosocco
and ......l..'...0..............................
o
w(t,g(xl,xa)) =t g(xl,xz).
no no no no 2
(3.4) = Coot +Clot x1+001t x2+020t x]

no no i
+Cllt x112+coat x2+.oo..oo.ocoooo-o.oo-ooc

Therefore, we want to find Cij such that (3.3) and (3.4)
are equal. We get that Cij= 0 quj except for ClO’ COl'
Therefore g ¢ (ML.(R x Ry,R) is a generalized invariant iff g is in
the form:

g(xl,xa) = Cx,+ dx where C, d € R.

2

That is, g is a linear functione.
Hence the analytic generalized invariants f : R+ R are

written in the form: f(x) =Cx, Ce R and g : R xR -+ iR is written

in the form g(xl,xz) = Cxj+ dx,y Cy d eRe #
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Analytic homomorphism:

Definition. Let (S,°,0) and (8',°',0') be semigroups with zero.

A mapping f of S into S' is said to be homomorphism

if 1) flxey) = £(x)-'f(y) ¥Yx, 5y e8.

2) £(0) ot,

We first find analytic homomorphism ¢ : R + R where R has
the usual multiplicatién i.e. We want to find ¢ : R +R such that
Wxy) = w(x) p(y) V=x, ye R. Suppose ¥ : R + R is analytic homo-
morphism such that ¥(x) = C,x+C x2+C

X 2 3
suffices to find C, such that Wx(y) = ¥xy).

x3+....+cnxn+........ L] It

We have that

(3.5) pixy) = Clxy+C2x2y2+c3x3y3+c,+xl+yb'+ AT N
and
(3.6) pixp(y) = (Clx+02x2+c3x3+.....)(Cly+02y2+03y3+......)
2 : 2.2
= Clclxy+0102xy2+0201x y+0301x3y+0202x y +

3
C1C3xy+ © 0000000000000 0G0050000°00

If Ci= 0 V i, then ¥ = 0. Now assume there exists k such
that Ck #Z Ou Let n be the smallest natural number such that Cn#'O.
We claim that Cm= 0 Vm #n., We prove this by comparing the
coefficient of the term x"y" (m £ n) in (3.5) and (3.6), respectively.

Then,

But Cn #Z 0 implying that Cm= Qx
Now, we consider the coefficient of the term xnyn in (3.5)

and (3.6), respectively. Then we get that
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C
n

I

¢ which implies that C_= 1 since C_# O.
nn n n
Hence the analytic homomorphisms ¥ : R+ R are the

function ¥(x) = x° for some n ¢ N and the O function.

Next, let M(2,R) = {two by two matrices with entries iﬁlR}.
We want to find all ¥ : R = M(2,R) such that ¥ is an analytic hqmo—
morphism. Let %(x) = Clx+C2x2+C3x3+.....+Cnxn+..... where CieM(Z,R).
We want to find C, such that Y(xy) = W(x)y(y). As above, since
v(x) y) = v(xy), we get two conditions

(3.7) 86 %P

nn n

(3.8) cncm = C.C, O/ if m # n.

1f ¢, =0 Vi then wx) =D VYxe g
Assume there exist k such that Ck # 0. Let m be the smallest
natural number k such that Cm # 0. We now have two cases to consider:

Case 1. We assume that det C_ # 0. Then c;l exists.

Since we have condition Cn'lCm = Cm’ then we get that

c¢cC &1.30

m m m
p TRV R AN
mm m m m

C I = TF

m .

Cm = 1 where I is the identity matrix.

Next, we claim that C = 0 ,k #m. By using (3.8),
therefore Cka =" 0L CkI = O S0y Ck = 0. Then

P(x)

(1 0)
m
X o

0 1
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ngﬁ_g We assume that in this case det C = O and C_# O
: m m

We let Cm t (a b) , a,b,cyd € R. We have to find a,b,c,d
c &
such that (3.7) holds. Condition:

a b a b a b
& a > T L & a implies that
2
(3.9) a+ bec = a
(3.10) ab + bd = b
(%3.11) ac + cd. =//46
(3.12) be FE= 9
From (3.9) and (3,12) we get that az—dz—a+d = 0, and

nence (a-d)(a+d-1) = O  and from (3.10) and (3.11) we also have
that bla+d-1) = 0, c(a+d-1) = 0.

We can assume that a+d 11, \8ince asd £ 1, it follows
that a = d, b = 0, ¢ = O and wewse . det C £ OorC, = 0, a contra-
dictione

Since det Cm= 0, it follows that ad-bc = Os Therefore,

ad = be and hence a(l-a) = bc. Now consider the following:
If b=0and ¢ = O then a(l-a) = O. Therefore,
Cm o (1 0] )
O 0
(3.13) or
/O O)
Cm o \O 1
If b = 0 but ¢ #Z O then =a(l-a) = O. Therefore,
G "= . 0)
[ 0
(3.14) or

'(
b
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If b Z 0 and ¢ = 0O then we also have that

/

c. = ( ) R }
v O 0
(%:1%) : o
Bty [ O b>
m \O 1

Now, assume that b # O, ¢ # O then a # 0, a # 1 therefore

b = -————a(i'a) . Then
N a(l-a)
(3.16) Cm = c [} a # O, a # 1’ [+ # Oo
c l-2a
If k>mC = 0 then we get that
m
w(#) =/ ¢ x

It is easy to verify that p(x)y¢(y) = ¥(xy) in this case.
Now, assume that there exists an & > m such that Cl # 0. Let n be
the smallest & such that Cn #0, n>m. We want to find Cn’ using

the conditions in (3.7) and (3.8).

/ /
If Cc = { Wl E then we let C = Ks * }.
L0 A 1054 u v
Therefore, (1 O)(s $ = {O O‘>which implies that s=0,t=C
.0 O/Au v/ \0 O

and { 8 BML 0O ): (O e ) which implies that s = C4 u = O.
Lu v/io o/ o o

So, we can get that Cn = (C 9 ). Using the fact that
o v/
CC_=C_ we get that (0 O)(Q O): (O © ) . This implies that
nn n
0 v/\O v 0 v

s (0 0):
0o 1



In this case we claim that Ck

/ m
by letting Ck s

7

. m

m1 mz\ 1

|

That is, (
m,+/

m 0

3

m

1 2

My

)

) and usin

(

\

3

0 0 O

0

6l

o) V k > n. We prove this
g the fact that Ckaz D .= Ckcn
/ 2 \
7 (ml ma\ZO O} . (O O>
\ Mo 1/ 7 \o o,
my m 10 3 0 .0

Then, my 9 m3 = 0O and M5 m, = 0O and hence Ck= 0 VYk> n.

Thus,
(3.17) $is) oA 0),&(0
\o 0/ 0
G- 0
I£C = then by the
5 (o 1)
have that
4.0 &
cC_= ( and “C. = O
B ARG o) k
Hence,
(3.18) wx) - W 0) e (1
7 s | 0
30 " O) or (O O)
¢ 0 "~ I
we get that C = ( ¥ O) or (.2
> . =C ) K-c
Cp = 3 Vk >n. Hence,
(3.19) o(x) = {1 O)x‘“+( 9
¢c: O =-C
[T -C

0
%

n
X o

)

same arguement as above we

V k> ne.

O) n
" .
0

then by the same proof as above

O) and we can also prove that
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b £ 4 Cm = {l b) or (O b) then using the same arguments
-0 {0 A
as before we can show that Cn & (O -b> or (l -b) and we can
\ O 1 \ O 0
prove that V k > n, Ck = O. Then,
(3.21) p(x) = {1 L )xm+ (O —b) x" or
0 0 o) 1
(3.22) v (x) (0 b)xm+ (1 -b\}x {8 < Be
oSy 0 0/

In any of the above cases it is easy to verify that y is

a homomorphism.

a(l-a)
Now, we have that C = E ) .8 # 0, af dy.okOs
c l-a

Using (3.7) and (3.8) we get that

-a{l-a)
c, = 1-8 c and we also prove that V k > n
- C a
C, = 0 by using the fact that C 1Cn = 0 = o This gives us:
k m
a(l-a) 5 a(l-a) d
(3.23) p(x) = 2 .
c l-2
/ a(l-a) a(l-a)
Therefore, $(xy) = |2 c ) xy"+ Dot ) xy",
o2 l-a -C a

and

a(l-a) (1-a)\ _ a(l-a)
‘P(X)w(y) 2 . )xm+ (l—a - 2 2 )x { (a = Jym+
C

c l-a -C a / ‘




& a(l-a))/a a(l-a)\ T a(l-a)> [ 1oa . 883=8)
= ) Xy + { c ( c )
( c \e laa /| we s ./

/

B a(l—a))( 1 he a(l-a)\ e
£ (o] }X y ®
=-C a \ =C a /
a(l-a)) mm {1e8) = a(l-a)) n
= c Xy + c Y
C l-a -C a

p(xy), hence ¢ is a homomorphism and ebviously y(0) = O,

Theorem Let ¢ be analytic homomorphism of R into M(2,R). If

v$0 and ¢ % (l O) x" then § is eauivalent to the homomorphisms
6 LN )

¥, or y, where wl(x) = (1 O)xm, Wa(x) % (l O)xm+(0 O)xn, m £ ne
v y— OO F B

Proof: We recall that two representations ¥ and V¥ are said to be

equivalent if there exist a non-singular matrix A such that

' (x) Ay A Vxew

We clazim that (x) cmxm where C_ are in (3.13, 01k, 3,15,

3.16) is equivalent to wl(x). and  ¥(x) in (3.1% 3.38, 3.19,. 3,20,
3.21, 3,22, 3.23) is egquivalent to wz(x).
It is enough to prove that ¢¥(x) in (3.17, 3.18, 3.19, 3.20,

3.21, 3.22, 3.,23) are equivalent to ‘PZ(X) = (l O) x4 (O O) % s
D 0 0 X

If y(x) = ( 1 O\ x4 (O 0 ) x® then it is obvious by choosing

Ee XN =5 o 1 A



If np(x)z(o O)xm+(1 O)xn, then chooseA=(O 1).
‘0 1, 0 O S < £
Theretore AT s ( 3 1). We see that Aw(x)A-l =
3 0
(O 1)(0 O){O 1) xm+ (O l'}(l O)(O l) xn 5 (1 O") xm+ (O O) xn.
5 RN o 1 o Bl v e S o 1. 080 0£X1 -0 0O O O 1
If y(x) = (1 k)xm+ (O _k)xn, then choose A = (1 k)
05 0 9, L O 1
therefore Pl ( 3~k ) . We see that A v(x) i
0 L
(l k)(l k)(l -k m (1 k) 0 =-k\(1l =k n 3.0 m 00 n
)x ¥ ( ){ )x = )x + ) 5,
O L IX0 DI & \Q/ LINO=EF\0 "L Q- 0 g e
17 #(x) = (O k) x4 {1 -k} x", then choose A = (O 1)
i R FEEE 1 -k
therefore A™T = (k 1) . We see that Aw(x)A_l =
L -0
(0 1)(0 k)/k l) m (O l) l~kyksl n X 0 m O O n
X ( ( )( }x - } X + ) >
1 -xllo Al o 1 -k/\o ofl1 o 0o o &1
If Wx) = (1 O) =2 {F O) %+, then choose A = A O)
k O -k 1 \=-k 1
sheretsse . ATk (1 O) . We see that A\p(x)A-l =
: (o
(l O)(l O)(l Oy m (l O) 0 JER < L o i T n 18 m 0 O
}x & }( ) X = ) X+ { \ x
-k 1 k O0/ik 1 ko 1hlek 1 Ak . 0O O 0 1~/
If y(x) = (O O) x4+ (1 O) x© then choose A = (-k 1)
k 11 -k O 11 O
therefore e (O l) . Then we see that Ap(x) AT,
TR

n

e
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ik Ok a (LR e e

a(l-a) a(l-a)
If ¢(x) = (i c )xm+ (l—a S ) x", We choose
-c

l-a a
/ a(l-a) a(l-a))
st R c ) AR _% TS ’
c -a -c a

We see that

(1-a) (1-a) a(1-a)
1(a 28201 a 222 -—c—-=(1 O)and

¢ -3 ¢ l=a f~c a O

(g (lea) ‘ a(1l-a) a(l-a))
}- a _"‘T:‘—' l-a - _C_—_ -8 kNS c ) = ( O O) WhiCh

) x",

c -a -C a ~-C a . St
inpitas that = ARBIA T a (1 O}xm+ (O O) <2 4
0 0O/ Q21
Remark Every details we have discussed are alse true in complex

numbers.
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