CHAPTER II

PRELIMINARIES

The materials of this chapter are drawn from references
[1], [2], [3], [7], [10], [12], [13], [15].

To make this thesis essentially self contained, we recall some relevant notions and facts from integration theory. However we first recall some properties of upper and lower semi-continuous function.

2.1 <u>Definition</u>. Let X, Y be topological spaces. The function $f: X \longrightarrow Y$ is said to be continuous at $x \in X$, if given any open set V in Y with $f(x_0) \in V$, then there exists an open set U in X with $x \in U$, such that $f(U) \subset V$.

Furthermore, f is continuous if and only if f is continuous at each point of X.

2.2 <u>Definition</u>. Let f be an extended real-valued function with domain D. \mathbb{C} Rⁿ. For each y \in Rⁿ let \mathscr{N}_y be the collection of neighborhoods of y. If F \mathbb{C} D and x₀ is any point of $\overline{\mathbb{F}}$, we define

$$\lim_{x \to x_0} \inf f(x) = \sup_{v \in \mathcal{N}_{x_0}} \left[\inf f(x) \right] \\
 \times \in F$$

$$\lim_{x \to x_0} \sup_{x \in F} f(x) = \inf_{x \in V \cap F} \left[\sup_{x \in V \cap F} f(x) \right]$$

2.3 <u>Definition</u>. An extended real-valued function f defined on a topological space is said to be <u>lower semicontinuous</u> at a point $\mathbf{x}_0 \in X$, if for each $\mathbf{x} \in [-\infty, \infty]$ such that $\mathbf{x} \in [-\infty, \infty]$ then there exists a neighborhood V of \mathbf{x}_0 such that $\mathbf{x} \in [-\infty, \infty]$ for all $\mathbf{x} \in V$. An extended real-valued function f defined on a topological space is said to be <u>upper semicontinuous</u> at a point $\mathbf{x}_0 \in X$ if - f is lower semicontinuous at a point \mathbf{x}_0 .

2.4 Theorem. A function f is lower semicontinuous at x_0 if and only if

$$\lim_{x \to x_0} \inf f(x) = f(x_0).$$

<u>Proof</u>: Assume that f is lower semicontinuous at x_0 ; for each $x \in [-\infty, \infty]$ such that $x \in f(x_0)$, there exists a neighborhood V of x_0 such that $x \in f(x)$ for all $x \in V$. Since

$$\inf_{x \in V} f(x) \leq f(x_0), \quad (V \in \mathcal{N}_{x_0})$$

$$\sup_{\mathsf{V}\in\mathscr{O}}\left[\inf_{\mathsf{x}}\mathsf{f}(\mathsf{x})\right] \leqslant \mathsf{f}(\mathsf{x}_{0}).$$

Suppose that $\sup_{V} \left[\inf_{x \in V} f(x) \right] < f(x_0) . Then$

inf
$$f(x) < f(x_0)$$
 for all V ; $x \in V$

there exists $x \in V$ such that $f(x) < f(x_0)$. Then there exists $\beta \in [-\infty, \infty]$ such that $f(x) < \beta < f(x_0)$; i.e. there exists $\beta \in [-\infty, \infty]$ such that $\beta < f(x_0)$ and for all neighborhood V of x_0 there exists $x \in V$ such that $f(x) < \beta$. This is the contradiction. Hence $\lim_{x \longrightarrow x_0} \inf f(x) = f(x_0).$

Conversely, assume that $\lim_{x \to x_0} \inf f(x) = f(x_0)$.

For given any $\alpha \in [-\infty, \infty]$ such that $\alpha < f(x_0)$,

$$\propto \langle f(x_0) = \sup_{v_{x_0}} [\inf_{x \in v_{x_0}} f(x)].$$

Then there exists a neighbothood V of \mathbf{x}_{o} such that

 α < inf f(x), since otherwise x \in V

 $\sup_{V} \left[\inf_{x \in V} f(x) \right] \leqslant \alpha \quad \text{Hence f is lower semicontinuous.}$

Consequently, we can show that f is upper semicontinuous at x if and only if $\limsup_{x \to x_0} f(x) = f(x_0)$.

2.5 Theorem. A real-valued function is continuous at a point $x_0 \in X$ if and only if it is both upper semicontinuous and lower semicontinuous at a point x_0 .

<u>Proof</u>: Let f be any continuous function at a point $x_0 \in X$. Then for any (α, β) with $f(x_0) \in (\alpha, \beta)$, there exists a neighborhood U of x_0 such that $f(U) \subset (\alpha, \beta)$. Thus f is both lower and upper semicontinuous at a point x_0 . Conversely, assume that f is both

lower and upper semicontinuous at a point x_0 ; for each $\alpha, \beta \in \{-\infty, \infty\}$ such that $\alpha < f(x_0)$, $\beta > f(x_0)$ then there exists neighborhood V_1 , V_2 of x_0 such that $\alpha < f(x)$, $\beta > f(x)$ for all $x \in V_1$ and $x \in V_2$ respectively. Therefore for any (α, β) with $f(x_0) \in (\alpha, \beta)$, there exists a neighborhood $U = V_1 \cap V_2$ of x_0 such that $f(U) \subset (\alpha, \beta)$. So that f is continuous at a point x_0 .

2.6 Theorem. Any continuous mapping f of a compact metric space X into a metric space Y is uniformly continuous.

<u>Proof</u>: Suppose that f is continuous but not uniformly continuous on X, then for some $\ell > 0$, and every positive integer n there exists \mathbf{x}_n , $\mathbf{y}_n \in X$ such that

$$d(x_n, y_n) < \frac{1}{n}$$

and

$$d'(f(x_n), f(y_n)) > \epsilon$$
.

Since X is compact (and hence countable compact), the sequence $\{x_n\}$ has a subsequence $\{x_n\}$ converging to a point x & X, and as $d(x_n, y_n) < \frac{1}{n_k}, \text{ it follows from the triangle inequality that the subsequence } \{y_n\}$ also converges to x. But f is continuous at the point x, hence there is a f>0 such that $d'(f(x), f(x_0)) < \frac{\epsilon}{2}$ for $d(x, x_0) < f$. Take k such that $d(x, x_n) < f$, $d(x, y_n) < f$, then $d'(f(x_n), f(y_n)) < \epsilon$ contrary to the definition of the sequences $\{x_n\}$ and $\{y_n\}$. Hence f is uniformly continuous on X.

- 2.7 <u>Definition</u>. A collection \mathcal{M} of subsets of a set X is said to be an <u>algebra</u> in X if \mathcal{M} has the following three properties:
 - 1) M ≠ Ø
 - 2) If $A \in \mathcal{M}$, then $A^{\mathbf{c}} \in \mathcal{M}$, where $A^{\mathbf{c}}$ is the complement of A relative to X.
 - 3) If A, B $\in \mathcal{M}$, then A \mathbf{U} B $\in \mathcal{M}$.

If \mathcal{U} is an algebra and $\bigcup_{i=1}^{\infty} \Lambda_i \in \mathcal{U}$ whenever $\Lambda_i \in \mathcal{U}$ then \mathcal{U} is called a <u>6-algebra</u> in X. If \mathcal{U} is a 6-algebra in X, then X is called a <u>measurable space</u>, and the members of \mathcal{U} are called the <u>measurable sets</u> in X.

- 2.8 <u>Definition</u>. If X is a measurable space, Y is a topological space, and f is a mapping of X into Y, then f is said to be <u>measurable</u> provided that $f^{-1}(V)$ is a measurable set in X for every open set V in Y.
- 2.9 Theorem. If \mathcal{F} is any collection of subsets of X, there exists a smallest 6-algebra \mathcal{U}^* in X such that $\mathcal{F} \subset \mathcal{U}^*$.

This \mathcal{M}^* is sometimes called the 6-algebra generated by \mathcal{F} .

<u>Proof</u>: Let $\mathcal C$ be the family of all 6-algebras $\mathcal L$ in X which contain $\mathcal F$. Since the collection of all subsets of X is such a 6-algebra, $\mathcal C$ is not empty. Let $\mathcal L^*$ be the intersection of all $\mathcal L \in \mathcal C$. It is clear that $\mathcal F \subset \mathcal L^*$ and that $\mathcal L$ lies in every 6-algebra in X which contains $\mathcal F$. To complete the proof, we have to show that $\mathcal L^*$ is itself a 6-algebra.

If $A_n \in \mathcal{M}^*$ for $n=1, 2, \ldots$, and if $\mathcal{M} \in \mathcal{C}$, then $A_n \in \mathcal{M}$, so $\mathbf{U} A_n \in \mathcal{M}$, since \mathcal{M} is a 6-algebra. Since $\mathbf{U} A_n \in \mathcal{M}$ for every $\mathcal{M} \in \mathcal{C}$, we conclude that $\mathbf{U} A_n \in \mathcal{M}^*$. The other two definiting properties of a 6-algebra are verified in the same manner.

2.10 <u>Definition</u>. Let X be a topological space. By Theorem (2.9), there exists a smallest 6-algebra β in X such that every open set in X belongs to β . The members of β are called the <u>Borel sets</u> of X.

Since & is a 6-algebra, we may now regard X as a measurable space, with the Borel sets playing the role of the measurable sets.

2.11 <u>Definition</u>. If X is a Borel measurable space, Y is a topological space, and f is a mapping of X into Y, Then f is said to be <u>Borel</u> <u>measurable</u> provided that $f^{-1}(V)$ is a Borel set in X for every open set V in Y.

If Y is the real line or the complex plane, the Borel measurable functions will be called Borel functions.

2.12 Theorem. If
$$f_n: X \longrightarrow [-\infty, \infty]$$
 is measurable, for $n = 1, 2, ...$ and $g = \sup_{n \to 1} f_n$, $h = \lim_{n \to \infty} \sup_{n \to \infty} f_n$,

then g and h are measurable.

$$\begin{array}{lll} \underline{\mathrm{Proof}} \,:\, \mathbb{W}\mathrm{e} \,\, \mathrm{claim} \,\, \mathrm{that} \,\, \mathrm{g}^{-1}((\alpha\,,+\infty]) \,=\, \bigcup_{n=1}^\infty \,\, \mathrm{f}_n^{-1}((\alpha\,,+\infty])\,. \\ \\ \mathrm{if} \,\, \mathrm{g}^{-1}((\alpha\,,+\infty]) \,=\, \emptyset \,\,,\,\, \mathrm{then} \,\, \mathrm{g}^{-1}((\alpha\,,+\infty]) \,\subset\, \bigcup_{n=1}^\infty \, \mathrm{f}_n^{-1}((\alpha\,,+\infty]) \,\,. \end{array}$$

if
$$g^{-1}((\propto,+\infty]) \neq \emptyset$$
, then let $x \in g^{-1}((\propto,+\infty))$; $g(x) > \infty$.

Since $g(x) = \sup_{n \ge 1} f_n(x)$, there exists n such that

$$f_{n_0}(x) > \ll$$
 , $x \in f_{n_0}^{-1}((\infty, +\infty])$ for some n_0 ,

$$x \in \bigcup_{n=1}^{\infty} f_n^{-1}((\alpha,+\infty)).$$

Thus $g^{-1}((\alpha,+\infty]) \subset \bigcup_{n=1}^{\infty} f_n^{-1}((\infty,+\infty]).$

Conversely, if $\bigcup_{n=1}^{\infty} f_n^{-1}((\alpha,+\infty)) = \emptyset$ then $\bigcup_{n=1}^{\infty} f_n^{-1}((\alpha,+\infty)) \mathcal{C}(g^{-1}((\alpha,+\infty)))$.

If $\bigcup_{n=1}^{\infty} f_n^{-1}((\alpha,+\infty]) \neq \emptyset$, then let $x \in \bigcup_{n=1}^{\infty} f_n^{-1}((\alpha,+\infty])$, there

exists n_0 such that $f_{n_0}(x) > \infty$. Since $g(x) = \sup_{n \ge 1} f_n(x)$,

$$g(x) > \alpha$$
 , so that $x \in g^{-1}((\alpha, +\infty))$.

Then $g^{-1}((\alpha,+\infty)) = \bigcup_{n=1}^{\infty} f_n^{-1}((\alpha,+\infty))$, and hence g is

measurable, since for each f is measurable.

The same result holds of course with inf in place of sup, and since $h = \inf \{ \sup_{k \ge 1} f_i \}$, it follows that h is measurable.

2.13 <u>Definition</u>: A <u>positive measure</u> is a function \mathcal{M} , defined on a 6-algebra \mathcal{M} , whose range is in $[0,\infty]$ and which is countably additive. This means that if $\{A_i\}$ is a disjoint countable collection of members of \mathcal{M} , then

$$\mu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \mu(A_i).$$

A <u>measure</u> space is a measurable space which has a positive measure defined on the 6-algebra of its measurable sets.

2.14 <u>Definition</u>: Let \mathbb{R}^n denote n-dimensional Euclidean space. By n-cell in \mathbb{R}^n we mean the set of points $\mathbf{x}=(\mathbf{x}_1,\ldots,\,\mathbf{x}_n)$ such that

(1)
$$a_{i} \leq x_{i} \leq b_{i} \quad (i = 1,..., n),$$

or the set of points which is characterized by (1) with any or all of the $\boldsymbol{\leqslant}$ signs replaced by $\boldsymbol{\leqslant}$.

For any n-cell I in Rn, we define

Vol I =
$$\prod_{i=1}^{n} (b_i - a_i)$$
,

no matter whether equality is included or excluded in any of the inequalities (1).

Note that, if I and J are n-cells then IAJ is n-cell, and if I is n-cell then ${\tt I}^{\tt C}$ is a finite union of disjoint n-cells.

2.15 <u>Definition</u>: The set E \subset Rⁿ is said to be <u>elementary set</u> if E is the union of a finite number of disjoint n-cells. Let $\mathcal E$ be the class of all elementary sets. Note that $\mathcal E$ is an algebra.

m : $\mathcal E \longrightarrow \mathbb R^+$ is defined by

$$m(E) = \sum_{n=1}^{N} vol I_n \text{ where } E = \bigcup_{n=1}^{N} I_n \in \mathcal{E}$$
.

2.16 Lemma. To prove that m in (2.15) is increasing, finite additive and $m(\emptyset) = 0$. Moreover m is well-defined.

<u>Proof</u>: 1) To prove that $m(\emptyset) = 0$ n Since $\emptyset = \{x \in \mathbb{R}^n : a < x_i \le a\}, m(\emptyset) = \iint (a-a) = 0.$

2) To prove that m is increasing.

If E, F $\in \mathcal{E}$ and E C F, then we must show that m(E) \leq m(F). Let E = $\bigcup_{n=1}^{N}$ I, F = $\bigcup_{n=1}^{M}$ J, where $\{I_1, \ldots, I_N\}$, $\{J_1, \ldots, J_M\}$

are two systems of disjoint n-cells.

Since
$$\bigcup_{I_n \subset J_m} I_n \subset J_m$$
, $m(\bigcup_{I_n \subset J_m} I_n) \leq \text{Vol } J_m$.

By addition,

$$m(E) \leq m(F)$$
.

3) To prove that m is finite additive.

If E, F \in $\overleftarrow{\mathcal{E}}$ and E \cap F = \emptyset , then we must show that $m(E \cup F) = m(E) + m(F).$

Let
$$E = \bigcup_{n=1}^{N} I_{n}, \qquad F = \bigcup_{m=1}^{M} J_{m}.$$

$$E \ U \ F = \bigcup_{n=1}^{N} I_{n} \bigcup_{m=1}^{M} J_{m} \text{ is disjoint union of } n\text{-cells.}$$

By definition.

$$m(E \ \textbf{U} \ F) = \sum_{n=1}^{N} \text{vol } I_n + \sum_{m=1}^{M} \text{vol } J_m = m(E) + m(F) \text{.}$$

4) To prove that m is well-defined.

Let $\left\{I_1,\ldots,I_N\right\}$, $\left\{J_1,\ldots,J_M\right\}$ be two systems of disjoint n-cells such that $\mathbb{E}=\bigcup_{n=1}^{N}I_n=\bigcup_{m=1}^{M}J_m$.

For each n, $I_n = \bigcup_{m=1}^n I_n \cap J_m$. By (3)

$$Vol I_n = Vol(\bigcup_{m=1}^{M} I_n \cap J_m) = \sum_{m=1}^{M} vol(I_n \cap J_m).$$

Therefore

$$\sum_{n=1}^{N} \text{ Vol } I_n = \sum_{n=1}^{N} \sum_{m=1}^{N} \text{ vol } (I_n \cap J_m) = \sum_{m=1}^{M} \sum_{n=1}^{N} \text{ vol } (I_n \cap J_m)$$

$$= \sum_{m=1}^{M} \text{ vol } \left\{ \bigcup_{n=1}^{M} I_n \cap J_m \right\} = \sum_{m=1}^{M} \text{ vol } \left\{ J_m \right\}.$$

Hence m is well-defined.

2.17 Lemma. If $E \in \mathcal{E}$ and $\{E_i\}$ is a sequence in \mathcal{E} such that $E \subset \bigcup_{i=1}^{\infty} E_i \quad \text{then} \quad m(E) \in \sum_{i=1}^{\infty} m(E_i).$

<u>Proof</u>: We may assume that $m(E_1) < +\infty$ for all i. Given any $\xi > 0$ there exists a closed set $F \in \mathcal{E}$ such that $F \subset E$ and $m(F) \geqslant m(E) - \frac{\xi}{2}$.

For each E_i there exists an open elementary set \hat{E}_i such that E_i C \hat{E}_i with

$$m(\hat{E}_i) \leq m(E_i) + \frac{\epsilon}{2^{i+1}}$$
.

Then $F \subset \bigcup_{i=1}^{\infty} \hat{E}_i$. By Heine-Borel theorem there exists finite system \hat{E}_{i_1} , \hat{E}_{i_2} ,... \hat{E}_{i_M} from $\{\hat{E}_i\}$ such that $F \subset \bigcup_{m=1}^{M} \hat{E}_{i_m}$

Therefore

$$m(F) \leq \sum_{m=1}^{M} m(\widehat{E}_{i_m})$$
.

Then

$$m(\mathbb{E}) \leq m(\mathbb{F}) + \frac{\varepsilon}{2}$$

$$\leq \sum_{m=1}^{m} m(\hat{\mathbb{E}}_{i_m}) + \frac{\varepsilon}{2} \leq \sum_{m=1}^{\infty} m(\hat{\mathbb{E}}_{i_m}) + \frac{\varepsilon}{2}$$

$$\leq \sum_{i=1}^{\infty} m(\mathbb{E}_i) + \sum_{i=1}^{\infty} \frac{\varepsilon}{2^{i+1}} + \frac{\varepsilon}{2} = \sum_{i=1}^{\infty} m(\mathbb{E}_i) + \varepsilon$$

it is true for all $\xi > 0$.

Hence
$$m(E) \leq \sum_{i=1}^{\infty} m(E_i)$$
.

2.18 Theorem. A set function m in (2.15) is measure on .
m is called the Lebesgue measure.

<u>Proof</u>: Obviously $m(\emptyset) = 0$. Let $\{E_n\}$ be any disjoint sequence in $\{E_n\}$ such that $E = \bigcup_{n=1}^{\infty} E_n \in \{E_n\}$.

By Lemma (2.17), we have

$$m(E) \leqslant \sum_{n=1}^{\infty} m(E_n) .$$
 But
$$E \supset \bigcup_{n=1}^{\infty} E_n \quad \text{for all N.}$$

Then
$$m(E) \geqslant \sum_{n=1}^{\infty} m(E_n)$$
 for all N,

so that
$$m(E) \geqslant \sum_{n=1}^{\infty} m(E_n)$$
. Thus $m(E) = \sum_{n=1}^{\infty} (E_n)$.

Hence m is a measure on & .

Moreover, there exists the unique measure \bar{m} on $\mathcal{M}(\xi)$ such that \bar{m} (E) = m(E) for all E $\in \mathcal{E}$, and \bar{m} is called a Lebesgue measure on $\mathcal{M}(\xi)$.

2.19 <u>Definition</u>. A function s on a measurable space X whose range consists of only finitely many points in $[0,\infty)$ will be called a simple function.

Let E C X, and put

$$X_{E}(x) = \begin{cases} 1 & \text{if } x \in E, \\ 0 & \text{if } x \notin E. \end{cases}$$

 $\chi_{_{\rm E}}$ is called the <u>characteristic function</u> of E.

Suppose the range of s consists of the distinct numbers c_1,\ldots,c_m . Let

$$E_{i} = \{x : s(x) = c_{i}\}$$
 (i = 1,..., m).

Then clearly

$$s = \sum_{i=1}^{m} c_i \chi_{E_i}$$
,

that is, every simple function is a finite linear combination of characteristic functions. If is also clear that s is measurable if and only if each of the sets $\mathbb{E}_{\mathbf{i}}$ is measurable.

It is of interest that every function can be approximated by simple functions. In the next theorem we consider only the case of measurable function.

2.20 Theorem. Let $f: X \longrightarrow [0, \infty]$ be measurable. There exist simple measurable functions s on X such that

1)
$$0 \le s_1 \le s_2 \le \dots \le f$$
.

2)
$$s_n(x) \longrightarrow f(x)$$
 as $n \longrightarrow \infty$, for every $x \in X$.

Proof: For n = 1, 2, 3, ..., and for $1 \le i \le n2^n$, define

$$E_{n,i} = f^{-1}([\frac{i-1}{2^n}, \frac{i}{2^n}))$$
 and $F_n = f^{-1}([n,\infty])$

and put

$$s_n = \sum_{i=1}^{n2^n} \frac{i-1}{2^n} \chi_{E_{n,i}} + n \chi_{F_n}.$$

Since f is measurable function, $\mathbb{F}_{n,i}$ and \mathbb{F}_n are measurable sets. Then s are measurable functions.

To prove 1), for any
$$x \in \mathbb{E}_{n,i}$$
;
$$\frac{i-1}{2^n} \leqslant f(x) \leqslant \frac{i}{2^n}$$
,

$$\frac{2(i-1)}{2^{n+1}} \le f(x) < \frac{2i}{2^{n+1}}$$
, implies that

either
$$\frac{2i-2}{2^{n+1}} \le f(x) \le \frac{2i-1}{2^{n+1}}$$
 or $\frac{2i-1}{2^{n+1}} \le f(x) \le \frac{2i}{2^{n+1}}$.

Then either $x \in \mathbb{E}_{n+1,2i-1}$ or $x \in \mathbb{E}_{n+1,2i}$, so that

$$s_{n+1}(x) = \frac{2i-2}{2^{n+1}} = \frac{i-1}{2^n} = s_n(x)$$
 or

$$s_{n+1}(x) = \frac{2i-1}{2^{n+1}} > \frac{2i-2}{2^{n+1}} = \frac{i-1}{2^n} = s_n(x).$$

Therefore $s_{n+1}(x) \geqslant s_n(x)$ for $x \in E_{n,i}$.

If
$$x \in F_n$$
 then $f(x) \ge n$;

either
$$n \leqslant f(x) \leqslant n+1$$
 or $n+1 \leqslant f(x)$,

either
$$\frac{n2^{n+1}}{2^{n+1}} \le f(x) < \frac{(n+1)2^{n+1}}{2^{n+1}}$$
 or $x \in \mathbb{F}_{n+1}$,

either
$$s_{n+1}(x) \ge \frac{n2^{n+1}}{2^{n+1}} = n = s_n(x)$$
 or

$$s_{n+1}(x) = n+1 > n = s_n(x)$$
.

For any $x \in X$; either $x \in E_{n,i}$ for some i or $x \in F_n$.

If
$$x \in E_{n,i}$$
 then $f(x) > \frac{i-1}{2^n}$ and $s_n(x) = \frac{i-1}{2^n}$.

If
$$x \in F_n$$
 then $f(x) > n$ and $s_n(x) = n$.

Hence, we conclude that

$$f(x) \geqslant s_{n+1}(x) \geqslant s_n(x) \qquad (x \in X).$$

To prove 2) If x is such that $f(x) = +\infty$ then $x \in \mathbb{F}_n$, $s_n(x) = n$. Then $\lim_{n \to \infty} s_n(x) = f(x)$. If x is such that $f(x) < +\infty$

then $x \in E_{n,i}$ for some n (if n is large enough). Then

$$\frac{i-1}{2^n} \le f(x) < \frac{i}{2^n} ,$$

$$s_n(x) = \frac{i-1}{2^n} = \frac{i}{2^n} - 2^{-n} > f(x) - 2^{-n} ,$$

 $s_n(x) > f(x) - 2^{-n} \quad \text{when n is large enough.}$ Therefore $f(x) \geqslant s_n(x) > f(x) - 2^{-n} \quad \text{when n is large enough.}$ $f(x) \geqslant \lim_{n \to \infty} s_n(x) \geqslant f(x) \quad , \quad \text{since } s_n(x) \text{ is increasing sequence.}$ Thus $\lim_{n \to \infty} s_n(x) = f(x)$.

2.21 <u>Definition</u>. If s is a measurable simple function on X, of the form

$$s = \sum_{i=1}^{m} c_{i} \chi_{\Xi_{i}} ,$$

where c_i and E_i as in Definition (2.19), and if $E\in\mathcal{M}$, we define

$$\int_{\mathbb{E}} s \, d\mu = \sum_{i=1}^{m} c_{i} \mu(\mathbb{E}_{i} \cap \mathbb{E}).$$

The convention $0.\infty$ = 0 is used here; it may happen that

 $c_{i} = 0$ for some i and that $\mu(E_{i} \cap E) = \infty$.

If $f: X \longrightarrow [0,\infty]$ is measurable, and $E \in \mathcal{M}$, we define

$$\int_{E} f \, d\mu = \sup_{0 \leqslant s \leqslant f} \int_{E} s \, d\mu .$$

The left member of (*) is called the <u>Lebesgue integral</u> of f over E, with respect to the measure $\mathcal M$.

2.22 Theorem. Let f and g : $X \longrightarrow \widetilde{R}^+$ be measurable functions.

1) If
$$f \leqslant g$$
, then $\int f d\mu \leqslant \int g d\mu$.

2) If
$$A \subset B$$
, then $\int_A f d\mu \leqslant \int_B f d\mu$.

- 3) If c is a constant, $0 \le c \le \infty$, then $\int_E c f d\mu = c \int_E f d\mu .$
- 4) If f(x) = 0 for all $x \in E$, then $\int_E f du = 0$, even if $\mathcal{M}(E) = \infty$.
- 5) If $\mathcal{M}(E) = 0$, then $\int_{E} f \, d\mu = 0$, even if $f(x) = \infty$ for every $x \in E$.

6)
$$\int_{E} f d\mu = \int X_{E} f d\mu .$$

 $\frac{\text{Proof}}{\text{Y}'} = \left\{\text{s: s is simple measurable and 0 \leqslant s \leqslant f}\right\},$ Then $\mathcal{Y} \subset \mathcal{Y}'$ which will give the result.

2) Let
$$s_n = \sum_{i=1}^m c_{n_i} \chi_{E_{n_i}}$$
.

$$\int_{A} f d\mu = \sup_{0 \leqslant s_{n} \leqslant f} \int_{A} s_{n} d\mu = \sup_{0 \leqslant s_{n} \leqslant f} \left\{ \sum_{i=1}^{m} c_{n} \mu(\mathbb{E}_{n_{i}} \cap A) \right\}.$$

Since $A \subset B$, $M(E_{n_i} \cap A) \leq M(E_{n_i} \cap B)$.

$$\sup_{0\leqslant s_{n}^{\mathsf{c}}}\left\{\sum_{i=1}^{m}c_{n_{i}^{\mathsf{c}}}\mathcal{M}(\mathbb{E}_{n_{i}^{\mathsf{c}}}^{\mathsf{n}}\mathbb{A})\right\}\leqslant\sup_{0\leqslant s_{n}^{\mathsf{c}}}\left\{\sum_{i=1}^{m}c_{n_{i}^{\mathsf{c}}}\mathcal{M}(\mathbb{E}_{n_{i}^{\mathsf{c}}}^{\mathsf{n}}\mathbb{B})\right\}=\sup_{0\leqslant s_{n}^{\mathsf{c}}}\left\{\sup_{B}s_{n}^{\mathsf{d}}\mathcal{M}=\int_{B}f_{n}^{\mathsf{d}}\mathcal{M}\right\}.$$

$$\int_{A} f \, d\mu \leqslant \int_{B} f \, d\mu.$$

3)
$$\int_{\mathbb{E}} c f d\mu = \sup_{0 \leq B_{n} \leq f} \int_{\mathbb{E}} c s_{n} d\mu = c \sup_{0 \leq S_{n} \leq f} \int_{\mathbb{E}} s_{n} d\mu = c \int_{\mathbb{E}} f d\mu ,$$

since $\int_{E} c_n d\mu = c \sum_{i=1}^{m} c_n \mu(E_n \cap E) = c \int_{E} s_n d\mu$, where s_n as in 2).

4) Let s_n be as in 2),

(*)
$$\int_{\mathbb{E}} f \, d\mu = \sup_{0 \leqslant s_n \leqslant f} \int_{\mathbb{E}} s_n d\mu = \sup_{0 \leqslant s_n \leqslant f} \left\{ \sum_{i=1}^m c_{n_i} \mu(E_n \cap E) \right\}.$$

If f(x) = 0 for all $x \in E$, then $s_n(x) = 0$ for all $x \in E$, where $0 \le s_n \le f$. Then $c_n = 0 \ \forall \ n$ and hence $s_n \le f \ d\mu = 0$.

5) From (*) in 4), if $\mu(E) = 0$ then

 $\mathcal{M}(\mathbb{E}_{n_{i}} \cap \mathbb{E}) = 0$ for all n_{i} , since $\mathbb{E}_{n_{i}} \cap \mathbb{E} \subset \mathbb{E}$. Hence

$$\int_{E} f d\mu = 0.$$

6) Let $s = \sum_{i=1}^{m} c_i \chi_{E_i}$ be any simple function.

We claim that $\int_{\mathbb{R}} s \, d\mu = \int_{\mathbb{R}} \chi s \, d\mu .$

$$\begin{split} \int_{E} s \, d\mu &= \int_{E} \sum_{i=1}^{m} c_{i} \chi_{E_{i}} d\mu = \sum_{i=1}^{m} c_{i} \int_{E} \chi_{E_{i}} d\mu \\ &= \sum_{i=1}^{m} c_{i} \chi_{E_{i}} \chi_{E_{i}} d\mu = \int_{E} \chi_{E_{$$

Then
$$\int_{\mathbb{E}} f \, d\mu = \sup_{0 \le s_n \le f} \int_{\mathbb{E}} s_n d\mu = \sup_{0 \le s_n \le f} \int_{\mathbb{E}} s_n d\mu$$
$$= \sup_{0 \le \chi_{\mathbb{E}} s_n \le \chi_{\mathbb{E}} f} \int_{\mathbb{E}} \chi_{\mathbb{E}} s_n d\mu = \int_{\mathbb{E}} \chi_{\mathbb{E}} f \, d\mu.$$

2.23 Theorem. Let s and t be measurable simple functions on X. We define

$$\varphi(E) = \int_{E} s \, d\mu \quad (E \in \mathcal{U}).$$

Then $\mathcal P$ is a measure on $\mathcal M$ and

It is clear that φ (E) is set function.

$$\varphi(\emptyset) = \int_{\emptyset} s \, d\mu = \sum_{i=1}^{m} a_i \mu(\emptyset) = 0$$
.

Let $\{\,\mathbb{E}_k\,\}$ be any disjoint sequence in \mathcal{M} and let $\,\mathbb{E}=\,\bigcup_k\,\mathbb{E}_k\,$. The countable additivity of μ shows that

$$\varphi(\mathbf{E}) = \sum_{i=1}^{m} \mathbf{a}_{i} \mu(\mathbf{A}_{i} \cap \mathbf{E}) = \sum_{i=1}^{m} \mathbf{a}_{i} \sum_{k=1}^{\infty} \mu(\mathbf{E}_{k} \cap \mathbf{A}_{i})$$

$$= \sum_{k=1}^{\infty} (\sum_{i=1}^{m} \mathbf{a}_{i} \mu(\mathbf{E}_{k} \cap \mathbf{A}_{i}))$$

$$= \sum_{k=1}^{\infty} \int_{\mathbf{E}_{k}} \mathbf{s} \, d\mu = \sum_{k=1}^{\infty} \varphi(\mathbf{E}_{k}).$$

Hence φ is measure on $\mathcal M$.

Next, let s be as before, let $b_1, ..., b_m$ be the distinct values of t, and let $B_j = \{x: t(x) = b_j\}$. If $E_{ij} = A_i \cap B_j$, then

Since X is the disjoint union of the sets E_{ij} (1 \leq i \leq n, 1 \leq j \leq m), the first half implies that (*) holds.

2.24 Lemma. Let μ be a positive on a ℓ -algebra \mathcal{H} . If $\{\mathbb{E}_n\}$ is an increasing sequence in \mathcal{H} such that $\mathbb{E}=\bigcup_{n=1}^\infty\mathbb{E}_n$ then

$$\mathcal{M}(\mathbb{E}) = \lim_{n \to \infty} \mathcal{M}(\mathbb{E}_n).$$

 $\underline{\text{Proof}}$: Put $F_1 = E_1$, $F_n = E_n - E_{n-1}$ for $n = 2, 3, 4, \dots$

Then $F_n \in \mathcal{M}$, $F_i \cap F_j = \emptyset$ if $i \neq j$, $E_n = F_1 \cup F_2 \cup \cdots \cup F_n$,

and $E = \bigcup_{i=1}^{\infty} F_i$. Hence

$$\mu(E) = \mu(\bigcup_{i=1}^{\infty} F_i) = \sum_{i=1}^{\infty} \mu(F_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mu(F_i)$$

$$= \lim_{n \to \infty} (\bigcup_{i=1}^{n} F_i) = \lim_{n \to \infty} \mu(E_n).$$

2.25 <u>Lebesgue's Monotone Convergence Theorem</u>. Let $\{f_n\}$ be a sequence of measurable functions on X and suppose that

a)
$$0 \le f_1(x) \le f_2(x) \le \cdots \le \infty$$
 for every $x \in X$,

b)
$$f_n(x) \longrightarrow f(x)$$
 as $n \longrightarrow \infty$, for every $x \in X$.

Then f is measurable, and

$$\int f_n d\mu \longrightarrow \int f d\mu \qquad \text{as } n \longrightarrow \infty.$$

<u>Proof.</u> Since $\int f_n d\mu \leqslant \int f_{n+1} d\mu$, there exists $c \in [0,\infty]$ such that

(1)
$$\lim_{n \to \infty} \int f_n d\mu = c.$$

By Theorem (2.12), f is measurable. Since $f_n \leq f$, we have

$$\int f_n d\mu \leqslant \int f d\mu \qquad \text{for all n, so (1) implies}$$
 (2)
$$c \leqslant \int f d\mu .$$

Let s be any simple measurable function such that 0 \leqslant s \leqslant f, let k be a constant, 0 \leqslant k \leqslant 1, and define

$$E_n = \{x: f_n(x) \} k s(x) \}$$
 (n = 1, 2, 3,...).

Each E_n is measurable, since f_n - ks is measurable and $E_n = (f_n - ks)^{-1}([0, +\infty]). \quad E_1 \subseteq E_2 \subseteq \dots, \text{ and } X = \bigcup E_n. \quad \text{If } f(x) = 0,$ then $x \in E_1$.

If f(x) > 0, then ks(x) < f(x), since k < 1; hence $x \in E_n$ for some n. Also

(3)
$$\int f_n d\mu \gg \int_{E_n} f_n d\mu \gg k \int_{E_n} s d\mu \qquad \text{for all } n.$$

Let $n \longrightarrow \infty$, applying Theorem (2.23) and Lemma (2.24) to the last integral in (3). The result is

Since (4) holds for every 0 < k < 1, we have

for every simple measurable s satisfying 0 ≤ s ≤ f, so that

The theorem follows from (1), (2) and (6).

2.26 Theorem. If
$$f_n: X \longrightarrow \widetilde{R}^+$$
 is measurable, for $n = 1, 2, ...$ and $f(x) = \sum_{n=1}^{\infty} f_n(x)$ $(x \in X)$, then
$$\int f(x) d\mu = \sum_{n=1}^{\infty} \int f_n(x) d\mu .$$

 $\begin{array}{l} \underline{Proof}: \ \, \text{By Theorem (2.20) there are increasing sequences} \\ \left\{s_{i}^{'}\right\}\left\{s_{i}^{''}\right\} \ \, \text{of measurable simple functions such that} \\ s_{i}^{'} \longrightarrow f_{1} \ \, \text{and} \ \, s_{i}^{''} \longrightarrow f_{2} \ \, , \ \, \text{as i} \longrightarrow \infty \ \, . \\ \\ \text{Let} \qquad s_{i}^{'}(x) = s_{i}^{'}(x) + s_{i}^{''}(x) \qquad (x \in X). \ \, \text{Then} \\ \\ s_{i} \longrightarrow f_{1}^{+} f_{2} \quad \text{as i} \longrightarrow \infty \ \, . \end{array}$

By the Lebesgue's monotone convergence theorem (2.25),

$$\int (f_1 + f_2) d\mu = \lim_{i \to \infty} \int s_i d\mu$$

$$= \lim_{i \to \infty} \int (s_i' + s_i'') d\mu$$

$$= \lim_{i \to \infty} \left[\int s_i' d\mu + \int s_i' d\mu \right]$$

$$= \lim_{i \to \infty} \int s_i' d\mu + \lim_{i \to \infty} \int s_i'' d\mu$$

$$= \int f_1 d\mu + \int f_2 d\mu.$$

Let $F_N = f_1 + f_2 + \cdots + f_N$, by induction,

$$\int F_{N} d\mu = \sum_{n=1}^{N} \int f_{n} d\mu .$$

Since F_N 1 f, by Theorem (2.25)

$$\int f \, d\mu = \lim_{N \to \infty} \int F_N \, d\mu$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \int f_n d\mu = \sum_{n=1}^{\infty} \int f_n d\mu .$$

- 2.27 <u>Definition</u>. Let $(X, \mathcal{M}, \mathcal{M})$ be a measure space. We say that an extened real-valued measurable function f is integrable on X if and only if $\int_{\mathbb{R}^n} |f| d\mu$ is finite. The class of all integrable functions on X will be denoted by $L^1(\mu)$.
- 2.28 <u>Definition</u>. A property is said to holds a.e., if it holds every where on X except on a measurable set of A-measure zero.

2.29 Theorem. If f > 0 is measurable, and $\int f d\mu = 0$, then f = 0 a.e.

Proof: For all integer n, let

$$E_{n} = f^{-1}(\left[\frac{1}{n}, +\infty\right]), \text{ and let}$$

$$E = f^{-1}(\left[0, +\infty\right]).$$

Since f is measurable, E , E are measurable. Since $\left\{\,E_{n}^{}\right\}$ is an increasing sequence and $E=\bigcup_{n=1}^{\infty}\,E_{n}^{}$,

$$\mu(E) = \lim_{n \to \infty} \mu(E_n).$$

For each n,

$$\mathbf{f} \geqslant \frac{1}{n} \chi_{\mathbf{E}_n} \quad \text{on } \chi. \quad \text{Therefore}$$

$$0 \leqslant \frac{1}{n} \mu(\mathbf{E}_n) = \int \frac{1}{n} \chi_{\mathbf{E}_n} d\mu \leqslant \int \mathbf{f} \ d\mu = 0 ,$$

$$\mu(\mathbf{E}_n) = 0 \quad \text{for all } n.$$

Then $\mathcal{M}(\mathbb{E}) = 0$, and hence f = 0 a.e..

2.30 Theorem. Let (X, \mathcal{A}) be a measurable space, $\mathbb{E} \in \mathcal{A}$ and $f: \mathbb{E} \longrightarrow \widetilde{R}$ be measurable on \mathbb{E} . Then the function $[f]_{\mathbb{E}}$ given by

$$[f]_{E} = \begin{cases} f(x) & (x \in E) \\ 0 & (x \in E^{c}) \end{cases}$$

is measurable on X.

 $\underline{\mathbf{Proof}}$: Since f is measurable on \mathbb{E} , for any real number r, we have that

$$\{x \in E : f(x) > r\} \in \mathcal{M}$$
.

On the other hand

$$[f]_{E}^{-1}((r,+\alpha)) = f^{-1}((r,+\infty))$$
 if $r > 0$.

$$[f]_{\mathbb{E}}^{-1}((r,+\infty)) = f^{-1}((r,+\infty)) \cup \mathbb{E}^{c} \text{ if } r \leq 0.$$

Hence $[f]_E$ is measurable on X.

2.31 Theorem. If $f \in L^{1}(\mu)$ then f is finite a.e. on X.

 $\underline{\text{Proof}}$: By taking f = [f] where Z is the set of measure zero, we may assume that f is measurable.

Since $f \in L^1(\mu)$, $f^+ f^- \in L^1(\mu)$. Then it is enough to prove the theorem for non-negative $f \in L^1(\mu)$.

Let $f \ge 0$, $f \in L^1(M)$, and let

$$\mathbb{E}_{n} = \left\{ x \in X : f(x) \geqslant n \right\}$$
 for all $n > 0$. Then

 $\mathbf{E}_{\mathbf{n}}$ is measurable. So that $\mathbf{X}_{\mathbf{E}_{\mathbf{n}}}$ is measurable.

Since $n \times_{\mathbb{E}_n} \leqslant f$ on X.

$$n \, \mathcal{M}(\mathbb{E}_n) \leqslant \int f \, d\mu$$
 .

If $\mathbb{E}_{\infty} = \left\{ x \in \mathbb{X} : f(x) = +\infty \right\}$, then $\mathbb{E}_{\infty} = \bigcap_{n=1}^{\infty} \mathbb{E}_{n}$, which implies that \mathbb{E}_{∞} is measurable and $\mathbb{E}_{\infty} \subset \mathbb{E}_{n}$ for all n.

$$0 \le \mathcal{M}(\mathbb{E}_{\infty}) \le \mathcal{M}(\mathbb{E}_{n}) \le \frac{1}{n} \int f \, d\mu$$
 which is true for all n.

Then $\mu(\mathbb{E}_{\infty}) = 0$, and hence f is finite a.e.

2.32 Theorem. If f, g \in L¹(μ), a, b are real numbers, then af + bg \in L¹(μ) and

$$\int (af+bg) d\mu = a \int f d\mu + b \int g d\mu.$$

<u>Proof</u>: By Theorem (2.31) f and g are finite a.e., so that af+bg is defined and finite a.e. on X. Furthermore af+bg is measurable on X-Z, where Z is the set of measure zero, and $|af+bg| \le |a||f| + |b||g| \in L^1(\mathcal{W})$. Then $af+bg \in L^1(\mathcal{W})$.

To prove the last past of the theorem, it is sufficient to show that

(1)
$$\int (f+g)d\mu = \int f d\mu + \int g d\mu$$

(2)
$$\int a f d\mu = a \int f d\mu.$$

Take h = f+g. Then $h^+-h^- = f^+-f^-+g^+-g^-$.

On X-Z,
$$h^+ + f^- + g^- = h^- + f^+ + g^+$$
.

By Theorem (2.26)

$$\int h^+ d\mu + \int f^- d\mu + \int g^- d\mu = \int h^- d\mu + \int f^+ d\mu + \int g^+ d\mu \quad , \text{ and}$$

since each three integrals are finite, we have that

$$\int h^+ d\mu - \left| h^- d\mu \right| = \left| f^+ d\mu - \int f^- d\mu + \left| g^+ d\mu - \int g^- d\mu \right| .$$

$$\int h d\mu = \left| f d\mu + \int g d\mu \right| .$$

Thus (1) holds.

Hence (2) holds.

2.33 Theorem. If $f \in L^{1}(M)$, then

Proof:

$$||f du|| = ||f^{\dagger}du| - |f du||$$

$$\leq ||f^{\dagger}du|| + ||f du||$$

$$= ||f|| du .$$

2.34 Fatou's Lemma. If $\{f_n\}$ is a sequence of measurable functions on X and non-negative a.e. on X, then

$$\begin{cases} (\liminf_{n \to \infty} f_n) d\mu \leqslant \liminf_{n \to \infty} f_n d\mu \end{cases}.$$

<u>Proof</u>: Let Z be the set of measure zero such that $f_n \geqslant 0$ on X-Z, for all n. Then by taking $[f_n]_{X-Z}$, we may assume that $f_n \geqslant 0$ on X for all n. Let

$$g_n = \inf_{m > n} f_m(x)$$
, by the Theorem (2.12)

 g_n is measurable, for each n, and $g_n \le f_n$, so that

$$\int g_n d\mu \leqslant \int f_n d\mu \qquad (n = 1, 2, 3, ...).$$

Since $0 \le g_1 \le g_2 \le \cdots$,

$$\lim_{n \to \infty} \inf \left\{ f_n d_{\mathcal{M}} > \lim_{n \to \infty} \inf \left\{ g_n d_{\mathcal{M}} \right\} \right\}$$

$$= \lim_{n \to \infty} \left| g_n d_{\mathcal{M}} \right|.$$

By the Lebegue's Monotone Convergence Theorem (2.25).

$$\lim_{n \to \infty} \left\{ g_n d\mu \right\} = \int \lim_{n \to \infty} g_n d\mu = \int \lim_{n \to \infty} \inf f_n d\mu$$
$$= \int (\lim_{n \to \infty} \inf f_n) d\mu .$$

2.35 <u>Lebesgue's Dominated Convergence Theorem</u>. Suppose $\{f_n\}$ is a sequence of measurable functions on X such that $f_n \longrightarrow f$ a.e. on X, and there exists $g \in L^1(\mathcal{M})$ such that for all $n \mid f_n \mid \leqslant g$ a.e. on X. Then f_n and $f \in L^1(\mathcal{M})$,

(1)
$$\lim_{n\to\infty} \int |f_n - f| d\mu = 0.$$

and

(2)
$$\int f d\mu = \lim_{n \to \infty} \int f_n d\mu .$$

 $\begin{array}{l} \underline{\operatorname{Proof}}: \ \operatorname{Let} \ \mathbb{Z} \ \text{ be the set of measure zero such that } f \xrightarrow{n} f \ \text{ and} \\ |f_n| \leqslant g \ \text{on X-Z.} \ \text{ Then by taking } \left[f_n\right]_{X-\mathbb{Z}} \ \text{ and } \left[f\right]_{X-\mathbb{Z}}, \ \text{we may assume} \\ \text{that } f_n \longrightarrow f \ \text{ and } |f_n| \leqslant g \ \text{on X.} \ \text{Since } |f| \leqslant g \ \text{and } f \ \text{is measurable,} \\ f \in L^1(\mu). \end{array}$

Since $|f_n - f| \le 2g$,

$$\begin{array}{rcl} \lim & \inf \left(2g\text{-lf}_n\text{-fl}\right) &=& 2g\text{+lim inf} \left(-|f_n\text{-fl}\right) \\ n \longrightarrow \infty & & \\ & = & 2g\text{-lim | } f_n\text{-fl} \\ & & n \longrightarrow \infty \end{array}$$

Fatou's lemma (2.34) applies to $2g - |f_n - f|$ that

$$\begin{cases}
2g \, du & \leq \lim_{n \to \infty} \inf \left(2g - |f_n - f| \right) du \\
 & = \begin{cases} 2g \, du + \lim_{n \to \infty} \inf \left(-\int |f_n - f| du \right) \\
 & = \begin{cases} 2g \, du - \lim_{n \to \infty} \sup \left| |f_n - f| \, du \right| .
\end{cases}$$

Since | 2g du is finite, we may subtract it and obtain

(3)
$$\lim_{n \to \infty} \sup_{\infty} \int_{\mathbb{R}^n} |f_n - f| d\mu \leqslant 0.$$

If a sequence of nonnegative real numbers fails to converge to 0, then its upper limit is positive. Thus (3) implies (1), and (2) follows from Theorem (2.33). 2.35.1 Corollary. Let A be a ℓ -compact subset of R^n , B be an open subset of R, and f be continuous on AXB. Assume that there is a function g integrable over A that $|f(x,t)| \leq g(x)$ for every $x \in A$, $t \in B$: Let

$$\emptyset$$
 (t) =
$$\int_{A} f(x,t)d\mu(x), t \in B.$$

Then \emptyset is continuous on B. Assume further that $\frac{2f}{2t}$ is continuous on AXB and satisfy

$$|f_2(x,t)| = |\frac{\partial f}{\partial t}(x,t)| \le h(x)$$
 for every $x \in A$, $t \in B$,

where h is integrable over A. Then

$$\frac{d\phi(t)}{dt} = \int_A f_2(x,t) d\mu(x) \qquad t \in B.$$

Proof: The first part is immediate consequently from the Theorem(2.35).

Since
$$\frac{\emptyset(t+h) - \emptyset(t)}{h} = \int \frac{f(x,t+h) - f(x,t)}{h} d\mu(x)$$
.

Then by the mean value theorem

$$\frac{\emptyset(t+h) - \emptyset(t)}{h} = \int f_2(x,t+\theta h) d\mu(x) \text{ for some } 0 < \theta < 1.$$

Hence by the first part and Theorem (2.35)

$$\lim_{h\to 0} \frac{\emptyset(t+h) - \emptyset(t)}{h} = \frac{d\emptyset(t)}{dt} = \int_A f_2(x,t) d\mu(x) \qquad t \in B.$$

Integration on Product spaces.

2.36 <u>Definition</u>: If X, Y are two sets, we define the set $X \times Y = \{(x,y) : x \in X, y \in Y\}$. If $A \subset X$, $B \subset Y$ then $A \times B$ is called the <u>rectangle</u> of sides A and B.

Suppose (X, \mathcal{U}) and (Y, \mathcal{U}') are measurable spaces. A measurable rectangle is any set of the form $A \times B$, where $A \in \mathcal{U}$, $B \in \mathcal{U}''$.

If $E=R_1U\dots UR_n$, where R_i is a measurable rectangle, and $R_i\cap R_j=\emptyset$ if $i\neq j$, we say that E is an <u>elementary set</u>, and the class of such sets will be denoted by $\mathcal E$.

 $\mathcal{U}^{'}\mathcal{U}^{''}$ is defined to be the smallest 6-algebra which contains every measurable rectangle.

If $E \subset X \times Y$, $x \in X$, $y \in Y$, we define $E_{x} = \{ y : (x,y) \in E \}$ $E^{y} = \{ x : (x,y) \in E \}.$

we call E_x and E^y the x-section and y-section of E respectively.

A monotone class $\mathbb M$ is a collection of sets with the following properties: If $A_{\mathbf i} \in \mathbb M$, $B_{\mathbf i} \in \mathbb M$, $A_{\mathbf i} \subset A_{\mathbf i+1}$, $B_{\mathbf i} \supset B_{\mathbf i+1}$ for $\mathbf i=1,\,2,\ldots,$ and if

$$A = \bigcup_{i=1}^{\infty} A_i, \qquad B = \bigcap_{i=1}^{\infty} B_i,$$

then $A \in \mathbb{M}$ and $B \in \mathbb{M}$.

2.37 Theorem. If $E \in \mathcal{M} \times \mathcal{M}''$ then $E_{\mathbf{x}} \in \mathcal{M}''$ and $E^{\mathbf{y}} \in \mathcal{M}'$ for every $\mathbf{x} \in X$, $\mathbf{y} \in Y$.

Proof: Let $\Omega = \{ E \in \mathcal{U} \times \mathcal{U}'' : E_x \in \mathcal{U}'' \text{ for every } x \in X \}.$

If
$$E = A \times B$$
, then $E_{x} = \begin{cases} B & \text{if } x \in A \\ & & \text{of } x \notin A \end{cases}$,

so that $E_{\mathbf{x}} \in \mathcal{M}'$. Hence every measurable rectangle belongs to Ω ; Ω contains the class of all measurable rectangles. We claim that Ω is a ℓ -algebra. Since \mathcal{M}' is a ℓ -algebra, we have

- 1) $X \times Y \in \Omega$, since $(X \times Y)_X = Y \in \mathcal{U}'$,
- 2) If $E \in \Omega$, then $(E^c)_x = (E_x)^c \in \mathcal{M}'$. so that $E^c \in \Omega$.
- 3) If $E_i \in \Omega$ (i = 1, 2, ...) and $E = \bigcup E_i$ then $E_x = \bigcup (E_i)_x \in \mathcal{U}^{''}$, since $(E_i)_x \in \mathcal{U}^{''}$ for all i. So that $E \in \Omega$.

Then Ω is a \mathscr{C} -algebra contains the class of all measurable rectangle. Hence $\Omega = \mathscr{M} \times \mathscr{M}''$.

Similarly, if $\mathcal{N}' = \{ E \in \mathcal{M} \times \mathcal{M}'' : E^{Y} \in \mathcal{M} \text{ for every } y \in Y \}$, then $\mathcal{N}' = \mathcal{M} \times \mathcal{M}''$.

Hence $E_x \in \mathcal{U}'$ and $E^y \in \mathcal{U}'$ for every $x \in Y$, $y \in Y$.

2.38 Theorem. $\mathcal{U} \times \mathcal{U}'$ is the smallest monotone class which contains the class of all elementary sets.

 $\underline{\operatorname{Proof}}: \operatorname{Let} \ \mathfrak{M}$ be the smallest monotone class which contains \mathcal{E} . Since $\mathscr{U} \times \mathscr{U}'$ is a monotone class, we have

We claim that M is a {-algebra.

The identities

$$(A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$$

and

$$(A_1 \times B_1) - (A_2 \times B_2) = [(A_1 - A_2) \times B_1] \cup [(A_1 \cap A_2) \times (B_1 - B_2)]$$

show that the intersection of two measurable rectangles is a measurable rectangle and the difference of two measurable rectangles is the union of two disjoint measurable rectangles, hence is an elementary set.

If $E \in \mathcal{E}$, $F \in \mathcal{E}$ then $E \cap F \in \mathcal{E}$ and $E - F \in \mathcal{E}$. Since $E \cup F = (E-F) \cup F$ and $(E-F) \cap F = \emptyset$, we have that $E \cup F \in \mathcal{E}$. Hence M is an algebra. Since M is monotone class, M is a ℓ -algebra.

2.39 <u>Definition</u>: Let f be an extended real valued function defined on $X \times Y$. For $x \in X$, the section of f by x is given by $f_x \colon Y \longrightarrow \widetilde{R}$ such that $f_x(y) = f(x,y)$. Similarly, for $y \in Y$, the section of f by y is the function given by $f^y \colon X \longrightarrow \widetilde{R}$ such that $f^y(x) = f(x,y)$.

2.40 Theorem. Let f be a $M \times M$ - measurable function on $X \times Y$. Then

- a) For each $x \in X$, f^{X} is a $\mathcal{U}_{-}^{''}$ measurable function on Y.
- b) For each $y \in Y$, f^{y} is a \mathcal{H}' measurable function on X. Proof: For any open set V, put

$$E = \{(x,y) : f(x,y) \in V\}$$
,

Then $E \in \mathcal{L} \times \mathcal{L}''$, and

$$\mathbb{E}_{\mathbf{x}} = \left\{ \mathbf{y} : \mathbf{f}_{\mathbf{x}}(\mathbf{y}) \in \mathbf{V} \right\} , \quad \mathbb{E}^{\mathbf{y}} = \left\{ \mathbf{x} : \mathbf{f}^{\mathbf{y}}(\mathbf{x}) \in \mathbf{V} \right\}$$

are \mathcal{U}'' , and \mathcal{U}' - measurable respectively.

2.41 Theorem. Let (X, \mathcal{M}, μ) and (Y, \mathcal{M}, ν) be ℓ -finite measure spaces. Suppose $E \in \mathcal{M} \times \mathcal{M}'$. If

(1)
$$\psi(x) = V(E_x)$$
, $\psi(y) = \mu(E^y)$

for every $x \in X$ and $y \in Y$, then φ is \mathcal{H}' -measurable,

 Ψ is \mathcal{A}' -measurable, and

(2)
$$\int_{\mathbf{x}} \Psi \, d\mathbf{u} = \int_{\mathbf{y}} \Psi \, d\mathbf{v} .$$

Notes : Since

$$\mathcal{V}(E_{\mathbf{x}}) = \int_{\mathbf{y}} \chi_{E}(\mathbf{x}, \mathbf{y}) d \mathcal{V}(\mathbf{y})$$

$$\mathcal{M}(E^{\mathbf{y}}) = \int_{\mathbf{x}} \chi_{E}(\mathbf{x}, \mathbf{y}) d \mathcal{M}(\mathbf{x}),$$

the formula (2) can be written.

(3)
$$\int_X d\mu(x) \int_Y \chi_E(x,y) d\nu(y) = \int_Y d\nu(y) \int_X \chi_E(x,y) d\mu(x) .$$

<u>Proof</u>: Let Ω be the class of all $E \in \mathcal{U} \times \mathcal{U}$ for which (2) (or equivalently (3)) holds. We claim that Ω has the following four properties:

- a) Every measurable rectangle belongs to ${\mathfrak L}$.
- b) If $\mathbb{E}_1 \subset \mathbb{E}_2 \subset \mathbb{E}_3 \subset \cdots$, if each $\mathbb{E}_i \in \Omega$, and if $\mathbb{E} = \bigcup_i \mathbb{E}_i$, then $\mathbb{E} \in \Omega$.
- c) If $\{\,\mathbb{E}_{\dot{\mathbf{i}}}\,\}$ is a disjoint sequence in Ω , and $\mathbf{E}=\bigcup_{\dot{\mathbf{i}}}\,\dot{\mathbf{E}}_{\dot{\mathbf{i}}}$, then $\mathbf{E}\in\Omega$.
- d) If $\mathcal{M}(A) < +\infty$ and $\mathcal{V}(B) < +\infty$, if $A \times B \supset E_1 \supset E_2 \supset \dots$, if $E = \bigcap_i E_i$ and $E_i \in \Omega$ for $i = 1, 2, \dots$, then $E \in \Omega$.

To prove (a) we let $E = A \times B$, where $A \in \mathcal{U}'$, $B \in \mathcal{U}''$, then

$$\nu'(\mathbb{E}_{\mathbf{x}}) = \nu'(\mathbb{B}) \chi_{\mathbf{A}}(\mathbf{x}), \quad \mu(\mathbb{E}^{\mathbf{y}}) = \mu(\mathbb{A}) \chi_{\mathbf{B}}(\mathbf{y}).$$

Therefore

$$\int_{X} d\mu(x) \int_{Y} \chi_{E}(x,y)d \lambda(y) = \int_{X} \lambda(E_{x})d\mu(x)$$

$$= \int_{X} \lambda(B) \chi_{A}(x)d\mu(x) = \mu(A) \lambda(B),$$

and

$$\int_{Y} d \mathcal{V}(y) \int_{X} \chi_{E}(x,y) d \mu(x) = \int_{X} \mu(E^{y}) d \mathcal{V}(y)$$

$$= \int_{X} \mu(A) \chi_{B}(y) d \mathcal{V}(y) = \mu(A) \mathcal{V}(B);$$

i.e.

$$\int_X d\mu(x) \int_Y \chi_E(x,y) d\nu(y) = \int_Y d\nu(y) \int_X \chi_E(x,y) d\mu(x).$$

This proves (a).

To prove (b), let φ_i and ψ_i be associated with E in the way in which (1) associates φ and ψ with E; i.e.

$$\Psi_{\mathbf{i}}(\mathbf{x}) = \mathcal{V}((\mathbf{E}_{\mathbf{i}})_{\mathbf{x}})$$
, $\Psi_{\mathbf{i}}(\mathbf{y}) = \mathcal{M}((\mathbf{E}_{\mathbf{i}})^{\mathbf{y}})$.

By Lemma (2.24) applied to $\sqrt{}$ and μ respectively, we get $\P_i(x) \longrightarrow \P(x)$, $\Psi_i(y) \longrightarrow \Psi(y)$ as $i \longrightarrow +\infty$, the convergence being monotone increasing at every point. Since for each i, $E_i \in \Omega$; i.e.

$$\begin{cases} \psi_{\mathbf{i}}(\mathbf{x}) d\mu(\mathbf{x}) &= \int_{\mathbf{y}} \psi_{\mathbf{i}}(\mathbf{y}) d\nu(\mathbf{y}). \end{cases}$$

By the Lebesque Monotone Convergence Theorem (2.25) we have

$$\int_X \Psi(x) d\mu(x) = \int_Y \Psi(y) d\nu(y) ; \text{ so that } E \in \Omega.$$

Fo prove (c), we set $F_n = E_1 \cup E_2 \cup \cdots \cup E_n$. Since E_1, E_2, \cdots, E_n are disjoint, we have $X_{F_n} = \sum_{i=1}^n X_{E_i}$. Since for each i

$$\int_{X} \Psi_{\mathbf{i}}(\mathbf{x}) d\mu(\mathbf{x}) = \int_{X} \mathcal{V}((\mathbf{E}_{\mathbf{i}})_{\mathbf{x}}) d\mu(\mathbf{x}) = \int_{Y} \mu((\mathbf{E}_{\mathbf{i}})^{\mathbf{y}}) d\mathcal{V}(\mathbf{y})$$

$$= \int_{Y} \Psi_{\mathbf{i}}(\mathbf{y}) d\mathcal{V}(\mathbf{y}) ,$$

$$\sum_{i=1}^{n} \int_{X} \mathcal{Y}((E_{i})_{x}) d\mu(x) = \sum_{i=1}^{n} \int_{Y} \mathcal{M}((E_{i})^{y}) d\nu(y).$$
Consider,
$$\sum_{i=1}^{n} \int_{X} \mathcal{Y}((E_{i})_{x}) d\mu(x) = \int_{X} \sum_{i=1}^{n} \mathcal{Y}((E_{i})_{x}) d\mu(x)$$

$$= \int_{X} \mathcal{Y}(\bigcup_{i=1}^{n} E_{i})_{x} d\mu(x).$$

$$= \int_{X} \mathcal{Y}(F_{n})_{x} d\mu(x).$$

Similarly,

$$\sum_{\mathtt{i}=1}^{\mathtt{n}} \int_{\mathbb{Y}} \mu((\mathtt{E}_{\mathtt{i}})^{\mathtt{y}}) \mathrm{d} \, \mathcal{V}(\mathtt{y}) = \int_{\mathbb{Y}} \mu(\mathtt{F}_{\mathtt{n}})^{\mathtt{y}} \mathrm{d} \, \mathcal{V}(\mathtt{y}).$$

Therefore,

$$\begin{cases} \sqrt{(\mathbb{F}_n)_x} d\mu(x) &= \int_{\mathbb{Y}} \mu(\mathbb{F}_n)^{y} d\nu(y) ,\end{cases}$$

that is $F_n \in \Omega$. Now, $\left\{F_n\right\}$ is an increasing sequence in Ω . By (b), $E = \bigcup_n F_n \in \Omega$. This proves (c).

To prove (d), since $(\mathbf{E_i})_{\mathbf{x}} \subset (\mathbf{A} \times \mathbf{B})_{\mathbf{x}}$,

$$0 \leqslant \phi_{\mathbf{i}}(\mathbf{x}) = \mathcal{V}(\mathbf{E}_{\mathbf{i}})_{\mathbf{x}} \leqslant \mathcal{V}(\mathbf{A} \times \mathbf{B})_{\mathbf{x}} = \mathcal{V}(\mathbf{B}) \chi_{\mathbf{A}}(\mathbf{x}).$$

Similarly,

$$0 \leqslant \Psi_{\mathbf{i}}(\mathbf{y}) = \mathcal{M}(\mathbb{E}_{\mathbf{i}})^{\mathbf{y}} \leqslant (\mathbf{A} \times \mathbf{B})^{\mathbf{y}} = \mathcal{M}(\mathbf{A}) \times_{\mathbf{B}}(\mathbf{y}).$$
 Since $\mathcal{M}(\mathbf{A}) < +\infty$ and $\mathcal{N}(\mathbf{B}) < +\infty$, we have $\mathcal{N}(\mathbb{E}_{\mathbf{i}})_{\mathbf{x}} < +\infty$ and $\mathcal{M}(\mathbb{E}_{\mathbf{i}})^{\mathbf{y}} < +\infty$. Since $\{\mathbb{E}_{\mathbf{i}}\}$ is an increasing sequence with converges to $\mathbb{E}_{\mathbf{i}}$.

$$\lim_{i \to \infty} \phi_i(x) = \lim_{i \to \infty} \gamma(E_i)_x = \gamma(E_i) = \phi(x); \text{ and } i \to \infty$$

 $\lim_{i\to\infty} \Psi_i(y) = \Psi(y)$. By the Lebesgue Dominated Convergence Theorem (2.35), we have

$$\int_{X} \Psi(x) d\mu(x) = \int_{Y} \Psi(y) d\nu(y) ,$$

That is $\begin{cases} \chi(\mathbb{E}_{x})d\mu(x) = \int_{Y}\mu(\mathbb{E}^{y})d\nu(y). \end{cases}$ This proves (d). Since μ and μ are 6-finite, there exists disjoint sequences $\{X_{m}\}$, $\{Y_{n}\}$, $\{Y_{$

$$\mathbb{E}_{m,n} = \mathbb{E} \cap (X_m X Y_n)$$
 $(m, n = 1, 2,...)$

and note that $E_{m,n}$ are disjoint and $\bigcup_{m=n}^{\infty} E_{m,n} = E$. Let M be the class of $E \in \mathcal{U} \times \mathcal{U}$ such that $E_{m,n} \in \Omega$ for all choices of m and n, then by (b) and (d) show that M is a monotone class. (a) and (c) show that $E \in M \times \mathcal{U}$ is the smallest monotone class which contains $E \in M \times \mathcal{U} \cap M$. From Definition of M we have $M \in \mathcal{U} \times \mathcal{U} \cap M$. Then $M = \mathcal{U} \times \mathcal{U} \cap M$, that is for any $E \in \mathcal{U} \times \mathcal{U} \cap M$, $E_{m,m} \in \Omega$ for all choices of $M \cap M$ and $M \cap M$.

Since $\mathbb{E} = \bigcup_{m,n} (\mathbb{E}_{m,n})$, we have from (c) that $\mathbb{E} \in \Omega$. That is

$$\int V(E_x) d \mu(x) = \int \mu(E^y) d V(y) .$$

2.42 <u>Definition</u>. If $(X, \mathcal{U}, \mathcal{U})$ and $(X, \mathcal{U}, \mathcal{V})$ are 6-finite measure spaces and if $E \in \mathcal{U} \times \mathcal{U}$, we define

(1)
$$(\mu \times \lambda)(\mathbf{E}) = \int_{X} \lambda(\mathbf{E}_{\mathbf{x}}) d\mu(\mathbf{x}) = \int_{X} \mu(\mathbf{E}^{\mathbf{y}}) d\lambda(\mathbf{y}).$$

The equality of the integrals in (1) is the content of Theorem (2.41). We call $\mu \times \nu$ the product of the measures μ and ν . We claim that $\mu \times \nu$ is a measure on $\mu \times \mu$.

Let $\{E_n\}$ be a disjoint sequence in $\mathcal{U} \times \mathcal{U}$, and let $E = \bigcup_n E_n$. By Theorem (2.26)

$$(\mu \times y) = \int y'(\mathbb{E}_{\mathbf{x}}) d\mu(\mathbf{x}) = \int \sum_{n=1}^{\infty} y'((\mathbb{E}_{\mathbf{n}})_{\mathbf{x}}) d\mu(\mathbf{x})$$

$$= \sum_{n=1}^{\infty} \int y'((\mathbb{E}_{\mathbf{n}})_{\mathbf{x}}) d\mu(\mathbf{x}) = \sum_{n=1}^{\infty} (\mu \times y)(\mathbb{E}_{\mathbf{n}}).$$

Clearly, $(\mu \times J)(\emptyset) = 0$ and $(\mu \times J)(E) \gg 0 \quad \forall E \in \mathcal{M} \times \mathcal{M}'$. Hence $\mu \times J$ is a measure on $\mathcal{M} \times \mathcal{M}'$.

2.43 The Fubini Theorem. Let $(X, \mathcal{M}, \mathcal{M})$ and $(Y, \mathcal{M}, \mathcal{I})$ be ℓ -finite measure spaces, and let f be an $(\mathcal{M} \times \mathcal{M}')$ - measurable function on $X \times Y$.

a) If
$$0 \le f \le \infty$$
, and if

1) $\psi(x) = \int_Y f_x dv$, $\psi(y) = \int_T f^y du$ $(x \in X, y \in Y)$,

then ψ is \mathcal{M} - measurable, ψ is \mathcal{M} - measurable, and

2) $\int_Y \psi du = \int_Y f d(u \times v) = \int_Y \psi dv$.

b) If f is an extended real valued function and if

3)
$$\phi(x) = \int_{Y} |f|_{x} dy$$
 and $\int_{X} \phi^{*} d\mu < \infty$,

then $f \in L^1(\mu \times J)$.

c) If $f \in L^1(\mu \times \nu)$, then $f_{\chi} \in L^1(\nu)$ for almost all $\chi \in X$, $f^{\chi} \in L^1(\mu)$ for almost all $\chi \in Y$; the functions ψ and ψ defined by (1) a.e. are in $L^1(\mu)$ and $L^1(\nu)$, respectively, and (2) holds.

Notes: The first and last integrals in (2) can also be written in the more usual form

(4)
$$\int_{X} d\mu(x) \int_{Y} f(x,y) d\mu(y) = \int_{Y} d\mu(y) \int_{X} f(x,y) d\mu(x).$$

These are the so-called "<u>iterated integrals</u>" of f. The middle integral in (2) is often referred to as a <u>double integral</u>.

The combination of (b) and (c) gives the following useful result : If f is ($\mathcal{M} \times \mathcal{M}$) - measurable and if

(5)
$$\int_{X} d\mu(x) \int_{Y} |f(x,y)| dy(y) < \infty ,$$

then the two iterated integrals (4) are finite and equal.

<u>Proof</u>: We first consider (a). By Theorem (2.40), the definitions of Ψ and Ψ make sense. Suppose $E \in \mathcal{U} \times \mathcal{U}''$ and $f = \chi_E$. By definition (2.42),(2) is then the conclusion of Theorem (2.41). In fact that,

Therefore

So (2) holds for all characteristic functions of $(\mathcal{M} \times \mathcal{M}')$ - measurable set. Hence (2) holds for all non-negative $(\mathcal{M} \times \mathcal{M}')$ - measurable simple functions. Now let f be any non-negative $(\mathcal{M} \times \mathcal{M}')$ - measurable function. By Theorem (2.20) there exists an increasing sequence of non-negative $(\mathcal{M} \times \mathcal{M}')$ - measurable simple functions s_n such that $s_n(x,y) \longrightarrow f(x,y)$ at every point of $X \times Y$. If φ_n is associated with s_n in the same way in which φ was associated to f, we have

(6)
$$\int_{X} \varphi_{n} du = \int_{x} s_{n} d(\mu \times J) \qquad (n = 1, 2, ...).$$

The monotone convergence theorem (2.25), applied on ($Y, \mathcal{A}, \mathcal{V}$),

$$\psi_n(x) = \left((s_n)_x dy \right) \longrightarrow \left(f_x dy \right) = \psi(x), \text{ for every } x \in X,$$

as $n \longrightarrow \infty$. Hence the monotone convergence theorem applies again,

to the integrals in (6), and the first equality (2) is obtained.

The second half of (2) follows by interchanging the roles of x and y.

This completes (a).

If we apply (a) to $\dagger f \downarrow$, we see that (b) is true. i.e.

$$\int |f|d(\mu \times \nu) = \int_X \varphi d\mu = \int_X \left\{ \int_Y |f|_X d\nu \right\} d\mu = \int_X \varphi^* d\mu < \infty.$$

To prove c), we let

$$\Psi_1(\mathbf{x}) = \int_{\mathbf{v}} (\mathbf{f}^+)_{\mathbf{x}} d\mathbf{v}$$

$$\varphi_2(\mathbf{x}) = \int_Y (\mathbf{f}^-)_{\mathbf{x}} d\nu$$
.

From (a) we obtain $\begin{cases} \varphi_1 & d\mu = \int_{x \times y} f^+ d(\mu \times \mu), \text{ and } \end{cases}$

$$\int \varphi_2 d\mu = \int_{X \times Y} f^- d(\mu \times \lambda).$$

Since $f \in L^{1}(\mu \times J)$, we have $f^{+}, f^{-} \in L^{1}(\mu \times J)$,

$$\longrightarrow$$
 $\left\{ \phi_1 d\mu \text{ and } \right\} \phi_2 d\mu$ are finite

$$\rightarrow$$
 ϕ_1 and ϕ_2 are finite a.e.

$$(f^+)_{x}$$
, $(f^-)_{x} \in L^{\bullet}(y^{\downarrow})$ for almost all $x \in X$.

$$f_{x} \in L^{1}(y)$$
 for almost all $x \in X$.

Since for all x for which ψ_1 , ψ_2 are finite and at any such x, we have

$$\hat{\psi}(x) = \hat{\psi}_1(x) - \hat{\psi}_2(x)$$
 for almost all $x \in X$,

$$\int \rho d\mu = \int \rho_1 d\mu - \int \rho_2 d\mu < + \infty.$$

$$\rho \in L^1(\omega).$$

Hence

Similarly, we can show that $f^y \in L^1(\mu)$ for almost all $y \in Y$ and $\psi \in L^1(\lambda)$.

Now (2) holds. In fact that,

$$\int_{Y} \varphi du = \int_{X} \varphi_{1} du - \int_{X} \varphi_{2} du$$

$$= \int_{X} \left\{ \int_{Y} (f^{+})_{x} dx \right\} du - \int_{X} \left\{ \int_{Y} (f^{-})_{x} dx \right\} du$$

$$= \int_{X} f^{+} d(u \times y) - \int_{X \times Y} f^{-} d(u \times y) = \int_{X \times Y} f d(u \times y),$$

and

$$\int_{X \times Y} f^{+}d(\mu \times y) - \int_{X \times Y} f^{-}d(\mu \times y) = \int_{Y} \left\{ \int_{X} (f^{+})^{y} d\mu \right\} dy - \int_{Y} \left\{ \int_{X} (f^{-})^{y} d\mu \right\} dy$$

$$= \int_{Y} \psi_{1} dy - \int_{Y} \psi_{2} dy = \int_{Y} \psi dy .$$
Hence
$$\int_{X} \phi dy = \int_{X \times Y} f d(\mu \times y) = \int_{Y} \psi dy .$$

The L^p-spaces.

Let $x=(x_1,\dots,x_n)\in\mathbb{R}^n$, where \mathbb{R}^n is Euclidean n-dimensional space, with Lebesgue measure $dx=dx_1\dots dx_n$. If f(x) is a measurable function defined a.e. on a set $S\subset\mathbb{R}^n$, we consider the integral

$$\int_{S} f(x) dx = \int_{S} f(x_{1}, \dots x_{n}) dx_{1} \dots dx_{n}.$$

If we set f(x) = 0 outside S, we may write the integral as

$$\int_{\mathbb{R}^n} f(x) dx = \int f(x) dx$$

where the domain of integration is understood to be the entire space R^n .

2.44 <u>Definition</u>. If $0 and if f is a measurable function on <math>\mathbb{R}^n$, define

$$\|f\|_{p} = \left\{ \left\{ |f|^{p} dx \right\}^{1/p} \right\}$$

and let $L^p = L^p(\mathbb{R}^n)$ consist of all (equivalence classes of) measurable functions for which $\|f\|_p < \infty$. We call $\|f\|_p$ The L^p -norm of f.

2.45 <u>Definition</u>. Suppose $g: X \longrightarrow [0,\infty]$ is a measurable function. Let S be the set of all real Y such that

$$M(g^{-1}((\%,\infty))) = 0.$$

If $S = \emptyset$, put $b = \infty$. If $S \neq \emptyset$, put $b = \inf S$.

Since $g^{-1}((7, \infty)) = \bigcup_{n=1}^{\infty} g^{-1}((b+\frac{1}{n}, \infty))$, and since the union of a countable collection of sets of measure zero has measure zero, we see that $b \in S$. We call b the <u>essential suppremum</u> of g.

If f is a measurable function on \mathbb{R}^n , we define $\|f\|_{\infty}$ to be the essential supremum of $\|f\|$, and we let $L^{\infty}(\mathbb{R}^n)$ consist of all f for which $\|f\|_{\infty} < \infty$.

2.46 Theorem. Let p and q be conjugate exponents, $1 . Let f and g be measurable functions on <math>\mathbb{R}^n$, with range in $[0, \infty]$. Then

(1)
$$\int fg \, dx \leqslant \left\{ \int f^p dx \right\}^{1/p} \left\{ \int g^q dx \right\}^{1/q} ,$$

and

(2)
$$\{(f+g)^p dx\}^{1/p} \le \{(f^p dx)^{1/p} + \{(g^p dx)^{1/p}\}.$$

The inequality (1) is Hölder's, (2) is Minkowski's. If p=q=2, (1) is known as the Schwarz inequality.

<u>Proof</u>: Let A and B be the two factors on the right of (1). If A = 0, then f = 0 a.e.; hence fg = 0 a.e., so (1) holds. If A > 0 and $B = \infty$, (1) is again trivial. So we need consider only the case $0 < A < \infty$, $0 < B < \infty$. Put

(3)
$$F = \frac{f}{A}, \quad G = \frac{g}{B}.$$

This gives

(4)
$$\int F^{p} dx = \int G^{q} dx = 1.$$

If $x\in X$ is such that $0 \le F(x) \le \infty$ and $0 \le G(x) \le \infty$, there are real numbers s and t such that

$$F(x) = e^{s/p}$$
, $G(x) = e^{t/q}$, Since $\frac{1}{p} + \frac{1}{q} = 1$,

the convexity of the exponential function implies that

$$e^{s/p^{+}t/q} \le p^{-1}e^{s} + q^{-1}e^{t}$$
.

It follows that

(5)
$$F(x) G(x) \leq p^{-1} F(x)^p + q^{-1} G(x)^q$$
 for every $x \in X$.

Integration of (5) yields

(6)
$$\int F G dx \leq p^{-1} + q^{-1} = 1,$$

by (4); inserting (3) into (6), we obtain (1).

To prove (2), we write

$$(f+g)^p = f(f+g)^{p-1} + g(f+g)^{p-1}$$
.

By Hölder's inequality,

Then we can write

(8)
$$\left\{ g (f+g)^{p-1} dx \leqslant \left\{ \left\{ g^{p} dx \right\}^{1/p} \left\{ \int (f+g)^{(p-1)q} dx \right\}^{1/q} \right\} \right\}$$

Since (p-1)q = p, addition of (7) and (8) gives

Clearly, it is enough to prove (2) in the case that the left side is greater than 0 and the right side is less than ∞ . The convexity of the function t^p for $0 < t < \infty$ shows that

$$(\frac{f+g}{2})^p \leqslant \frac{1}{2}(f^p+g^p)$$
.

Hence the left side of (2) is less than ∞ , and (2) is less than and (2) follows from (9) if we divide by $\left\{ \int (f+g)^p d\dot{x} \right\}^{1/q}$, and use the fact that $1-\frac{1}{q}=\frac{1}{p}$. This completes the proof.

2.47 Theorem. If p and q are conjugate exponents, $1 , and if <math>f \in L^p$ and $g \in L^q$, then $fg \in L^1$, and

 \underline{Proof} : For 1 \infty , (1) is simply Hölder's inequality applied to |f| and |g|. In fact

$$\| fg \|_{1} = \int |fg| dx \leq \{ \int |f|^{p} dx \}^{1/p} \{ \int |g|^{q} dx \}^{1/q}$$
$$= \| f \|_{p} \| g \|_{q} < +\infty.$$

If $p = \infty$, then

(2) $|f(x) g(x)| \le ||f||_{\infty} |g(x)|$ for almost all x; integrating (2), we obtain

If p = 1, then $q = \infty$, and the same argument applies.

2.48 <u>Definition</u>; $I^p = I^p(R^n)$ (1 $\leq p < \infty$) is the space of all vertor functions g are defined by

$$g(x) = (g_1(x),...,g_n(x))$$
 where $g_i \in L^p(R^n)$,

 \forall i = 1,2,...,n, and the norm is

$$\|\mathbf{g}\|_{\mathbf{p}} = \left(\left(\|\mathbf{g}_{1}(\mathbf{x})\|^{p} + \dots + \|\mathbf{g}_{n}(\mathbf{x})\|^{p}\right) d\mathbf{x}\right)^{\frac{1}{p}}.$$

2.49 <u>Definition</u>; Let f and g be two functions on \mathbb{R}^n defined for |x| > c, and let $g(x) \neq 0$. The symbols

$$f(x) = o(g(x)), f(x) = o(g(x))$$

mean respectively that $f(x)/g(x) \longrightarrow 0$ as $|x| \to \infty$, and that f(x)/g(x) is bounded for |x| large enough. The same notation is used when |x| tends to a finite limit or to $-\infty$. In particular, an expression is o(1) or o(1) if it tends to o(1) or is bounded, respectively.

2.50 Definition; A function f on [a,b) is said to be of bounded variation on [a,b) if the supremum

$$V_{ab} = \sup \left\{ \sum_{k=1}^{n} |f(a_k) - f(a_{k-1})| : a \leq a_0 \leq ... \leq a_n \leq b \right\},$$

which is taken over all possible finite sequence a_0, \dots, a_n , is finite. V_{ab} is called the total variation of f on [a,b).