CHAPTER II

REAL SEMIGROUP ACTIONS:

The purpose of this chapter is to classify the analytic semigroup actions of the semigroup $\mathbb R$ on itself up to local isomorphism.

Let (\mathbb{R}, \cdot) be the usual semigroup with zero. Let ψ be the analytic semigroup action of the usual semigroup with zero on itself such that $\psi(0,x)=0$. That is, $\psi\colon \mathbb{R}\times\mathbb{R}\to\mathbb{R}$ has properties:

- (1) $\psi(st,x) = \psi(s,\psi(t,x)) \forall s,t, x \in \mathbb{R}$
- (2) $\psi(0,x) \equiv 0$
- (3) $\psi(t,x) = \sum_{m,n=0}^{\infty} C_{mn} t^m x^n$ in some neighborhood of (0,0).

From (3) we have

$$\psi(t,x) = {^{C}_{00}}^{+C} {_{10}}^{t+C} {_{01}}^{x+C} {_{20}}^{t^2+C} {_{11}}^{tx+C} {_{02}}^{x^2+C} {_{30}}^{t^3+C} {_{21}}^{t^2} x$$

$$+ {^{C}_{12}}^{tx^2+C} {_{03}}^{x^3} + \dots$$

Now, since $\psi(0,x)=0$, therefore substituting t=0 in (2.1) we get that $0=\psi(0,x)=C_{00}+C_{01}x+C_{02}x^2+C_{03}x^3+\cdots$ This implies that $C_{0n}=0$ \forall $n=0,1,2,3,\cdots$. Because $\psi(0,x)=0$, it follows that for any t belonging to \mathbb{R} , $0=\psi(t\cdot 0,x)=\psi(t,\psi(0,x))$ $=\psi(t,0)$. Hence $\psi(t,0)=0$ \forall t.

Since $\psi(t,0)=0$ \forall t, the same proof as before gives us the result that $C_{mO}=0$ \forall m = 1,2,3,4,..... Because we have $C_{On}=0$ \forall n = 0,1,2,3,.... and $C_{mO}=0$ \forall m = 1,2,3,4,...., it follows that (2.1) is reduced to:

$$\psi(t,x) = C_{11}tx + C_{12}tx^2 + C_{21}t^2x + C_{13}tx^3 + C_{22}t^2x^2 + C_{31}t^3x + C_{23}t^2x^3 + C_{23}t^2x^3 + C_{32}t^3x^2 + C_{41}t^4x + \dots$$
(2.2)

Now, we shall see what relations between the coefficients C_{mn} are determined by property (1) above.

$$\psi(\text{st},\mathbf{x}) = C_{11}(\text{st})\mathbf{x} + C_{12}(\text{st})\mathbf{x}^2 + C_{21}(\text{st})^2\mathbf{x} + C_{13}(\text{st})\mathbf{x}^3 + C_{22}(\text{st})^2\mathbf{x}^2 + C_{31}(\text{st})^3\mathbf{x} + C_{14}(\text{st})\mathbf{x}^4 + C_{23}(\text{st})^2\mathbf{x}^3 + C_{32}(\text{st})^3\mathbf{x}^2 + C_{41}(\text{st})^4\mathbf{x} + \dots$$

We see that the coefficient of the term $s^k t^m x^n$ ($\forall k, m, n \in \mathbb{N}$) is equal to zero if $k \neq m$ and equal to C_{mn} if k = m.

$$\psi(s,\psi(t,x)) = c_{11}s\psi(t,x) + c_{12}s(\psi(t,x))^{2} + c_{21}s^{2}\psi(t,x) + c_{13}s(\psi(t,x))^{3} + c_{22}s^{2}(\psi(t,x))^{2} + c_{31}s^{3}\psi(t,x) + c_{14}s(\psi(t,x))^{4}$$

$$+ c_{23}s^{2}(\psi(t,x))^{3} + c_{32}s^{3}(\psi(t,x))^{2} + c_{41}s^{4}\psi(t,x) + \cdots$$

 $= c_{11} s(c_{11} tx + c_{12} tx^{2} + c_{21} t^{2} x + c_{13} tx^{3} + c_{22} t^{2} x^{2} + c_{31} t^{3} x + \dots) +$ $c_{12} s(c_{11} tx + c_{12} tx^{2} + c_{21} t^{2} x + c_{13} tx^{3} + c_{22} t^{2} x^{2} + c_{31} t^{3} x + \dots)^{2} +$ $c_{21} s^{2} (c_{11} tx + c_{12} tx^{2} + c_{21} t^{2} x + c_{13} tx^{3} + c_{22} t^{2} x^{2} + c_{31} t^{3} x + \dots) +$ $c_{13} s(c_{11} tx + c_{12} tx^{2} + c_{21} t^{2} x + c_{13} tx^{3} + c_{22} t^{2} x^{2} + c_{31} t^{3} x + \dots)^{3} +$

$$c_{22}s^{2}(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{2}+c_{21}s^{3}(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{2}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{2}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+\cdots)^{4}+c_{14}s(c_{11}tx+c_{12}tx^{2}+c_{12}tx^{2}+c_{13}tx^{2}+c_{14}tx^{2$$

$$c_{23}s^{2}(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+...)^{3}+ \\ c_{32}s^{3}(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+...)^{2}+ \\ c_{41}s^{4}(c_{11}tx+c_{12}tx^{2}+c_{21}t^{2}x+c_{13}tx^{3}+c_{22}t^{2}x^{2}+c_{31}t^{3}x+...)+... \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{11}c_{21}st^{2}x+c_{21}c_{11}s^{2}tx \\ = c_{12}c_{11}stx + c_{11}c_{12}stx^{2}+c_{11}c_{21}st^{2}x+c_{21}c_{11}s^{2}tx \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{11}c_{21}st^{2}x+c_{21}c_{11}s^{2}tx \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{21}c_{11}c_{21}st^{2}x+c_{21}c_{21}s^{2}tx \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{21}c_{21}s^{2}tx \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{21}c_{21}s^{2}tx \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{21}c_{11}c_{21}st^{2}x+c_{21}c_{21}s^{2}tx \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{21}c_{11}c_{21}stx^{2}+c_{21}c_{21}c_{21}s^{2}tx \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{21}c_{11}s^{2}tx + c_{21}c_{11}s^{2}tx \\ = c_{11}c_{11}stx + c_{11}c_{12}stx^{2}+c_{21}c_{11}s^{2}tx +$$

 $C_{21}C_{21}s^{2}t^{2}x+C_{21}C_{12}s^{2}tx^{2}+(C_{12}C_{11}^{2}+C_{11}C_{22})st^{2}x^{2}+....$

If $m \le n$, the coefficient of the term $s^k t^m x^n$ in (2.4) equals:

+
$$c_{k2}$$
 (Σ $c_{i_1+i_2=m}$ $c_{i_1j_1}c_{i_2j_2}$)
 $c_{j_1+j_2=n}$

+
$$C_{km}$$
 (Σ $C_{i_1+i_2+\cdots+i_m=m}$ $C_{i_1j_1}^{C_{i_2j_2}} \cdots C_{i_mj_m}$).
 $j_1+j_2+\cdots+j_m=n$.

If m > n, the coefficient of the term $s^k t^m x^n$ in (2.4) equals: C_{kl}C_{mn}

Since (2.3) and (2.4) are equal, we get that the coefficients of the term $s^k t^m x^n (k,m,n \in \mathbb{N})$ in (2.3) and (2.4) must be equal.

With this as a background we are now ready to prove the following theorem:

Theorem: Let ψ be an analytic semigroup action of (\mathbb{R}, \bullet) with zero on \mathbb{R} . Then ψ is identically zero or ψ is locally analytically isomorphic to the analytic semigroup action ϕ , where $\phi(t,x)=t^{m_0}x$, for some $m_0\in\mathbb{N}$.

Proof: Now, considering (2.2), we have two cases:

case 1. We assume that $C_{ml} = 0 \quad \forall m = 1,2,3,4,...$. In this case we want to prove that $C_{mn} = 0 \quad \forall m, \forall n$. We shall prove this by induction on n.

Consider the following diagram:

Induction on n. (We prove induction on the columns.)

We assume that the first column is zero and we want to show that the $n\frac{th}{}$ column is zero $\forall n \in \mathbb{N}$. By assumption $C_{m1} = 0 \ \forall m$. Now, we assume this true for all natural numbers less than n. We want to show $C_{mn} = 0 \ \forall m$. Consider the coefficients of the term $s^m t^m x^n$ in (2.3) and (2.4), respectively.

In (2.3) the coefficient of this term is C_{mn} .

In (2.4) we have two cases to consider:

subcase 1.1 For m < n, the coefficient of this term is

$$+ c_{m3} (\sum_{i_1+i_2+i_3=m \cdot i_1 j_1}^{c} i_2 j_2 c_{i_3 j_3})$$

$$j_1+j_2+j_3=n \cdot$$

+

+

(2.5)
$$+ {}^{C}_{mm-1} (\sum_{i_1+i_2+\cdots+i_{m-1}=m} {}^{C}_{i_1} j_1 {}^{C}_{i_2} j_2 \cdots {}^{C}_{i_{m-1}} j_{m-1}$$

 $j_1+j_2+\cdots+j_{m-1}=n$

+
$$C_{mm}$$
 ($\Sigma_{i_1+i_2+...+i_m=m}$ $C_{i_1j_1}^{C}$ $C_{i_2j_2}$ $C_{i_mj_m}$) · $j_1+j_2+...+j_n=n$.

Claim that the terms involving $C_{m\ m+1}$, $C_{m\ m+2}$,.... do not appear. To see this, suppose that we have

$$c_{mm+1}$$
 $(\sum_{\substack{i_1+i_2+\cdots+i_{m+1}=m\\j_1+j_2+\cdots+j_{m+1}=n}}^{c} c_{i_1}^{c} c_{i_2}^{c} \cdots c_{i_{m+1}}^{c})$.

Because $i_{\alpha} \geqslant 1 \quad \forall \alpha$ and $m = i_1 + i_2 + \cdots + i_{m+1} (m+1 \text{ terms}) \geqslant 1 + 1 + \cdots + \cdots + 1 = m+1$. This implies that $m \geqslant m+1$, a contradiction. Using the same proof as above, the other terms do not appear.

If m < n then by assumption $C_{m1}, C_{m2}, C_{m3}, \dots, C_{mm}$ are all zero. Now, assume that m = n. By the induction hypothesis, $C_{m1}, C_{m2}, \dots, C_{m,m-1}$ are all zero. We want to show that the term $C_{mm}(\sum_{i_1+i_2+\dots+i_m=m}^{C} C_{i_1}C_{i_2}C_{i_2}\dots C_{i_m}C_{i_m}) = 0 \text{ also.}$ $i_1+i_2+\dots+i_m=m$ $i_1+i_2+\dots+i_m=n$

We see that j = 1 $\sqrt{\beta}$. Therefore, $C_{i_{\alpha}}1 = 0$ α . Hence the sum of the product is zero.

Therefore, the coefficient of the term $s^m t^m x^n$ (m \leq n) in (2.4) equals zero.

Hence $C_{mn} = O_{\bullet}$

Subcase 1.2 For m > n, the coefficient of the term $s^m t^m x^n$ in (2.4) is

+
$$C_{m3}$$
 (Σ $C_{i_1+i_2+i_3=m.i_1}$ i_1 i_2 i_2 i_3 i_3 i_4 i_4 i_2 i_3 i_3

+

(2.6) +

+
$$C_{mn}(\sum_{i_1+i_2+\cdots+i_n=m, c_{i_1}j_1}^{c_{i_1}j_2} i_{2}j_{2}\cdots c_{i_n}j_{n})$$
 • $j_1+j_2+\cdots+j_n=n$ •

Claim that the terms involving $c_{mn+1}, c_{mn+2}, \ldots$ do not appear. To see this, we consider the term

$$c_{mn+1}(\sum_{\substack{i_1+i_2+\cdots+i_{n+1}=m\\j_1+j_2+\cdots+j_{n+1}=n}}^{c_{i_1}j_1})_{i_2}^{c_{i_2}j_2}\cdots c_{i_{n+1}j_{n+1}})_{i_{n+1}}$$

Since $j_{\beta} \geqslant 1$ % β and $n = j_1 + j_2 + \cdots + j_{n+1} (n+1 \text{ terms}) \geqslant 1 + 1 + \cdots + 1$ = n+1, which a contradiction. Similarly we see that the other terms do not appear.

Now, (2.6) is reduced to

$$c_{mn}(\sum_{\substack{i_1+i_2+\cdots+i_n=m.\\j_1+j_2+\cdots+j_n=n.}}^{c_{i_1}j_1}i_2j_2\cdots c_{i_n}j_n)$$
 because by the

induction hypothesis C_{m1},C_{m2},.... C_{m,n-1} are all zero.

We need to show that
$$C_{mn}(\sum_{\mathbf{i}_1+\mathbf{i}_2+\cdots+\mathbf{i}_n=m}, C_{\mathbf{i}_1\mathbf{j}_1}, C_{\mathbf{i}_2\mathbf{j}_2}, \cdots, C_{\mathbf{i}_n\mathbf{j}_n}) = 0$$
. $\mathbf{i}_1+\mathbf{j}_2+\cdots+\mathbf{j}_n=n$.

Since $j_{\beta} > 1$ $\forall \beta$ and $n = j_1 + j_2 + \cdots + j_n$ (n terms), this implies that $j_{\beta} = 1$ $\forall \beta$. But for all α , $C_{i_{\alpha}j_{\beta}} = C_{i_{\alpha}1} = 0$, therefore the sum of the products is zero implying that

$$C_{mn}(\sum_{\substack{i_1+i_2+\cdots+i_n=m.\\j_1+j_2+\cdots+j_n=n.}}^{C}C_{i_1}C_{i_2}\cdots C_{i_n}) = 0.$$

Hence $C_{mn} = 0$. Therefore in any case we have that $C_{mn} = 0 \quad \forall \ m \quad \forall \ n$.

Case 2. We assume that there exists an m such that $C_{m1} \neq 0$. Let m_o be the smallest natural number such that $C_{m_0} \neq 0$. Define $\Phi: R \times R \to R$ by

$$\phi(t,x) = t \quad x \quad \forall t \in \mathbb{R}, \forall x \in \mathbb{R}.$$

We see that ϕ is analytic. Now, we need to show that ϕ is an analytic semigroup action of (\mathbb{R}, \bullet) with zero on \mathbb{R} , that is, $\phi(st,x) = \phi(s,\phi(t,x))$ and $\phi(0,x) = 0$ $\forall s,t \in \mathbb{R}, \forall x \in \mathbb{R}$. To see this, let s,t,x belong to \mathbb{R} then $\phi(st,x) = (st)^{m_0}x = s^{m_0}t^{m_0}x$ so $(t^{m_0}x) = s^{m_0}\phi(t,x) = \phi(s,\phi(t,x))$ and $\phi(0,x) = 0^{m_0}x = 0$. Therefore ϕ is a semigroup action of \mathbb{R} on \mathbb{R} . Next, we claim that the analytic semigroup action ϕ . In order to prove this, we have to find an analytic map $\eta: U \to U'$ where U and U' are neighborhoods of 0 in \mathbb{R} , such that η is one-to-one, onto and satisfies the following property:

 $\eta(\psi(t,x)) = \Phi(t,\eta(x)) \qquad t, x \in \mathbb{R}.$ We have $\psi(t,x) = C_{11}tx + C_{12}tx^2 + C_{21}t^2x + C_{13}tx^3 + C_{22}t^2x^2 + C_{21}t^2x^2 + C_{22}t^2x^2 + C_{21}t^2x^2 + C_{$

 $c_{31}t^3x+c_{14}tx^4+c_{23}t^2x^3+c_{32}t^3x^2+c_{41}t^4x+...$ and $\phi(t,x) = t^{m_0}x$.

Define $\eta : \mathbb{R} \to \mathbb{R}$ by

$$\eta(x) = d_0 + d_1 x + d_2 x^2 + d_3 x^3 + \dots + d_n x^n + \dots$$

where $d_k = \frac{C_{m_0}k}{C_{m_0}l}$. Since $C_{m_0}O = 0$, it follows that $d_0 = 0$, that

is
$$\eta(0) = 0$$
. Therefore, $\eta(x) = \sum_{k=1}^{\infty} \frac{C_{m_0}^k}{C_{m_0}^l} x^k$. Since $\sum_{m,n=1}^{\infty} C_{mn}^l t^n x^n$

converges in a neighborhood of (0,0), by section (0.5), it follows

that $\sum_{k=1}^{\infty} C_{m} x^{k}$ converges in a neighborhood of O. Clearly,

 $\sum_{k=1}^{\infty} \frac{C_{m_0 k}}{C_{m_0 l}} x^k$ converges in the same neighborhood of O as $\sum_{k=1}^{\infty} C_{m_0 k} x^k.$

Now, we see that

$$\frac{d}{dx}\eta(x) = \frac{c_{m_0}1}{c_{m_0}1} + 2\frac{c_{m_0}2}{c_{m_0}1}x + 3\frac{c_{m_0}3}{c_{m_0}1}x^2 + \cdots$$

Therefore $\frac{d}{dx}\eta(0) = 1 \neq 0$.

By Theorem 0.6, there exists a neighborhood of 0 such that η is one-to-one. Now, choose a neighborhood U of 0 such that η is one-to-one and η converges in this neighborhood and U' = η (U). Therefore, we have $\eta: U \to U'$, U and U' are neighborhoods of 0 in R such that η is one-to-one and onto. We want to prove that $\eta(\psi(t,x))$ = $\psi(t,\eta(x))$; therefore, we first expand $\eta(\psi(t,x))$ and $\psi(t,\eta(x))$, respectively.

$$\eta(\psi(t,x)) = \eta(C_{11}^{t}tx+C_{12}^{t}tx^{2}+C_{21}^{t}t^{2}x+C_{13}^{t}tx^{3}+C_{22}^{t}t^{2}x^{2}+C_{31}^{t}t^{3}x+\dots)$$

$$= d_{1}(C_{11}^{t}tx+C_{12}^{t}tx^{2}+C_{21}^{t}t^{2}x+C_{13}^{t}tx^{3}+C_{22}^{t}t^{2}x^{2}+C_{31}^{t}t^{3}x+\dots)$$

$$+ d_{2}(C_{11}^{t}tx+C_{12}^{t}tx^{2}+C_{21}^{t}t^{2}x+C_{13}^{t}tx^{3}+C_{22}^{t}t^{2}x^{2}+C_{31}^{t}t^{3}x+\dots)^{2}$$

$$+ d_{3}(C_{11}^{t}tx+C_{12}^{t}tx^{2}+C_{21}^{t}t^{2}x+C_{13}^{t}tx^{3}+C_{22}^{t}t^{2}x+C_{31}^{t}t^{3}x+\dots)^{3}$$

$$+ d_{4}(C_{11}^{t}tx+C_{12}^{t}tx^{2}+C_{21}^{t}t^{2}x+C_{13}^{t}tx^{3}+C_{22}^{t}t^{2}x+C_{31}^{t}t^{3}x+\dots)^{4}$$

$$+ \dots$$

$$\phi(t,\eta(x)) = \phi(t,d_1x+d_2x^2+d_3x^3+d_4x^4+\dots)$$

$$= t^{m_0}(d_1x+d_2x^2+d_3x^3+d_4x^4+\dots)$$

$$= d_1t^{m_0}x+d_2t^{m_0}x^2+d_3t^{m_0}x^3+d_4t^{m_0}x^4+\dots$$

We want to show that (2.7) and (2.8) are equal, that is, we want to show that the coefficients of the term $t^m x^n$ in (2.7) and (2.8) are equal.

Let m, n be any integers. We consider the coefficients of the term $t^m x^n$ in (2.7) and (2.8), respectively.

Case 2.1 We assume that m # m

Subcase 2.1.1 m < n.

 $m \neq m_0$ implies that the coefficient of the term $t^m x^n$ in (2.8) is zero. The coefficient of this term in (2.7) is

di^Cmn

+
$$d_3(\sum_{i_1+i_2+i_3=m}, C_{i_1}^{C_{i_2}}, C_{i_3}^{C_{i_3}})$$

 $j_1+j_2+j_3=n$

+

+

+
$$d_{m}$$
 (Σ $C_{i_{1}+i_{2}+\cdots+i_{m}=m}$ $C_{i_{1}j_{1}}^{C_{i_{2}j_{2}}\cdots C_{i_{m}j_{m}}}$).

We substitute $\frac{C_{m_0}k}{C_{m_0}1}$ for d_k . We see that we must show

that
$$\frac{C_{m_0}1}{C_{m_0}1}$$
 C_{mn}

$$+ \frac{\frac{C_{m_0} 2}{C_{m_0} 1} (\sum_{i_1+i_2=m} \frac{C_{i_1} j_1^{C_{i_2} j_2}}{j_1+j_2=n})}{j_1+j_2=n}$$

$$(2.9) + \frac{C_{m_0}^{3}}{C_{m_0}^{1}} (\sum_{\substack{i_1+i_2+i_3=m \\ j_1+j_2+j_3=n}}^{C_{m_0}^{1}} C_{i_1}^{i_2} C_{i_2}^{i_2} C_{i_3}^{i_3}) = 0$$

+

$$+ \frac{c_{m_0^m}}{c_{m_0^{1}}} (\sum_{\substack{i_1+i_2+\cdots+i_m=m\\j_1+j_2+\cdots+j_m=n}}^{c_{m_0^m}} (\sum_{\substack{i_1+i_2+\cdots+i_m=n\\j_1+j_2+\cdots+j_m=n}}^{c_{m_0^m}} (\sum_{\substack{i_1+i_2+\cdots+i_m=n}}^{c_{m_0^m}} (\sum_{$$

Now, use the fact that (2.3) and (2.4) are equal and consider the coefficient of the term s ot m ($m \neq m$, $m \leq n$). In (2.3), since $m \neq m$, we get that the coefficient of this term is zero. Since the coefficients of the term s ot m ($m \neq m$, $m \leq n$) in (2.3) and (2.4) are equal, we get that

Since $C_{m_0^{-1}} \neq 0$, we can divide both sides of (2.10) by $C_{m_0^{-1}}$ and thus we prove (2.9). Therefore when $m_0 \neq m$ and $m \leqslant n$ the coefficients of the term $t^m x^n$ in (2.7) and (2.8) are equal.

Subcase 2.1.2 m > n.

Since $m \neq m_0$, we see that the coefficient of the term $t^m x^n$ in (2.8) must be zero and the coefficient of $t^m x^n$ ($m \neq m_0$, m > n). In (2.7) is:

+
$$d_3(\sum_{i_1+i_2+i_3=m}, C_{i_1i_2}, C_{i_2i_2}, C_{i_3i_3})$$

 $j_1+j_2+j_3=n$

+

+

+
$$d_n(\sum_{i_1+i_2+\dots+i_n=m}^{c} c_{i_1}^{c} i_2^{c} i_2^{c} \dots c_{i_n}^{c})$$
,
 $j_1+j_2+\dots+j_n=n$.

Again we substitute $\frac{C_{m_0}k}{C_{m_0}l}$ for $d_{\mathbf{k}}$. Thus we need to show that

$$(2.11) + \frac{C_{m_0}^{3}}{C_{m_0}^{1}} (\sum_{\substack{i_1+i_2+i_3=m \\ j_1+j_2+j_3=n}}^{C_{i_1}^{1}} C_{i_2}^{i_2} C_{i_3}^{i_3})$$

+

$$+ \frac{\frac{C_{m_0}n}{c_{m_0}!}}{\frac{1}{c_{n_0}!}} (\sum_{\substack{i_1+i_2+\cdots+i_n=m\\j_1+j_2+\cdots+j_n=n}} \frac{C_{i_1}j_1}{c_{i_2}j_2} \cdots c_{i_n}j_n) = 0.$$

Now, using the fact that (2.3) and (2.4) are equal. We consider the coefficients of the term $s^{m} \circ_{t}^{m} x^{n}$ (when $m > n, m \neq m_{o}$). From (2.3), since $m \neq m_{o}$, we get that the coefficient of this term is zero. Since the coefficients of the term $s^{m} \circ_{t}^{m} x^{n}$ (when m > n, $m \neq m_{o}$) in (2.3) and (2.4) are equal, we get that

Since $C_{m_0}1 \neq 0$, we can divide both sides of (2.12) by $C_{m_0}1$ and thus we prove (2.11). Therefore when $m_0 \neq m$ and m > n the coefficients of the term $t^m x^n$ in (2.7) and (2.8) are equal. Hence when $m_0 \neq m$ we get that the coefficients of the term $t^m x^n$ in (2.7) and (2.8) are equal.

Case 2.2 We assume that $m = m_0$.

Subcase 2.2.1 m < n, that is, m < n.

Since m = m_o, we see that the coefficient of the term $t^m x^n$ in (2.8) is equal $d_n = \frac{C_{m_o} n}{C_{m_o} 1}$. For m_o < n the coefficient

of this term in (2.7) is.

+ d₃(
$$\Sigma$$
 $C_{i_1}^{i_1+i_2+i_3=m}$ $C_{i_1}^{i_1}^{i_2}^{i_2}^{i_3}^{i_3}$)

+

We substitute $\frac{C_{m_0k}}{C_{m_0l}}$ for d_k . Thus we need to show that:

+
$$\frac{c_{m_0^2}}{c_{m_0^1}}$$
 ($\sum_{\substack{i_1+i_2=m_0\\j_1+j_2=n}}$ $c_{i_1j_1}c_{i_2j_2}$)

$$(2.13) + \frac{C_{m_0}^{3}}{C_{m_0}^{1}} (\sum_{\substack{i_1+i_2+i_3=m_0\\j_1+j_2+j_3=n}}^{C} C_{i_1}^{i_1} C_{i_2}^{i_2} C_{i_3}^{j_3})$$

$$+ \frac{C_{m_0m_0}}{C_{m_0l}} \left(\sum_{\substack{i_1+i_2+\cdots+i_m=m_0\\j_1+j_2+\cdots+j_m=n}} C_{i_1j_1}C_{i_2j_2}\cdots C_{i_m_0j_m_0} \right) = \frac{C_{m_0n}}{C_{m_0l}}.$$

Using the fact that (2.3) and (2.4) are equal, we consider the coefficient of the term $s^{m_0}t^{m_0}x^{n_0}$ ($m_0 < n$). For $m_0 < n$, the coefficient of this term im (2.3) is $C_{m_0}n$. Since the coefficients of the term $s^{m_0}t^{m_0}x^{n_0}$ ($m_0 < n$) in (2.3) and (2.4) are equal, we get that:

Next, we can divide both sides of (2.14) by ${}^{C}_{m_0} 1^{(C_{m_0})} \neq 0$ and thus we prove (2.13). Therefore when $m = m_0$, $m_0 \leq n$ the coefficients of the term $t^m x^n$ ($t^n x^n$) in (2.7) and (2.8) are equal.

Since m = m_o, the coefficient of the term t m ox in (2.8) is equal to d_n = $\frac{C_{mon}}{C_{mol}}$. But the coefficient of the term t m x in

j,+j2+...+jn=n.

(2.7) is

We substitute $\frac{C_{m_0}k}{C_{m_0}l}$ for d_k , therefore we see that we

have to show that

$$\frac{\frac{C_{m_0}1}{C_{m_0}1}}{\frac{C_{m_0}n}} = \frac{C_{m_0}n}{\frac{1}{1}^{1}i_2^{1}m_0} + \frac{C_{m_0}2}{\frac{1}{1}^{1}i_2^{1}m_0} = \frac{C_{i_1}j_1^{C}i_2j_2}{\frac{1}{1}^{1}i_2^{1}j_2^{1}m_0} + \frac{C_{m_0}3}{\frac{1}{1}^{1}i_2^{1}j_3^{1}m_0} = \frac{C_{i_1}j_1^{C}i_2j_2^{C}i_3j_3}{\frac{1}{1}^{1}i_2^{1}j_2^{1}j_3^{1}m_0} + \frac{C_{m_0}n}{\frac{1}{1}^{1}i_2^{1}j_2^{1}m_0} = \frac{C_{m_0}n}{\frac{1}{1}^{1}i_2^{1}j_2^{1}m_0} + \frac{C_{m_0}n}{\frac{1}{1}^{1}i_2^{1}j_2^{1}m_0} = \frac{C_{m_0}n}{\frac{1}{1}^{1}i_2^{1}m_0} = \frac{C_{m_0}n}{\frac{1}{1}^{1}m_0} = \frac{C_{m_0}n}{\frac{1}^{1}m_0} = \frac{C_{m_0}n}{\frac{1}^{1}m_0} = \frac{C_{m_0}n}{\frac{1}^{1}m_0} = \frac{C_{m_0}n}{\frac{1}{1}^{1}m_0} = \frac{C_{m_0}n}{\frac{1}^{1}m_0} = \frac{C_{m_0}n}{\frac{1}^{1}$$

Using the fact that (2.3) and (2.4) are equal, we consider the term s ot m or n (m or n or n

+

+

+
$$c_{m_0}^n$$
 ($c_{n_1+i_2+\cdots+i_n=m_0}^n$ $c_{n_1}^i$ $c_{n_2}^i$ $c_{n_1}^i$ $c_{n_2}^i$ $c_{n_2}^i$

Since $C_{m_0} \neq 0$, we can divide both sides of (2.16) by C_{m_0} and thus we prove (2.15). So we see that when $m_0 > n$ the coefficients of the term $t^m x^n$ in (2.3) and (2.4) are equal. So, we see that in all cases the coefficients of the term $t^m x^n$ in (2.3) and (2.4) are equal. Hence this proves that $\eta(\psi(t,x)) = \Phi(t,\eta(x))$.

of this section studies assirtic hospotorphisms on the somigroup

of real members.

Lot 5 be a group, X be a est. Suppose that 5 soom on

on the left. Then there exists a p : A * Y * Z ruch that for M

B a perpuging to a ana x accomment as a

when a terminate the the theority in C.

the Marky - car of all many from T into I.

Proposition 3.1. If we is a last setion of G on E. there we issue:

a night action of a one (E.T).

power the for Albert of the only of T.

The state of the s

A STATE OF S