CHAPTER IT AP \

PRELIMINARIES N e/
e _//

The materials of this chapter are drawn from references
{11, (21, (33, [?), [10], [12), [13], [15].

To make this thesis essentially self contained, we recall
some relevant notions and facts from integration theory. However
we first recall some properties of upper and lower semi-continuous

function.

2.1 Definition. Let X/ ¥ )be topological spaces. The function
fF i@ X=X is said to/ be ‘eontinuous at X, e X, if given any open
set V in ¥ with f(xo)e V,then there exists an open set U in X with

X, €& U, such that £(U) Gl

Furthermorey £ is continuous if‘and only if f is continuous

at each point of X.

2.2 Definition. Let f be an extended real-=valued function with
domain D C Rn. I'or each y € rR" lct;ﬂyj be the collection of

neighborhoods of y. If ' €D and L is any point of F, we define

I

lim dinf  f£(x) sup [inf f(xﬂ

X — X Vtﬁ& x e VN T
x € T <
lim sup f(x) = inf [sup f(x)]
X ——3 X Veﬂy; xe VAT
o

x € F
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if F = D we simply write 1lim dinf f(x) and 1im sup f(x) .
X— X X — X

2.3 Definition. An extended real-valued function f defined on a

topological space is said to be lower semicontinuous at 2 point

x € X, if for each & & [-oo,%0] such that« ¢ f(xo) then there

T

cxists a neighborhood V of x_ such that « ¢ f(x) for all x € V.
An extended recal-valued function f defined on a topological space

is said to be upper scmicontinuous at a point X, e X if - f is lower

semicontinuous at a point X,®

2.4 Theorems A function £ is lower scmicontinuous at X if and
only if

lirl inf f(x) = f(KO)-

X —F=+/X
0

Proof : Assume that f is lower scémicontinuous at X5 for each
X € [-o0,00) suchithatec < f(xo), there exists a neighborhood V
of x_ such that = < f(x) for all x € V. Since

inf fx) Givefern (v &n{f )
A o X
x €V 0

sup (inf  f(x) & #x.) ,
Vea(/'x[ xeV } ©
)

Suppose that sup [inf f(x)] < f(xo) . Then
v = € V

inf f(x) < f(xo) for all Vg
X eV



there exists x € V such that f(x) < f(xo). Then there exists
B E [-0,o0] such that f(x)< p < f(xo); i.€. there exists
PpEl-20,00)] such that p < f(xo) and for all neighborhood V of X

there exists x € V such that £f(x) < g . This is the contradiction,

Hence lim inf f(x) = f(x) .
X3 X &
0
Conversely, assume that lim dinf f(x) = f(xo) .
X b ¥

For given any = € (-@0,00] such that & < f(xo) =

x & (X )77, supf=ant f(x) ]
o ,
' x-€ V.
x X
o o

Then there exicts a neipghbothood!V of X, such that
« < inf Jf{x),- since otherwise
xeV

sup [inf £(x)] § ol ‘e—hence f is lower scemicontinuous.
V xeV

Consequently, we can show that f is upper semicontinuous at X, if

and only if 1lim. sup f(x) = f(xo) .

X L2y
o

2.5 Theorems A real-valued function is continuous at a point xoe X
if and only if it is both upper semicontinuous and lower semicontinuous

at a point xo .

Proof : Let f be any continuous function at a point x € Xs Then
for any (o ,f ) with f(xO? € (=,p), there exists a neighborhood
U of x_ such that f(U) @ (a,p). Thus f is both lower and upper

semicontinuous at a point X e Conversely, assume that f is both



5

lower and upper semicontinuous at a point X, 3 for cach o ,p ¢(=- w,w)

such that « < f(xo) . f > f(xo} then there exists neighborhood

T

v

40 Vs of x_ such that « < f(x), p> f(x) for all x ¢ Vy and x e Y,
respectively. Thercfore for any (= ) o ) with f(xo)e («,p), there
exists a neighborhood U = V, A V, of x_  such that £(U) € (=, ).

So that f is continuous at a point X e

2.6 Thcorem. Any continuous mapping f of a compact metric space X

into a metric space Y is uniformly eontinuous.

Proof : Suppose that f is eontinuous but not uniformly continuous
on X, then for some £2 04 andcvery positive integer n there exists

x xne X such that

. 1
d(xn’ yn) & n
and
BE(x ), Sy d e .

Since X is compact (and hence countable compact), the sequence {xn}
has a subsequence i X } converging to a point x &€ X, and as
k

d(xn . < % y it follows from the triangle inecquality that
% "k

the subsequence i - 98 S also converges to x. But f is continuous at
k

the point x, hence there is a 4 > 0 such that d’ (£(x), £(x )) < 5/?
for d(x, x )< d « Take k such that d(x, x_ )< d, dlx, y_ )< J,
0 n, n,

then d}(f(xn P f(yp ))< &€ contrary to the definition of the
k k

sequences {xn} and {yni « Hence f is uniformly continuous on X,
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2.7 Definition. & collection o of subsets of a set X is said to

be an algebra in X ifciz has the following three propertics
13 ﬂ P

2) If A t-££ , then 2% ﬁl:, where A° is the complement of

A relative to X.
3) 188, 8edh, then 2t pedl.
; S ,
If—Lé is an algebra and L} .l.enkﬁ whenever A, € ﬁé then iL
L .
is called a K—algebra in=&= IE iﬁ is a <-algebra in X, then X is

called a measurable spacey aAnd the members of il are called the

measurable sets in X.

2.8 Definition. If X ig 4 )measurable space, Y is a topological
space, and f is a mappiny/ of X into ¥, then f is said to be measurable
provided that f_ﬂ(V) is 4o measurable set dn X for every open set V

in Y.

2.9 Theorem. If ?f is any cocllection of subsets of X, there exists

i o
a smallest £-algebra o(( in X such that ?C [L .

*
This jL is somctimes called the €-algebra genecrated by 3{.

Proof : Let € be the family of all €-algebras I 45 % which contain

ﬁ:. Since the collection of all subsets of X is such a f=-algebra,

f is not empty. Let iL* be the intersection of all 41 € E’. It is
clecar that /frﬁ J.L‘ and that ﬂ.* lies in every €-algebra in X which
contains QF. To complete the proof, we have to show that iL* is itself

a §-algebra.
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* 2
If .-\nGe(L for n = 1, 24¢04, and if I£e¥ , then ;\n&f[,
so UAHE-LI , Since iL is a (Lalgebra. Since UAne A for every
*
11 & y we conclude that Uhne-li « The other two definiting

propertics of a (—algebra are verified in the same manner.

2.10 Definition. Let X be a topological space. By Theorem (2.9),
there exists a smallest §-algebra ﬁ in X such that every open set
in X belongs to & . The members of B are called the Borel sets

of X.

Since B is a f=-algebra, we may now regard X as a measurable

space, with the Borel sets playing the role of the measurable sets,

2+11 Definition. If i A a Boreél measurable space, ¥ is a topological
space, and f is a mapping of X 'into Y, Then f is said to be Borel
measurable provided that f_T(V) is a Borel set in X for every open

set V in Y.

If Y is the real line or the complex plane, the Borel

measurable functions will be called Borel functions.

2+.72 Theorem, If fn:X —= [~0,m@) dis measurable, for n = 1, 246
and g = sup f s h = 1lim sup f )
n n
nyl n—s oo

then g and h are measurable.
< P
Proof : We claim that g ((£,+x]) = f; ((x¢y+a0)),
n=1

%)
if 8-1((0C y+)) = @ , then g-‘T((d-,+mD c Uy f;"((q J+oa)) .
n=1
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if 4':‘._1((05 42]) £ @, then let x € g“’l((-’é y+oe}) 3

glx) > &« .

Since g(x) = sup f (x) , there exists n_such that
asg P o
fo(x) > « s, X € f_1((°‘~.+ c@}) for some n_ ,
n n o]
o 0
© . _
x € U £ ((xX ,+]).
n="1
o
Thus g7 (Catyr 00D @)L 271 ((x v 2),
n=l :

<0

0w
Conversely, if U f;1((°¢,+.003'} = @. then U f:l1((='ﬂ ,+00)C g-‘i((ac,-vao]).

‘n=1 n="1

<o o
1r U fr_11((ac y+00]) # @,/ tHen let'x e U f;q((q ,+c01), there
n=1 ok

exists n _ such that f (x)2@ | Since g(x) = sup fn(x),
0 n 1

g(x) > ,"B6 that x € 5-1((3( ,+01) .,

PO
Then ;_1;_1(('-‘4 Fmi) = U f;1((°¢,+w1), and hence g is
=1

o

measurable, since for cach fn is measurable.

The same result holds cof course with inf in place of sup, and since

h = inf { sup fi} y it follows that h is measurable.
k»1 ik

2,173 Definition : A positive measurc is a function/u , defined on

a €-algebra :Lf y whose range is in [0,®) and which is countably
additive. This means that if [_Aig is a disjoint countable collection

of members of A , then

1\/\ g

."‘/M(Ai)'

+ 1

aQ
LU oA
/ 1-1

[
n
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A measure space is a measurable space which has a positive measure

defined on the €-algebra of its measurable sets.

2.14 Definition : T_-ct_Rn denote n-dimensional Euclidean space.

By n=-cell in R™ we mean the set of points x = (XP'°“ xn) such that
(1) a, € X, < b (= T g sy By

or the set of points which is charactorized by (1) with any or all

of the ¢ signs replaced by <J/4

For any n-cell T iﬁ'Bn, we define
n
v =, -
oI T (b=va,)

i=1
no matter whether cquality is iricluded or excluded in any of the

inequalities (1).

Note that, if I andiJ are n-cells thexy N J is n-cell, and if I is

n-cell then I° is a finite union of disjoint n-cells.,

2,15 Definition ! The set B ¢/R™ is/s4id to be elementary set if E

is the union of a finite number of disjoint n-cells. Let\é be the
class of all elementary scts. DNote that § is an algebra.

-~ & e
m :‘F — R is defined by

N
n(B) = % vol I, where E = U Ine I? .
n="1
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2,16 Lemma. To prove that m in (2.15) is increasing, finite

additive and m(@) = 0. Meoreover m is well-defined.

Proof : 1) To prove that m(8) = O

n
S3ince @ =]x € R™ : a < X5 € al, m@ = T (a-a) = 0.
i=1

2) To prove that m is increasing.

If &, F € E: and E € F , then we must show that m(E) € m(F).
1| M

Let E = v F= U g where {T ,0ee Il o {04,000, 0,8

In {4
1 n=1 ]

Ii=
are two systems of disjoint n-cells.

Since U A GRS
L8/ )\

By addition,
m(ia) £ m(P) .,

3) To prove that m is finite ‘additive.

IfE,F€& and ENF

"

# , then we must show that
m(EU F) = m(E) + m(F).

M M

Let E= U I, F = I, .
n="1 m="1
N M
rvr = U 1. UU ¢ is disjoint union of n-cells,

By definition,
N M

7 1.') = 2 N = 1 Y .
m(E U 1) E‘T vol In + E;1 vol ]m (L) + m(F)
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k) To prove that m is well-defined.

Let in,...,I ' {Jq,....J“S be two systems of disjoint n-cells

il M

b

o= = | &
such that E= U In 9 ]m .
n=1 r="1
M
— - o B A 2
For each n, In i{q 1n Jm By (3)

M I

ol In = Vol( U Inn ._Tm) = E: vol (Inn Jm) .

m=1 f=1
Therefore
N N M i N
Vol I_ =5 /7///vol (Il &) = T ¥ wol (1 7)

n="1 n=1,/m=" m=1n="1

% | N M
= Z Jyor ¥ 1 Mgl =5 wvol {ad }.

r=1 i n=4 R nl m="1 mk

Hence m is well-defineds
2,17 Lemma., If E Eréf and {Eil is a’Sequence in E such that

%o
5 € L L9 Vithen m(?) < £E1 m(Ei)'

Proof : Ve may assume that m(Ei) < + e0 for all i.

Given any & > O there exists a closed set F € \E such that

FCE and m(F) > nl®) - -g .

/\
For each Ei there exists an open elementary set Ei

~
such that . C ©. with
i 3

m(E,) € m(®m,) +
1 L
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Then F C U I, . By Heine-Borel thenrcem there exists finite
p i
i=1
A ”~ ”~ ¢ A
system E, 4 B, sees E, from § B, such that
i i Eae i
1 2 i
i
F C U I,
i
m=1 r
Therefore

M
n(F) < 3 oE, ).
m=

Then

M ~ £ o0 ~ &
£ < . &
‘j:m(ﬁ)+2£4.m(41)+2
m={1 m m=1 m
< (B9 = £ £ Eﬁ (B,)+ €
S i m(T + P ===l 4 = = m(E, )+
el 0 =2t 2 g 2
it is true for all £ >0,
D
™ - 0
Hence m(B) ¢ z; m(ui),
1=
2.18 Theoren., A set function m in (2.15) is reasure on E .

m is called the Lebesguc measurec.

Proof : Obviously mn(f) = 0., Let < En} be any disjoint scquence in E
]

B e
K Ec .

such that E =
n

n="1

By Lemma (2.17) , we have

B
~~
—
AN
T IR
=3
Fan
=t
R

for all N,

=

But 2O U
n="1
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Thean m(B) > S m(ﬂn) for all N,
n=1
a0 )
so that m(E) 3> m(E ). Thus m(E) = - (E)).
n n
n=1 n=1

¥

Hence m is a mneasure on 5 .

Morcover, there exists the unigue measure m on.l((g) such that

m (E) = m(E) for all % e Eﬂ , and m is called a Lebesgue measurec

on L 5. \

2.179 Definition. A function s an-a measurable space X whose range

consists of only finitely many points—in [O,co) will be called a

simple function.

Let ©E C X, _&nd put

IS X € T,
X0 408 |
0 if x € H.

X .. is calle@.the charicteristi¢’function of L.
4

Suppose the panpge of s consists of the distinet numbers

c1’ll0' ch. ].Gt

B s {x Nigltx )iz e, | (i = Ty00ey m)e

Then clearly

that is, every simple function is a finite linear combination of
characteristic functions. If is also clear that 5 is measurable

if and only if each of the scts Ei is measurable,
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It is of interest that every function can be approximated
by sinmple functions. In the next theorem we consider only the

case of measurable function.

2.20 Theorecm, Let £ : ¥ — [0, ] be measurable. There exist

simple measurable functions Sn on X such that

1) Oss1s 5, % vos § fo

2) sn(x)————+ f(x) as n—> oo 4, for every x € X,

Proof : For n = 1, 2y 355..y anéd—Ffer 1 ¢ i g nan, define
= B =1 fi=1 b\ N -1
E,g= f ([—;E e MDiwand F o= f ([n,e])
and put
a2
. =edio 3
Sn = Z : - e ) + nXF .
i=1 2 Ryl n

Since f is measurable functiony En 5 and Fn are measurable
]

sets. Then Sn are measurabhle functions.

To prove 1)y ~for any m € En -

¢y

1S
i=1 . i
T n < f(x) < _E F
2 2
2(3:1) 2;+1 ) implies that
e 2
. 2i-2 2i-1 24
slther oy 4 ¢ £(x) < :

2n+1 2n+1 2n+1
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m 1 I . m k:
Then either x € LTI or x € Basig o so that
an+1(x) = gii% = i:% = Sn(x) or
2 2
g @ = = w222 . 2 . s @
n+1 B+ n+1 n n
e 2
Therefore s (x) > 8 (x) for X €L . .
n+1 n n,i
If x € Fn then f£(x) » n
either n ¢ f(x) < &n 1 o + 1 € f£lx) ,
n+1 n+1
either L € f(x) < (_11-_!-1_)_2__ or x € F ’
n+71 n+1 n+1
2 2
r2n+1
either s (x) » = =-mn = 8 (x) or
n+1 Pn+1 n
s .(x) = niH & 85)(%X) .
n+1 n
For any x € X ; either x €k . for some 1 or x € F .,
Nyl n
i x € B . then Blx) ¥ == amd & (x) = 2=L |
n,i A1 n n
o 2
If x € F then f(x) » n and sn(x) = N .
Hence, we conclude that
( : X
flx) > sn+1‘X) 2 Gn(x) (x € 1)

To prove 2) If x is such that f(x) = +0® then x ¢ L

s (x) =n .+ Then 1lim s (x) = f(x). If x ie such that f(x) ¢ +o0
= N

then x € En 5 for some n (if n is large enough). Then
1

001065

-
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3:% £ f(x) < iﬁ ,
2 2
sn(x) & i:% = 33 s 2™ 5 Blx)= 270
2 2
sn(x) > f(x) = 2" when n is large enough,

Therefore f(x) 3 Bq(x) > f(x) = 2™" when n is large enough.

f(x) 3 1lim sn(x) » f(x) , since 8 (x) is increasing sequence.
Ne» o

Thus lim Bn(x) = f(x).

n—eo
2.21 Definition. If & is a measurable simple function on X, of

the form
m

B/ 3 SE'ICi;(E. ’

T 1

where cs and Ei as in Definition (2.19), and if @ EciL , we define

m
I s %M = EZH ci/u(Eiﬂ E).

Sty

The convention 0,00 = 0 is used herej it may happen that

ci = 0 for some i and that /H.(Eiflﬂ) = o0 ,

If £ : X—> [0,00] is measurable, and U G:JL , we define

(*) j fd = sup f 5 dm .
I '/k Ogsgf

B

The left member of (*) is called the Lebesgue integral of f over E,

with respect to the measurg/u .
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2.22 Theorem. Let f and g : {——)-ﬁ’ " be measurable functions.

1) Iffeg,then [ fduw ¢ §gau .

= -y
'y "
ad

2) If ACB, then § fdu ¢ ffd/u .
A

3) If ¢ is a constant, O § ¢ ¢ ® , then
Jor dm = o rf M
E E
4) If f(x) = O for all x&k; then j f du = O, even if
M(E) = 00 N
59 If/‘( (E) = 0, thén If d/u. = 0, even if f(x) =

for every x e/ IL. ¥

6) J’fd/“:ij‘?

i

Proof : 1) Let lé) = {f‘ : s is simple meédasurable and O € s € f} '
L;F = {s : & is simple measurable and 0 g s € g'i o Since f ¢ g

Then (f < Lf which will give the result.

m
2) Let s = 2 ¢ .
n i1 niXEn

1

Ifd/.g | ;’snd/un=sup {Zcﬁ(dﬂﬁ)}.

i Ogs¢f 0<s «f i=1
J 1
Since A C /‘1(T )S/:L(‘“ N B),

oup {Zc /“L(En“)} P {Z cni/“(EnT B)} P ganﬂ= [f%
B

O<s<f i= O{ﬂéf Ocsn(f B
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Hence | J'f de < { fd '
) v

::
=
A3

= s_d = s I d i
3) fc f 911 sup fc nfL co.;:pcf Esn/& )

0O« £f I
n

E n
S y n f
since cs du=c) c M(EMNE) =c ) s du , where s as in 2).
g n/ =1 % B4 i ny/* &
4) Let s, be as in 2),
_ m
(*) I fa = sup J s.-d = sup Z c (2 N T‘}} .
s/ O¢s ¢£F n'/ O<e ¢ £ i i=1 “i/A Ny

If f(x) = 0 for all x € E, fHen sn(x) =0 for all x € L, where

= v H 2 = .
0 g an f. Then cni o /v ni and henee épf gﬁt 6]

0 then

5) TFrom (*) in 4), if}/a(E)

=

/A(Enn B) = G for all ny» since En Q| C . Hence
i

i

g‘f %ﬁu = 05

m
6) Let sn= Z C:’.XE be any simple function.
i=1 9

We claim that I s d/bl- = JX IS d/u *

£Sd/u =J£ CiXI-?d/“‘ “ih °ifoid/u

E i=1 i i=1 B

v
iw

izs‘ici '(X“J'X’-fi?/‘* =fxm ; ":’;.’ﬁ(laid/‘L - f"L s dm .
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f Sndﬁk - sup J_

Then f f %/& = sup
B Desgf T / ssci‘
n
= sSu Jxﬂﬁd = {x fa .
Oéstn r /A- B /L

2.23 Theorem. Let s and t be measurable simple functions on X,

e define

(F(E) = fc; e (B € M ).

Then >U is a measure on au: and

(*) f(s+t')<yA =" Jsd/vt + Jt d s ..

m

Proof : Let s = ¥y XP .
3 =3 'ti

It is clear that qi(ﬁ) is set function.,

m

P & gs_a/u - T a{puw = 0.

"

Let { hk g be any disjoint seouence in JL and let U E
k

The countable additivity of i shows that

Y (s

m

Z aif&(xlin:‘l) Z Z/"‘(* n L)

i=1

20 m
=3 (Y a, w(E NAa))
§;1 fta :|./"L k i

ou'd
&1 P ().

Trle
b
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Hence @ is measure on Jl .

Next, let s be as before, let b yeesyb be the distinct values of

5
t, and et B, ={x: t(x) =v,l . ICE,, = A, 0B, , then
J 32 i] i 7]

L.'(s+t)%h

- (ai+ bj)_/bl(.rlij)

ai/A(Eij) + bj/x(mij).

Since X is the disjoint union 9f the sets Eii (T £ 42 0 9¢ & m)y

o

the first half implies that (*) helds.

2.24 Lemma., Let/u_ be 2 positive on a £ -algebra M4 . If {Eni

s%9]
is an increasing seguexce in JL such . that L = U En then
n=1 .~
/L{() = lim M (En).
n— co
i P . o= L LN NSO = i
Proof : Put F, By Fn B In“1 for n 24 3% Bowes
T 1 T k= i i N = r LRI by
hen I' € Ji y Flﬂ ; g _if i 47 , = FUF,U UF
a4
and B = L} ¥, . ‘illence
=1
Q’_‘] ;__CI n
(1) = MAC U Fe) = ) aMF:) = Tim ZU-(F)
- i = 3 = i
1= i=1 n—soo i=1

n
= limpu( L}Fi) = i{TaV/x(En) .

n- g i=’
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2+25 Lebesgue's Monotone Convergence Theorem. Let ifp} be a

sequence of measurahle functions on ( and suppose that
a) O ff1(x) $ fe(x)$ vees 30 for every x € X,
b) fr(x)—f f(x) as n—s 00 , for every x € X.

i

Then f is measurable, and
J’fnr‘i/w-_-._-;fftip A8 N ——3 00 .

5 A i ; 0,0
Proof. Since Ifnifk < [fn+1%f*’ there exists ¢ € [0,c0]

such that

(1) 1 ffnd/u. SR

1l —p 0D

By Theorem (2.12), f-is/neasurable. 5ince f & f, we have
Jrfn%ﬂ. < ff apm for all n, so (1) implies

(2) ¢ U% Ii‘ Gy

Let s be any simple measurable function such that O ¢ s ¢ f, let k

be a constant, O/ k ¢ 1, and define

E = .(x: fn(x),) k s(x)} (i = Py 25 Tyesnde

Fach En is measurable, since fn— ke is measurable and

C ,eesy, 2nd X = Umn. If f(x) = 0,

-1 - .
E = (fn— ks) ([o,+gol). B, € E,

then x & E1.
If f(x) > 0, then ks(x) < f(x), since k <1 ; hence x € Eq for

some n. Also
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(5) c [s a M

2

(3) jfnc}fu > f fnd/u y k Efs dp for all n.
“n n

Let n—> oc , applying Theorem (2.23) and Lemma (2.24%) to the last

integral in (3), The result is

(4) : c 2 k [ s g/~ y

Since (4) holds for every O < k < 1, we have

for every simple measurabl@é s satisfying O £ s ¢ f, so that

(6) : ¢ /y ['f LY

The theorem follows from (1); (2) and (6).

2.26 Theorem, If fn: K-n——5§’+ is measurable, for n = 1, 2,y.4

oo
and f(x) = 2 _fn.(__x) (x € X), then
n=1

.[f(x)gk = %i [fn(x)Qu é

n="1
Proof : By Theorem (2.20) there are increasing sequences

[stl {s;g of measurable simple functicne such that

¥
8] — £ and &,——> f y 28 1-—=—— oo,
at 1 i P
Let s, (x) & s (x) + s.(x) (x € XDo Then
i i i
g5, —— f_ + T a5 i e— 06 .
i 1 P
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By the Lehesgue's monotone convergence theorem (2.25),

j(f1+ fE)Q}& lin J-Si?fk

i—a0

= 5 s.+ 5.)
lim J(Esi+ ri ﬂ/u

i ==

= lim ljcs;_!‘}}n- + [S;r’/u]

i—

. f. . s
= - 1lim I”iﬁ”‘ + lim [si@m

=¥ aD i—00 /
= jf1§»- B ff2$ﬂ"

Let T, = f1+ f

+eeet/ £ /o By induction,
I N

2
N

2 jfnd/b\ .

Ty

il

fFNd/‘

Since T T f, by Theoren (2.25)

n

[fd 1im r?.d
a T TSPt g a
N o0
RN LINIVERS LT P Jfrl,u-
/=00 n=1 2 n=1 2
2.27 Definition. Let (H,Ji s, M) be a measure space. 'ie say that
an extened real-valued measurable function f is integrable on X if
(

and only if )ifi 9#. is finite. The class of all integrable

functions on X will be denoted by LV(M).

2.28 Definition. A proverty is said to holds a.e., if it holds

ar

every where on X except on a measurable sect of/Aemeasure ZEero.



2429 Theorem. If f > O is measurable, and I

£foduw =

24

C, then
!
f =0 a.e.
Proof : For all integer n, let
= =1, 1
E = £ (J=y, +c0]) , and let
n- n
. -1
1.5 = f ((O‘ +w])o
Since f is measurable, En' i/ are measurable.
[o'9]
Since ;En% is an increasing sequence and E = \J B
* n="1 4
/J(E) £//hin | (PR
n
- yaxe
For each n,
f g X o o Therefore
> n # E I PN 1 e
n
0 & 3 MR J%X;ﬂf}u <dem = o,
= /
/u(bn) 20l for all n.
Then }A(E) = 0, and hence f =0 a.e. .
2,30 Theorem. Let (X,Al) be a measurable space, I & :L( and
f : E—R be measurable on T, Then the function (3, given by

f(x) (x & E)

0 (x € E%)

is measurable on X.

A



25

Proof : 5ince f is measurable on E, for any real number r,

we have that

i

ix € B 3 f(x)‘)»r} € JL{ .

-~

On the other hand

[f'_I;((I‘,-r::'E) £ ((ry+ 1) if r> 0.

n

[f]?((rﬁm]) f_1((r,+::Q}) U B® if r £ 0.

Hence l'f]F is measurable on Y.
2¢31 Theorem, £ f € V() then £ 45 finite a.c. on X.

Proof : By taking f = (f}//,  where 7 ds the set of measure zero,
A duf=y
we may assume that f is/measurable.

Since I & L‘Qﬂ)s R L‘Su); Then it is enough to prove the
theorem for non-negative f & L‘&&),

Let £>0, fe L1}}.i}-, and let

Hyo= (x€ X f(x)>n) for 211 n > O. Then

En is measurable. Co that ‘XEE is measurable.
n

Since n X_ % T on X.

n/u(Ln) < Jf_r}u .

[ o)

If B, = tx € X 1 £f{x) = +eop then B = (| E_-, which implies
n="1

that £ 1is measurable and Ea‘C_ L for all n.

- 1 R
0 ‘;/Mixnk ) ‘;/#(Ln) & = J T dum which is true for all n.
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Then‘}x(ﬂqj) = 0, and hence f is finite a.e.
232 Thecorem. If f,. g€ L1S#), a, b are real numbers, then
af + bg € LV(W) anad
/
( (
(af+bg) du = alfdmu+blgdu .
r ) ’ } ’/
Proof : By Theorem (2.31) f and g are finite a.e., so that af+bg is
defined and finite a.c. on {. Furthermore af+bg is measurable on X-7,

where Z is the set of measurc zero, ond |af+bg|gianfi + jbyg| @Iﬁﬁ*ﬂ.

Then af+bg ¢ Iﬁ}n).

To prove the last ;agt of the theorem, it is suffieient to

show that
(1) J(f+g)§u = Jf du o+ ]g A
(2) Ja fcyA = a-[f %u .

Take h = f+g. Thenv h=h = F =T +8 - & .
On X-2, h'+ £+ g = b e .

By Theorem (2,26)

|g+@ﬂ- y and

Ih+du_+ ]f"dy.+ fg“du. = |hTam + |[£Tdw +
/ / / f / /

J

since cach three integrals are finite, we have that

’

jh+qM - Jh_@k = |

Jf"'c}p\ _ Jf'du % /g-"é/u._ - )E';-?_/.u. .

il

!hdj&
A

Thus (1) holds.

(£ Q-M—r ]p‘ AN .
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I
N —
N
4]
H
-
I
——
—
v}
L
Fat
j=
=

If a» 0 then jaf;l/u

]
£
S—a
Hy
+
o
!
v
| Y—
]
[P

/
(£ = £)am = af[f am.
| ' [ V4

f;_ - ) ) s
j;af, r:\‘/u J|(:3.f) cl/t

]

If a £ C then f&f}u

s

(<) | TTapm - (-—a)JFf'{'r/}/u

I

aj’(er- M = a jf M

Hence (2) holds.

2.3% Theorem, If T € L‘;M), then

|ffii/\.k1 - juwy.

/

Proof :
{[f aml = |Jf+;1/.x - Jf.'d/M
(g2 Jf-f"/“'l
j + Jr"%

J(f+f Jau = J[flc}u g

-

2.34 Fatou's Lemma. If {fng is a sequence of measurable functions

on X and non-nepgative a.c. on X, then

] (lim inf f )//A < lim inf B %}&

Tl ———y n-'—_-,(ll
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Proof : Let Z be the set of measure zero such that fn>/0 on A=7Z,

for all n., Then by taking lfn] vz v We may assume that fn> 0

on £ for a2ll n. Let

L]

= inf fmix} , by the Theorem (2.,12)
m>»n

£, is measurable, for each n, and B, < fn' so that

[P;n ‘f}M < Ifn 'i/u (n = 11 2; 5,-00)-

Since 0 = 81 ‘[52‘ se0 4
; 3 : r % -
lim inf Ifn'd‘u" > mseanf r};nd/u
N ——s @ / no—=
= lim ILPD' d ad .
n—=0 ) 1'!./

By the Lebegue's Monotone Bonvergence Theorem (2.25).

lim (gndju = ['Iim gnri;u = J lim dinf fmd/{.k
n—s w / Ho® 7 n—@mnjn
’
= } (Lim—Infllf Jam .
J n—

2.35 Lebesguce's Dominated Cnanvergence Theorem. 3Subppose {fnk is

a sequence of measurable functions on X such that fn"_':'f A.€. ON
ar 5 sy 1( 1‘_ -
X, and there exists g€ L /.0 such that for all n |f | & g a.e. on
Xe T ; A
X. Then f and f €1 SA),
(1) lim jgf—f] dm = 0.
n B
n-—

and

(2) If dm = lim £ am .
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Proof : Let Z be the set of measure zero such that fﬁ———,f and

AT m . D 3 - s
]fnl €< 8 on X-%. Then by taking [fn] x.y and [f«]X-E’ we may assume

that fn—-—a f and ifp} £ £ on X. Since |f} £ g and f is measurable,

-

f e L‘&u).

Since Ifn— i £ 2g,

lim dinf CEG—Ifn—ft) 2g+1im dinf (-[fn-fl)
n—-> o n —— 0C

= ES—lim' | f"‘l_f‘
N—sao )

< 25‘;’

Fatou's lemma (2.34) appliesito \2; - £ - £1 that

ngd/;\ ¢ lim inf I(ag-—}fn_fny

n—-— o0

{2g %u_ + 1im __inf L—J:fn-fiifx)

n——=ot

n

{23 du - lin sup f}fn-—fl P

% I —— o0
Since JZﬂ dw 1is finite, we may subtract @At aind obtain
(3) iif__:221 J | £ -f \2/& < 0
If a sequence of nonnegative real numbers fails to converge
to O, then its upper linit is positive. Thus (3) implies (1), and

(2) follows from Theocren (2.33).
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2+35.1 Corollary. Let A be a "-compact subset of Rn, B be an
open subset of R, and f be continuous on AXB. Assume that there
is a function g integrable over A that |f(x,t)} { g(x) for every

X€ A, t e Bi Let

g (t) = f £ t)d ulx) , ¢ & B.

A
Then @ is continuous on B. Assume further that %% is continuous
on AXB and satisfy
(x,t) g )
|f2 %yt = ﬁ(x,t)l § h(x) for every x gA, t ¢ B,
where h is integrable over A. Then
ag(t) I
b el , t) dac(x) t ¢ B.
dt =i

Proof : The first part is immediate consequently from the Theorem(2.35) .

g(t+h) - @#(t) j f(x,t+h)- f(x,t)
h T h

Since c;p(x) %

Then by the mean value theorem

g(t+h) - @(t)
h

= jfa(x,tﬂgh)d/u(x) for some 0<Q@<1,

Hence by the first part and Theorem (2.35)

lim @(t+h)- @#(t) _ dag(t) j
h=0 B = —% = Afz(x,t)d/u.(x) t € B.
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Integration cn Froduct spaces.

2.36 Definition ¢ If X, Y are two sets, we define the set

]

XY = i(}:,y) Pxed, ye¥f. If ALK BCY then AXB

is called the rectangle of sides a and L.

’ ”
'l
Suppose (X, ) and (¥, 4 ) are measurable spaces: A measurable

' %
rectangle is any set of the form A % 3, where A E;lz ) ne Al .

B E = R1U... UHY1 ,-where 4, 4s a measurable rectangle, and

i

Riﬂ Rj = @ if i # j, we say that B is an elementary set, and the

class of such sets will be denoted by Zé.

! #
Ax M iz defined/tohe the smallest € -algmebra whieh contains

every measurahle rectangley
If ECX XY , x ¢ *F=yw=r, wc define

B
x

T % (%7 EL )
g = Lx . (x,y) €T } 2
J

we call Ex and L7 -the x-section and y-section of E respectivel;.

A monotone class M is a collection of sets with the following

properties : If .'Xiem y Bie m , .-'iiC. Ai+1 5 UiD Bi+'l

for i=1, 24ess, and if

@ o
A = U ,‘I.i 3 B = n Bi ]
1=1 1

then A €M and B e YN .
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T 2 v s
2437 Theorem, If & & Mx,U then T".x& .»u, and EyEoLL for

every x € X, ye 1.

fL =4 R

.

Froof : Let

af

If = 41X By, then E =
-4

[ B
' .
¢ if

#
so that E}r = J! . llence every measurable

I

contains the class of 3ll measurable rectangles.

/ v &
.fF
& JL < M Ex & M for cvery x € X &.

X & A

Xf‘;

rectangle belongs to fL

We claim that

i
£ is a (;algebra. Since Ji is a (Lalgebra, we have

7
ve M,

Fg

1) X *xY & Ly sgihce (A » Y)x &
2) If B e, thén/ (B2 (50°% N
so that B%e (L%
3) If L€ L (¥ T:2400+) and LN E. then

o
B o= i 2.) :
B g{ ( e € A, since

30 that vB &/ gL .

Then i is a 6’—algebra contains the class of all measurable

. ’ o
Hence {L = .iﬁf*li

e y 7 ,
Similarly, if fL =4{E e Mxdl : e M for every y & Y} -

e

’
_pt_ =

e L

1

o
(E. Y& A for all i.
il

rectangle.

then

’ »
Hence Ex S ,-u, and 1Y e ,U. for every x ¢ X, y&€ Y.
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2.38 Theorem. Ji x=li is the smallest monotone class which

contains the class of all elementary sets.

Proof : Let Tﬂ be the smallest monotone class which contains E .

. #
Since rlL*'lL is a monotone class, we have

m c Jx A,

We claim that M is a < =algebra.

The identities
(AX BN (A% B,) 1=y fa ) % (B,A B,)
and
(Mg B =CaA B/ f= il - 40 X B U [(400 4) X (B,- B,)]

show that the intersection of two measurable rectangles is a
measurable rectangle and the difference of two measurable rectangles
is the union of two 'disjoint measurable rectangles, hence is an

elementary sect.

Sl
If E(-.g,FeC' then EHFGF andE—FE\g.
Since LU F = (E-F)UF and (E-F)NTF = ¢, we have
that T UTF ¢ E: « Hence Tn is an algebra. Since M is monotone

class, Illis a ¢-algebra.

Then m = J/anu, .

239 Definition : Let f be an extended real valued function defined
on X X Y, For x € X , the section of f by x is given by fx: Y-—?§
such that fx(y) = f(x,y). Similarly, for y € Y, the section of f

hy ¥y is the function ziven by £7: X—sR such that £9(x) = £(x,y).



3k
A
2.40 Theorem. Let f be a /Q "uu - measurable function on X X Y,

Then
r

5 . - S . .
a) Tor each x ¢ X, f is a ._Lf- measurable function on Y.

/
b) For each y e Y, ¥ is a M - measurable function on X
Proof: For any open set V , put
. ] . )
o= z (x,y) © fxy,y) eV § ,
! 7
Then I € JLx U y and
n o= . F ny = .
L iy, fx(y)e\rj , {x,f(x)(—‘f}

o ’
are ~u, y and ‘/L& - measurable‘respectively.

2.1 Theorem. Let (x,JL,,M} and (Y,%,J)) be A/—finite measure

7 o
’ NS
spaces., Suppose L eefaﬁxié st £ 4

(1) Yoo atas . W2, pace

7
for every x € ¥ and y & Y, then ff/ is M -measurable,

r 4
l{) is A -measurable, and

-

L i.fldy’ .

(2) JXCFI/.A

Notes : Since

ra

)Y (Ex) Jy XE(x,y)d V (y)
/.L(Ey) ’; XE(x,y)d/b((x),

the formula (2) can be written,

1}
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(3) f d/u(x) IXE(X,H)d Viy) = jd)‘(y) J‘lr(x,y)d/u(x) i
% Y

¥ X

=

Proof : Let <1 be the class of all © € odbxAL for which (2)
(or equivalently (3)) holds., Ve claim that £» has the following

four properties :
a) Ivery measurable rectangle belongs to - ,

b) If B4 € E,Q E,C «osy if each E;€ 1, and if B :U}zi,

q. s

3
then E € fL .

c) 1If { !21} is 3 disjoint sejwence in N, and ¥ = UE, ,
i

then E € J),

d) If ML) < +/a8 and W{(B) & F¥ao , if AXB D £, B 2.,

if @ = N L{ and B€ for i =1, 2,,.., then L€ N,
i

4 A
To prove (a) we let & = A X R, wherec Aedd , Bedb , then

y‘(ax) = ~S4(B) K x) YY) = M) X (y).
Therefore
J aM(x) f X (x,9)a Y (y) = J Y (2 )d w (%)
x / v '@ X X"
- [ Y@ X et = m Y,
X ) o s
and

) ) X Gapant = | wE)a Ay
[f A E Y JX/A Yiy

. }X/A(:x.)?f”(y)m/(y} = M) (B) ;

T 153442%4,
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r 8
I a (x)) X (x y)d‘ﬁ(y) = f ayv(y) J X (x,y)am(x).
S e ¥ S
This vroves (a).
To prove (b), let ?i and Pi be associated with Ei in the
way in which (1) associates ? and Y with E; i.e.

Y0 = Juwp) 5 W = @,

By Lemma (2.24) applied -to— ) and 4 respectively, we get ?i(x)——+CP(x),

*i(y3 —Y¥(y) as i — +& /) the convergence being monotone increasing
at every point. Since-for cach'ij, Ei.e.fl 3 i.e.
s ; _ j d J .
L *Fi(x)efi(x) - W&(y) (y)

By the Lebesque Monotene Convergence Theorem (2.25) we have

‘f ? () (%) = } P (y)a J(y) s so that & ¢ L .
X 4 Y
T Ny H & (L i s o
o prove (c), we set U3 L.1 U LE\J ITY U En. r‘-J:q_nce
Since By, li,yees, B are disjoint, we have XF = 2 Ap o
n i=1 i

S3ince for ezach i

r . . ( ‘
) fimaue - ) Ep pau - Mz @)

5
4 M

I

P

J *Vi(y)d})(y) ,

1
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I3

n
Ej %'}((Fi)x)%fh(x) _

i=1 X

J,u(( N ).

I“’I 2

(oA
I
)

n n
Consider, 1’; {V((I.:i)x)rl/Ll(x) j; /((Ei>x>§/u<x)

J}/( LJ *A(x)

j)}(* = bk(x).

Similarly,
; _
_Z J/A((Ei)}-)d V() = Jm(Fn)ydx/(y).
i=1 ¥ Y'f

Therefore,

£‘V(Fn)xifk(x) = i)“(?n)yd v)(y) '

s

that is Fne L Now, [—Fnﬂ is an increasing sequence in Sk,

By (b}, E = U F € fL This proves (€).

To proves(d),  since (E,) [CW(ax®B)_,
1 X x

0 € §,60 = Vm) g Hax B V(B) X, (x).

n

Similarly,

0 ¢ ?i(y)

Since/u.(;\) < + oz and  Y(B) < +a¢ , we have ‘J(Ei}x < 4+ XD

[T ¥ A B J =
MY & (a1 B) M) X

and /A(Ei)y < 4+t . Since E,Eik is an increasing sequence with

converges to [,
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lim ?i(‘x) = lim V(Ei)x = V(Lx) = ¥(x) ; and
{ — OO i— 0
lim lfi(y) = Y(y). By the Lebesgue Dominated Convergence
i—

Theorem (2.35), we have

£ . { )
Yo (x)dum (%) = ) Y(maJy) ,
SRS

That is [ L)(Ex)d/u(x) = i_ﬂg(lﬂy)d J(y). This proves (d).

v

Since/l. and ,) are (-finite, there exists disjoint sequences

# 4
fx &, {Yni » M= 14,2,,004/8 = 142,000, such that X ¢ AL, Yneuu, -

M v, SO VA for allimy ny and X = UX, Y =YY
m n
5 = n & X\ = .
B i 1D ﬂ(ﬁlen) Ciily: T 2 Ly Blpemad

o]

m,n

. Let Y| be the

™
it

and note that E are disjoint and |4
myn
m=n

/ %
¢lass of E € ,,u,x 4410 such that B nE fL for all choices of m and

n.i‘-
n, then by (bt) and (d) show that W is a monotone class. (a) and (c)
e AN (31
show that & Y1 . Since A, < A4 is the smallest monotone class
/’ a .
which contains E ’ MM YT . TFrom Definition of Y\ we have

7 7 . # 2 7 2
me xl” o Then YN = AxA | that is for any & e xdL |

Em me L. for all choices of m and n.
e

Since E = (5 )y we have from (c) that & € JL . That is
m,n B
e da pulx) = ([ wG@ra () .
x J/K
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19 #* ,
2.42 Definition. If (ﬁ,ﬂ%l}A) and (H,li,v ) are ¢ -finite measure
f’ //

spaces and if U e Mx , we define
1 [
(1) (MrYIE) = J V(Ex)iif"'*{‘ﬂ = J w(2)a Y (y).

N
L

The equality of the integrals in (1) is the content of Theorem (2:41).

We calllﬁxx v the product of the measures M and v/ « Je claim that
. ) 5 ~
Iy is & measure on M x Al .
Let t En{ be a disjoint sequence in Jl)(li , and let II = U En .
]

By Theorem (2.26)

n
(unp) 5 V (3w /4 J AT ) ()

¥4 > 2 gl 4
= () YamAx) * = ( MY (E ).
%’i ‘ . O gﬁ g B

g V4
Clearly, (Mo))(#) BCand(uoh@fy 0V & e MM ,

R
Hence Pt J is a measurc on ;ii“ Jl
P

/ 4
2.43 The Fubini Theorena. . Let (X,Jkyjk) and (Y,Ji,}j) be ¢ -finite

A
measure spaces, and let f be an (Ji“-u )- measurable function on X A Y,

ca) Tf 0 < f¢ o , and if
1 P = 4 fxd*} v Yy = {-fyﬁn\ (xeX, ye 1),

. . ; /)
then is Moo measurable is Mo measurable, and
;] k]

2) f§r{/u - \J&"f ri/(/uﬂj} = j’_\yw’ .

3
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b) If f is an extended real valued function and if
¥ f ES )
3) P(x) = _{ !f|xdx) and J Cip du < o,

then f & L1(/u»~ﬁ Yo
c) If f € L1(}\x>/), then f_ ¢ LV( ) for almost all
xe £k, e L‘&a) for almost all ye€ Y ; the functions {
and Y defined by (1) a,e. are in L‘SA) and 1Y(Y/), respectively,
and (2) holds,
Notes : The first and last integrals-in (2) can also be written in

the more usual form

g . !
(&) [dm () | £GGYas 0yl e | aviy) | tlx,p)am (x).
% /“ Y Y X ‘/$
These are tlie so-called 'V iterated.integrals " of f, The middle

integral in (2) is often . referved to-as a double intcgral.

The combinationiof (b) and (e¢)-gives the following useful
result : If £ is (M- ) - measurable and if
(5) [ d‘_;x(x) f !f(x,y)1 d‘J(y) < W y

X 7 Y

then the two iterated integrals (4) are finite and equal,

Proof : Ve first consider (a). By Theorem (2.40), the definitions
of $ and ¥ make sense. OSuvpose E & JdLa.dt and f = Km i

By definition (2.42),(2) is then the conclusion of Theorem (2,41),

In fact that,
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"

if I [{fody} g = f[l-xmxddlf b

"

[ Vv (Ex)r}/u

FIERERY J [fXE ap} 4y

r

deJ 3

J{ ny@“'ﬂ ay
Therefore

e

{T%ﬁ de&%vﬂ)

1
"W

{
] ¢ od y oo, since

+

},ucmym./ = (s J Yy

erFd,’(/Lm-‘} = Jf d(/um)).

s red
So (2) holds for all cliarActeristipfunctions of (khxM )o measurable
2y r
sete Hence (2) holds for/all mon-négative (M« ) measurable
- E ”
simple functions. DNow let £ %e /any non=negative (Lbrolh Yo measurable
function. By Theorem (2+20) there exists -n increasing sequence of

/ s
non=negative (hx M ) measurable simple functions 5, such that

Sn(x,y) — T(x,y)lat levery: point ofl XY VIE ¢, is associated

with 8. in the same way in which (i) was associated to £, we have
[ ¢ .
(6) A - B 7L DI G R
The monotone convergence theorem (2.25), applied on ( Y, M, V),
:t/n(x) = [(sn) ad — gfde = $(x), for every x € X,

as n - « Hence thie monotone convergence theorem applies again,
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to the integrals in (6), and the first equality (2) is obtained.
The second half of (2) follows by interchanging the roles of x and ye
This completes (a).
If we apply (a) to ff , we see that (b) is true.

i.Ca

-

J|f|d(/uxv') =J((?(i/k = J;l (Y|f|xdy’}d/* = Iq‘c‘l/u < Qo .

To prove c¢), we let

i

Y00 - fY (£ -y

Ll

f (f")xdl} L

W (x)
9, Y

From (a) we obtain [?1 ?}L ~ ‘ p* dﬁfk\ J), and

XXy

| 9,00 = [

X %y

: : - .
Since £ & LY+ ¥ )Yy Twe have 81 12T Iﬁ(/u.*ﬁ),

| i @1d/L and E-?zﬁfx are finite

| :Fq and ?? are Tinite a.e.

— (.f‘+)X , (£7) e L'(¥) for almost all x & X.
=¢=—9 fx & L1(Q) Tor almost all x & ¥,

Since for all x for which %1’ %2 are finite and at any such x,

we have

K%(x) = ?1(x) - ?2(x) for almost all x e ¥,
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P } Padma = ) PodMr < ¥ @
Hence P e L"(/LL) 5
/
Similarly, we can show that fye L"}A) for almost all y € Y and

Y e VD).

Now (2) holds. In fact that,

,. -
[gr = Lgrom - oo 7?;)*)

1

= 2 1= \N"mnﬂ

= {I(f)d;l d/-k-l{f(f)xdv;d/x

= ( f d(uv:)})- ] fTa(mxy) = J £ a( -UH})
xxy A/ X x T 7 Ix Y i

and

)

£ d(,M )= ){ £2aGax) = [ ? }f(f*)yd/«j ay) - ].i I(f‘)yd/u"g ay
' Y X / v X .

R Y Rt v
o g S T a/
{!1 .JWZH JU'J
i
H fdy) = ] S atiry ) 2 wa/
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The éf-ﬁpaces.

Let x = (11,..., xn) e »" , where R" is Fuclidean n-dimensional
space, with Lebesgue measure dx = dxq... dxn o If f(x) is a
measurable function defiged a.e. on a set S C Rn, we consider the
integral

ot @ |
g flx)dx ) f(x1,... xn) dx1... dxn .

If we set f(x) = O outside 3, We may write the integral as

fn f(x)dx 7= If(x)dx
R

where the domain of integratioan is understood to be the entire space Pn.

2.44 Definition. If O < Ppeeo and 1if f is a measurable function

on R", definc
, 1/
= P »
Ifﬂp = {{[f] dx k
and let LP = LP(8%) consist of all (equivalence classes of)

measurable functions for which pflp<'cn » We call “fl]p

The Lp- norm of f.

2.45 Definition. Suppose g : X —3 P,®] is a measurable function.

Let S be the set of all real ¥ such that

If s=¢g ,put b= « IfS#ZP , put b = inf S.
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e
B -1 ) y = 1 o .
3ince g ((¢,=1) = \y = 1(('M;,'-L‘J), and since the union of
n=1

a countable collection of sets of measure zero has measure zero,

we see that b € 8. Vie call b the essential suppremum of g.

If f is a measurable function on Hn, we define Yy fli, to be
<L
the essential supremum of | f(|, and we let L (R™) consist of all f

for which nfh_ < < .

2.46 Theorem. Let p and. g be conjupate exponents, 1< p < «© .
Let £ and ¢ be measurable functions on R, with range in [0, 0],

Then

(1) Jfg ax” g i[fpdx }1/p { [qux i LI

and
47

4

— = 1/ 1/
Pig Zlfpdx (7 {{gpdx I

P
(2) i{mg) ax g

The inequality 1) is Holder‘'sy7 ((2) is Minkowski's. If

p=gq=2, (1) is known as the Schwarz inegquality.

Proof : Let A4 and B be the two factors on the right of (1) If A = O,

then £ = 0 a.e.; hence fg = 0 a.e., so (1) holds. If A > O and

v
I

o , (1) is again triviosl. So we need consider only the case

0< A{ox , 0 ¢« DB<W o Put

(3) F =

FE

This igives

(4) FY dx = JG“ dx = 4
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If x = ¥ is such that O < P(x)< © and 0O < G(x)< o> , there are

roal numbers 8 and t such that

(x) i () s 1,
rix = @ = Gilx) = @ = 3ince = + — =1
1 1 P q )

the convexity of the expeonential function implies that

s/ + t/

e T g 7% aTe .
It follows that
(5) F(x) c(x) <« p"1 F(x)p - q-1 G(x)? for every x € X.
Integration of (5) yields
(6) [ FG Ax/ / & p-1+ q-1 = 1,

by (4); inserting (3) into (6)y we pbtain (1).

To prove (2), we write
= -1
(f+E)p = f‘ff+g)p . +g (f+g)p .

By Holder's ineguality,

1/ 4 1/
P iJ(f+g)(P“1)qu § LI

r ™ il
(7) jf (f—c-g:)l"-"1 dx < i]fldx 3

Then we can write

L1/, 1/
(8) {g (f+g)p'1 dx £ i[gpdx g P i{(f+g)(p-1)q dx% 9 3

Since (p=1)a = p , addition of (7) and (8) gives

1
/o7

J L]

£ . , 1/ 1/
(f+g)tax « i'(f+g)pdx } a [iffpdx ﬁ Py fjgpﬂx 1

(9)
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Clearly, it is cnough to prove (2) in the case that the left

side is greater than 0 and the right side is less than oo « The

convexity of the function t? for 0 ¢t < @ shows that
gy ¥ 1 v P
(=52) ¢ 3 (% g) -

Hence the left side of (2) is less than @ , and (2) is less than
1/

and (2) follows from (9) if we divide by éi(f+g)pdk é 4 , and use

the fact that 1 - % = = o Thi&/gompletes the proof.

247 Theorem, If p and q are conjugate exponents, 1 ¢ p € < , and

if fe LY and g € 1LY thén £ ¢ LY, and

(1) i feh,/ « uff!-m:::.q .

Y, D
Proof : For 1 < p < < /, (1) 45 sirply Hdlder's inequality applied
to |f| and | gt{. Indact

1/ 1/

pajiz-':iqdf{} !

it £k, ]1f;3;ldx < gfl-fl}pdx t

]

Hfllpils:uq <) V) 98 £l

If p=a@@ , then
(2) J£(x) g(x)| < “f"oo | 5(x)] for almost all x ;
integrating (2), we obtain
ﬂfgh1 £ 5!f.%ough1 < w0 .

If p=1, then q = ¢g» , and the same argument applies.
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2.48 Definition; 1 = i (R™) ( 1¢p<¢ ®) is the space

of »11 vertor functions g are defined by

E;(K:) = (g,}(X}”--.;“n(x)) where E:i (] Lp(Rn)g
\fi. = 1y2ye0090y and the norm is
1
_ . P, . ! D P
Iglp - ( (]g1(x)# +.,.+|gn\x)l dax)*® .

2.49 Definition; Let £ and/ g be two functions on "

defined for x| » cy, and et —glx) # 0. The symbols

f(x) =_0e(x)) s, £Bd. = 0(g(x))

mean rcspectively that/ [ £(x)/p(x) —> 0 as |x|—w@, and that
f(x)/3(x) is bounded for x| Aarge enough. The same notation
is used vwhen |x| tends ®o a finitc limit or to ~on . In

particular, an expresSsion is of(1) ~of, 0(1) if it tends to

0 or is bounded, pespectively.

M

.50 Definition;) A Tunction 1 ‘on[a,b) is said to be cof

bounded vorintion on [a,b) if the supremum

o n
Vi = supé}; |f(ak)-f(ak_,i)]. a(:Log-.-.i.an(b} ’
which is taken over nall possible finite sequence Bpreeesd g

is finite. Vub iz called the total variation e¢f f on [a,b).
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