CHAPTER II

NEUTRON DIFFRACTION

II.1 Neutron Source and Neutron Beam

(4)

In 1924 Louis de Broglie postulated that a particle of mass
m travelling with a velocity v has associated with it a wavelength

wiven by the relation

N SS==h (1)
mv

where h is Planck's constant. This relationship was latter verified

by Elsasser(s)

for neutrons. In case of neutrons travelling with a
welocity of 3 km/sec’ the associated wavelength is 1.32 5 and the
corresponding energy is 0.047 eV. This wavelength happens to be just
‘the magnitude desired for the investigation of atomic arrangements of
the atoms making up a crystal. The only other requirement necessary
fpor the atomic structure determination is an intense source of these
particles. Fortunately, in a nuclear reactor, the neutrons emitted from
nuclear fissions and come into equilibrium with the moderator are of
sufficient intensity for diffraction work. The neutrons available
from a swimming pool type reactor may be broadly divided into two
groups: (a) thermal neutrons which have come into equilibrium with

the moderator, and (b) fast neutrons which have not been sufficiently

slowed down by the interaction with the moderator. In a reactor,



the neutron flux distribution is approximately Maxwellian
(-]
with a peak in the range of 1 - 2 A. This range is of the same order
of magnitude as the interatomic distance in a solid. Thus thermal neutrons

can be utilized to study the positions oOf atoms in a solid.

Neutrons for use in diffraction studies must be monochromatic
neutrons, i.e. neutrons having one wavelength or one energy. These
neutrons are obtained by having a well collimated beam from the reactor
inpinge on a suitable plane of a single crystal. The wavelength of the
neutrons reflected from the crystal is determined by the well known
Bragg equation

A =0\ 2 dhkl sin (2)

where © is the Bragg angle, d is the lattice spacing of the crystal
planes used for reflection, and hkl are the Miller indices of the
reflection planes. By suitable choice of the angle €, a beam of neutrons
of any desired wavelength can be separated out by the crystal and'is
.theé available for diffraction experiments. In general, the

" monochromatic” neutron beam will also contain a small amount of second
order contaminating neutrons with a wavelength half of the wavelength

of the desired monochromatic beam. In practice, this second order
" .component should be kept as small as possible. Removal of second order
neutrons by oriented single crystal filters has been studied by

Iyengar et.al.(é).



II.2 Nuclear Scattering by Neutrons

The fundamental scattering body of neutrons in most atoms is
the nucleus and not electrons as in X - ray scattering. The scattering
cross-section of the nucleus is dependent on the scattering amplitude
or scattering length which is defined as b of the nucleus. In neutron
scattering, the scattering amplitude b is constant for each isotope
Id:icb is in contrast to the case of X - ray scattering where the
scattering amplitude is dependent on the atomic form factor of each atom.
The atomic form factor in case of X -ray scattering falls off quite
rapidly with sin 6/ A. . The neutron scattering amplitude can be positive,
negative or complex value and does not increase with atomic number.
The value of b can not be directly calculated at present, but can be
determined by experiment. The scattering amplitude of some atoms are

{?}). Since the scattering amplitude of

listed in Table 1 (from Bacon
atom is independent of atomic number, neutron diffraction technique
can be used for determination of the atomic position of light elements,

and for structural investigations involving distinction between atoms

of neighboring atomic number.



Table I The scattering amplitude of some atoms
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Element Specific nucleus Scattering amplitude b (10 °° em)
H at - 0.378 .
Hz 0.65

Al A127 0.35
Mn Mnss - 0.36
Fe 0.96
Ni - 1.03
ni®® 1.44
ni®° 0.30
ni®? - - 0.87
Ge 0.84
cd 0.38+80.12 i
Pb | : 0.86

U . 0.85



II.3 Dpiffraction of Neutron by Materials

When neutrons are incident on a crystal, the intensities of
diffracted neutrons will depend on the square of the strﬁcture factor
of the unit cell. The structure factor of a unit cell of the crystal
is expressed in the form of

2 2

Py = S bexp2Mi (hx + ky + 1z) (3)

where Fbkf;the structure factor of the diffracted nuetron beam for
the (hkl) reflection, " ; ¢
hkl = the Miller's indices of the reflected plane,
b = the scattering amplitude of atoms in the unit cell,
¥, Y,z = the positions of atoms in the unit cell.
whe suwmation in expression (3) 1s taken over all the atoms in the unit

cell, In the case of compounds the value of b taken for each atomic

worition is, of course, that appropriate to the particular atom situated

s

‘thesxa.

In general, neutron diffraction studies will be made on

' powdered crystalline samples when single crystal is not available.
This method is similar to the Debye = Scherrer method of X-ray
analysis. Important information is obtained because most of the

v materials studied are of high crystallographic symmetry and give
simple diffraction patterns. With a polycrystalline sample there are
two geometrical arrangements which permit a ready comparison of the
experimentally measured intensity with the results of predicted inten-

sities., The two different types of containers for powdered sample are the



flat cassette and the vertical cylindrical tube. The materials used for
container are usually made of metals Witﬁ low scattering amplitude
and negligible absorption such as aluminum or vanadium. In the case of
flat cassette the intensity of the diffracted neutrons is given by

the relation

¥ Bh 3 e ARG R (4)
sin 2 ©
where j = mnumber of co - operating planes for the particular
reflection being measures,
J = linear absorption coeffecient of the sample,
+ = thickness of specimen

F = the structure factor,

e "= the Debye temperature correction factor.

For vertical cylindrical container case, the intensity of diffracted

neutrcm beam is given by the relation

3 ZuuvhInegnae (5)

sin @ sin 2 ©

where Ahkl is the absorption factor and other terms in equationfsj

are the same as those in equation (4).
The vertical cylindrical container is more convenient than the
flat cassette. It is more economical in use of material, which is of
importance considering the relatively large samples needed for neutron

diffraction. With a cylindrical sample it may be possible sometimes to



-
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reduce effects due to preferred orientation by rotating the cylinder
about its vertical axis. The absorption factor for the latter form
will vary very slowly with diffraction angle, and for most materials

can be ignored.

IT.4 Temperature Dependence of the Elastic Scattering

Using the Debye approximation, (which has been successful for

(8) to describe

explaining the specific heats as discussed, by Roberts
the lattice vikrations), Weinstockfg) showed that the coherent scattering

amplitude is reduced by the factor 'e-w, where

2 L2
. 6h sin 6 ¢(x) 1 (6)
- m, k 6 }»2 X 4

Here h is Planck®s constant, Hh is the nuclear mass, k is Boltzmann's
constant, 9::5 tihe Debye temperature of the crystal, x is equal to _6_,
T

T is the aksolute temperature of measurement, and ¢ is a function of

x defined by

é (x) =1fx3d'3 ) (7)
E_.‘xp(‘.'s)-l

The above expression for temperature factor applies strictly

|

to monatomic cubic crystals, but resonable agreement can usually be
~obtained for polyatomic crystals by using a mean value for 6. Values

of 9 for the elements are tabulated in the International Table for

X - Ray Crystallography,Volume 3(10}, and the function exp(-w), and

& (x)/x + % are tabulated in the International Table for X - Ray

Crystallography, Volume 2(11).
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I7.5 Principles of Magnetic Scattering

In addition to its mass, a neutron possesses a spin %, and a

- magnetic moment of 1.9 nuclear magneton. In general the scattering

of neutrons by atoms is ;'nuclear process, but in case of magnetic atoms
there is an additional scattering which occurs from an interaction
between the neutron magnetic moment and the magnetic moment of the atom.

The magnetic moment of atoms occurred in atoms whenever there are

unpaired electrons, such as, transition metals and rare-earth metals.

FPor truve paramagnetic substance the magnetic moments of the
atoms are completely uncoupled to each other and are randomly oriented

(3£ have shown that for randomly

in dirzct¢ion. Halpern and Johnson
oriented paramagnetic ions there will be a differential magnetic
scattering cross~section, and the cross section per atom per unit solid

angle is gtyen by

S (s+1) (%) £ (8)

- .3
mc

2
dq; I

Here S is the spin gquantum number of the scattering atom
¥ is the magnetic moment of the neutron expressed in nuclear
magnetons,
e and m are the electronic charge and mass respectively,
¢ is the velocity of light, and

f is the magnetic form factor.

Since only a few of electrons in orbit in an outer shell of the

atom contribute to the magnetic moment, the magnetic form factor will



™~

fall off more rapidly with angle than does the form factor for X - ray

scattering. For paramagnetic solids where the atomic lons are randomly

. oriented, the magnetic scattering is entirely incoherent and adds to

the background of the powder diffraction pattern.

II.6 Scattering by Antiferromagnetic and Ferromagnetic Materials

In the case of ordered magnetic materials, e.g. antiferromagnetic
and ferromagnetic materials, the magnetic moments of the individual ions
are oriented in a regular manner. In a ferromagnetic substance all the
moments are aligned parallel and point in thé same direction. In an
antiferromagnetic the atoms can be considered to lie on two sublattices
whose spins are oppositely directed. All the atoms lying on one sublattice
have their magnetic moments parallel to a given direction and those on
another sublattice are antiparallel, and magnetic moments on both
sublattices are equal. For ferrimagnetic material the magnetic moments
on the two sublattices are not equal which results in a net magnetic
moment. The differential magnetic scattering cross-section per ordered

atom is given by
) 2
ag, =5 (L8) £ (9)
= 2
m ¢

where g is the magnetic interaction vector defined by
g =€(&-K)-«x (10)

€& is a unit scattering vector normal to the effective reflecting

plane, and K is a unit vector in the direction of the atomic moment.
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The atoms may be regarded as having a magnetic scattering

amplitude which we denote by p, where

2
p=(ex)5f. (11)

Then equation (9) may be rewritten as

B 22
ddm = qp . (12)

In term of the Bohr magneton number of the atomic magnetic moment, the

magnetic scattering amplitude can be expressed as

0.269 M £ X 1072 cm (13)

p

where )AB is the magnitude of the atomic magnetic moment in Bohr magneton.

For unpolarised neutrons, the magnetic and nuclear scattering
are not coherent and the total scattering cross-section dd 1is
2 2
dd = b +qD (14)

which means that the intensities of nuclear and magnetic scattering are

additive.

The total scattered intensity for any reflection plane is
obtained by calculating the total structure factor F for the unit cell.

. The nuclear structure factor Fn is given by
~

F, = ; b_exp 2Mi ghxr +ky + Izr) (14)

and the magnetic structure factor Fm is given by
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- ; . (15
F ;pr exp 211 {hxr + kyr B2 ler (15)

The value of p will be positive or negative for ions of parallel or’
antiparallel spin respectively in an antiferromagnetic material.

For the ordinary non-magnetic atoms in the unit cell p will be zero.
, ; i 2 . . .
The resultant intensity is proportional to F which is given by

F = P + ¢° F; . (16)

2 2 ~2
q = 1-(€/K)° =sin" (17)
where oL is the angle between the scattefing and magnetisation vectors.

Therefore if q2 is known for a particular reflection, the
orientation of the magnetic moment may in principle be determined.
For polycrystalline materials only a mean value of q2 from all
reflection plane of the same form is obtained. Therefore the most
that can be calculated is the orientation of the moments with respect
to the unique axis. If the magnetic moments are directed randomly
with respect to the crystallographic axis, and all the atoms in an
individual domain having parallel moments, the efféctive value of
q2 would be %-. Thus it would be impossible to determine the moment

orientations from measurements on polycrystalline samples using

unpolarised neutrons.

For antiferromagnetic materials if the magnetic unit cell is

the same size as the chemical unit cell, the magnetic diffraction
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peaks will be superimposed on nuclear diffraction peaks, but usually
the magnetic unit cell will be larger than the chemical unit cell and
the magnetic and nuclear diffraction peaks would not be superimposed.
A common practice is to index nuclear and magnetic reflection according
to their own different unit cells. Then the nuclear and magnetic
- reflection occuring at the same angle © will have different indices.
For calculating Fn and Fm, it is usually convenient to evaluate the
two terms by using the number of molecules in the magnetic-unit cell.
The magnetic and nuclear contributions to the diffraction peaks may be
determined by measuring the intensities of diffraction patterns at
above and below the Neel temperature, or compares the intensities of
diffraction lines at low and high angles. At low angles the magnetic
contribution may be large, but there would be rapid fall off in
magnetic contrubution with increasing angle due to the magnetic form

factor. The high-angle . lines have virtually no magnetic component.

In ferromagnetic materials the magnetic and nuclear unit cells
are usually of the same size so that the magnetic and nuclear peaks are
superimposed at the same Bfagg'gngles. The magnetic and nuclear
contributions to the diffraction peaks can be measured by three
methods. The best method is to vary q2. This may be done by applying
a magnetic field sufficiently large to saturate the samples, along
or perpendicular to the scattering vector. In the former case q2 =0,
while in the lattercase q2 = 1. The difference between the two

diffraction patterns would therefore be the magnetic scattering.
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If suitable magnetic fields are not available, measurements may be

made above agd below tﬁe Curie temperature, but this method suffers
from the disadvantage that other parameters may change with temperature,
and corrections have to be épplied. The third method is to compare

the intensities of diffraction peaks at low and high angles. The
disadvantage of th{é method is that intensities-cannot be measured as

accurately at high angle as at low anglé.

II.7 Nuclear Structure Factor of Cubic Laves Phase Compounds.

Laves phase compounds can be divided into two types,i.e. cubic
and hexagonal Laves phase compounds. The hexagonal Laves phase has

the Manz (C 14 type) structure with twelve. atoms per unit cell. The

cubic Laves phase compounds have structure of Mg cu2 type. The'Mg Cu2

(13) (14,15)

structure determined by Friauf has been described by Laves r

7
and by Schulze(ls). This structure belongs to the space group Oh— Fd 3m

and the unit cell contains twenty-four atoms. The formula is A32 in

which the 8 A atoms occupy position (a): 0,0,0,; ¥.%.%; f.c. and

; yizs 5 5 & 7 7.5 7 7 75
the 16 B atoms are in position (d) : E’%’%“ 38’8 8’8’8 388’ f.c.

Each A atom is coordinated to four A atoms at distance of 0.4330 ao and
to twelve B atoms at distance of 0.4146 ao. Fach B atom is coordinated

to six B atoms at 0.3535 ao and to six A atoms at 0.4146 ao.

The investigation of magnetic properties of Laves phase

(17)

compounds had been done by Matthias and Corenzwit
(18) (19)

, Matthiaa and

Bozorth , Matthias et.al. They studied the superconductivity
and ferromagnetism of a number of rare earth compounds. The investiga-

tion of these compounds were done by X - ray diffraction and magnetic

- 001066
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measurement techniques.

For neutron diffraction studies, the square of the structure
factor of cubic Laves phase compounds can be calculated by substituting
the positions of A and B atoms in equation (3). The results for

various planes are shown in Table II.

Table II The square of nuclear structure factor of cubic Laves

phase compound.

hk1 pz
n
111 A\ 2Np. - 5.656 b )%
. A ’ B
2
220 : (8 b))
. 311 2(4b_ + 5.656 b )2
A : B
222 (16'b.)°
\ B
400 (8b. - 16b )°
a B
331 2(4b. - 5.656 b_)°>
: (40, : B
- 2
422 ; (8 bA)
511, 333 2(4p, + 5.656 53)2
-
2
+
440 (8b, + 16 b)
531 2(4b. - 5.656 b_)°
2 a~ 7" B

Here bA and bB are the nuclear scattering amplitude of atom A and

atom B respectively.
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