$$
\text { ON }(p, q ; 2)-\text { COLORING OF } K_{n}
$$

4.0 Introduction

In this chapter some structures of ($p, q ; 2$)- coloring of K_{n} are derived for later uses. A method for constructing a (p,q; 2)coloring of K_{n} will be discussed.
4.1 Some Structural Theorems for ($p, q ; 2$)-Coloring of K_{n}
4.1.1 Theorem Let $\left.(S, \mathbb{P}),\left(S, \mathbb{L}_{2}\right)\right)$ be a $(p, q ; 2)$-chromatic graph. For any point $v_{0} \in S$ let X bethe set of all points of $\left(\left(S, E_{1}\right),\left(S, \mathbb{F}_{2}\right)\right)$ which are joined to v_{0} by red lines, and Y be the set of all points of $\left(\left(S, E_{1}\right),\left(S, E_{2}\right)\right)$ which are joined to V_{0} by blue lines, i.e.

$$
X=\left\{v / v \in S,\left\{v, v_{0}\right\} \in \mathbb{E}_{1}\right\} \text {, and } Y=\left\{v / v \in S,\left\{v, v_{0}\right\} \in \mathbb{E}_{2}\right\}
$$

Let $\mathcal{Y}=\left(\left(X, \mathrm{E}_{1}^{\prime}\right),\left(\mathrm{X}, \mathrm{E}_{2}^{\prime}\right)\right), \mathrm{y}^{\prime}=\left(\left(\mathrm{Y}, \mathrm{E}_{1}^{\prime}\right),\left(\mathrm{Y}, \mathrm{E}_{2}^{\prime \prime}\right)\right)$ be the chromatic subgraphs of $\left(\left(S, E_{1}\right),\left(S, E_{2}\right)\right)$ induced by X and Y, respectively. Let n, x, y denote the numbers of points of S, X, Y, respectively. Then
(1) \mathcal{K} is a $(p-1, q ; 2)$-chromatic subgraph of $\left(\left(S, E_{1}\right),\left(S, E_{2}\right)\right)$,
(2) y is a $(p, q-1 ; 2)$-chromatic subgraph of $\left(\left(S, \mathbb{E}_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$,
and
(3) $x+y+1=n$.

Proof : First, we shall show that f is a $(p-1, q ; 2)$-chromatic subgraph of $\left(\left(S, \mathbb{E}_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$. Suppose that there exists a $(p-1)$-subset of X which forms a red $K_{(p-1)}$ in \notin. Thus this $(p-1)$-subset together
with r_{0} will give a p-subset of S which forms a red K_{p} in $\left(\left(S_{1}, \mathbb{E}_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$, which contradicts to hypothesis. Hence there does not exist a (p-1)subset of X which forms a red $K_{(p-1)}$ in the chromatic subgraph \mathcal{H}. Since there does not exist a q-subset of S which forms a blue K_{q} in $\left(\left(S, E_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$. Thus there does not exist a q-subset of X which forms a blue K_{q} in the chromatic subgraph \mathfrak{H}. Therefore, a coloring of the chromatic subgraph \mathcal{H} of $\left(\left(S, E_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$ is a $(p-1, q ; 2)$-coloring. Hence
$*$ is a $(p-1, q ; 2)$-chromatic subgraph of $\left(\left(S, E_{1}\right),\left(S, \mathbb{F}_{2}\right)\right)$.
Next, we shall show that is a $(p, q-1 ; 2)$-chromatic subgraph of $\left(\left(S, \mathbb{I}_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$. Suppose that there exists a $(\mathrm{q}-1)$-subset of Y which forms a blue $K_{(q-1)}$ in y, qhus this ($q-1$)-subset together with v_{0} will give a q-subset of S which forms a blue K_{q} in $\left(\left(S, \mathbb{E}_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$, which contradicts to hypothesis. Hence there does not exist a(q-1)subset of Y which forms a blue $K(q-1)$ in the chromatic subgraph Y_{0}. Since there does not exist a p-subset of S which forms a red K_{p} in $\left(\left(S, \mathbb{E}_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$. Thus there does not exist a p-subset of Y which forms a red K_{p} in the chromatic subgraph y. Therefore, a coloring of the chromatic subgraph y is a $(p, q-1 ; 2)$-coloring. Hence y is a $(p, q-1 ; 2)$-chromatic subgraph of $\left(\left(S, E_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$. It is clear that $x+y+1=n$.
4.1.2 Remark From Theorem 4.1.1 we may conclude that a(p,q;2)chromatic graph with n points exists, then it must contain chromatic subgraphs $\frac{14}{}$, with x, y points, respectively, where
(1) f^{i} is a $(p-1, q ; 2)$-chromatic subgraph,
(2) y is a $(p, q-1 ; 2)$-chromatic subgraph, and
(3) $x+y+1=n$.

This fact can be used as a basis for constructing a ($p, q ; 2$)-coloring of K_{n} as follows:
(1) Determine all positive integers x, y such that

$$
\begin{aligned}
& x+y+1=n \\
& x \leqslant \mathbb{N}(p-1, q ; 2)-1 \\
& y \leqslant \mathbb{N}(p, q-1 ; 2)-1
\end{aligned}
$$

(2) Construct $(p-1, q ; 2)$-chromatic subgraph \neq with x points and ($p, q-1 ; 2$)-chromatic subgraph y with y points.
(3) Construct the complete graph K_{n} by taking the points of \hat{k}, y and an extra point v_{0} as points of K_{n}. Let the lines of the chromatic subgraphs \notin, have the original coloring. Let each line from v_{0} to points of H be colored red and each line from v_{0} to points of l be colored blue.

Then we try to color the lines joining \mathcal{X} and y, one at a time, in such a way that no red K_{p} or blue K_{q} occurs as a subgraph of K_{n}.

This method of constructing $(p, q ; 2)$-coloring K_{n} is rather cumbersome for large values of n. H Hover, when n is not so large, this method give us all non-isomorphic $(p, q ; 2)$-colorings of K_{n}.

As an illustration, let us apply the above method to obtain all $(3,3 ; 2)$-colorings of K_{5}.

First, we look for positive integers x, y such that $x \leqslant N(2,3 ; 2)-1, \quad y \leqslant \mathbb{N}(3,2 ; 2)-1, \quad$ and $x+y+1=5$. Since $N(2,3 ; 2)=\mathbb{N}(3,2 ; 2)=3$, thus $x=2, y=2$. Hence 解, 在 which are chromatic graphs with 2 points is the only possibility. Next, we colon H, y so that t is a $(2,3 ; 2)$-chromatic graph and y is a $(3,2 ; 2)$ chromatic graph. The only possible colorings of K and y are shown below.

Fig. 4.1

In our diagrams red lines will be represented by heavy lines and blue lines will be represented by dotted lines. Since v_{0} is joined to points of A by red lines and joined to points of y by blue lines. Hence in our $(3,3 ; 2)$-coloring of K_{5} the coloring of the lines $\left\{\mathrm{v}_{1}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{2}, \mathrm{v}_{4}\right\},\left\{\mathrm{v}_{0}, \mathrm{v}_{1}\right\},\left\{\mathrm{v}_{0}, \mathrm{v}_{3}\right\},\left\{\mathrm{v}_{0}, \mathrm{v}_{2}\right\},\left\{\mathrm{v}_{0}, \mathrm{v}_{4}\right\}$ must be shown in the following figure.

Fig. 4.2.

There are two possibilities for coloring the line $\left\{v_{1}, v_{2}\right\}$,

Case I : The line $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}\right\}$ is colored red :

Fig. 4.3

If $\left\{\mathrm{v}_{1}, v_{4}\right\}$ is a red line, then $\left\{V_{1}, v_{2}, v_{4}\right\}$ is a red triangle. Hence $\left\{v_{1}, v_{4}\right\}$ can not be red. Therefore, $\left\{v_{1}, v_{4}\right\}$ must be blue line :

CHULALONGKOR, UNIVERSITY

By a similar argument, it follows that $\left\{v_{3}, v_{4}\right\}$ must be red line :

Finally, we see that the line $\left\{v_{2}, v_{3}\right\}$ must be blue. Hence the coloring of K_{5} must be as shown in the following Fig. 4.6.

In fact, this is a $(3,3 ; 2)-$ colorins of K_{5}.

Case II : The line $\left\{\sigma_{1}, v_{2}\right\}$ is blue:

By arguments similar to Case I, we obtain a coloring of K_{5} as shown in the following Fig. 4.8

This is also a $(3,3 ; 2)$-coloring of K_{5}. However, it can be seen to be isomorphic to the (3,3;2)-coloring obtained in Case I. Hence there is a unique $(3,3 ; 2)$-coloring of K_{5}.

By applying the method illustrated above to obtain all (3,4;2)colorings of K_{8} we obtain 3 non-isomorphic (3,$4 ; 2$)-colorings of K_{8}. We state this result in the following.
4.1.3 Lemma Let $\left(\left(S, E_{1}\right),\left(S, E_{2}\right)\right)$ be a $(3,4 ; 2)$-coloring of K_{8} where S consists of 8 points. Then (, , 1) must be isomorphic to one of the colorings shown as Gy, G_{3} in Fig. 4.9. By counting the lines of G_{1}, G_{2}, G_{3} we see that (S, \mathbb{E}_{1}) must have at most 12 lines.

Observe that if $\left(S, ⿷_{1}\right)$ is isomorphic to G_{1} in Fig. 4.9, then (S, \mathbb{E}_{2}) must be isomorphic to G_{4} in Fig. 4.9 , the complement of G_{1}. Using this fact together with Lemma 4.1 .3 we have
4.1.4 Corollary Let $\left(\left(s, T_{1}\right),\left(s, F_{2}\right)\right)$ be as in Lemma 4.1.3. Then $\left(S, E_{2}\right)$ must be isomorphic to one of the graphs G_{4}, G_{5}, G_{6} in Fig. 4.9. จุฬาลงกรณ์มหาวิทยาลัย

Fig. 4.9
4.1.5 Remark Observe that if $\left(\left(S, E_{1}\right),\left(S, \mathbb{E}_{2}\right)\right)$ is a $(4,3 ; 2)$-coloring of K_{8}, then $\left(\left(S: \mathbb{E}_{2}\right),\left(S, \mathbb{E}_{1}\right)\right)$ is a $(3,4 ; 2)$-coloring of K_{8}. Hence $\left(S, \mathbb{E}_{1}\right)$ must be isomorphic to G_{4} or G_{5} or G_{6} in Fig.4.9. By counting the lines of G_{4}, G_{5}, G_{6} we can conclude that (S, \mathbb{E}_{1}) must, have at least 16 lines.
4.1.6 Theorem Let $\left(\left(S, \mathbb{E}_{1}\right),\left(S, E_{2}\right)\right)$ be a $(4,4 ; 2)$-chromatic K_{17} where S consists of 17 points. Let $x, y, X, Y, \not \neq\left(\left(X, E_{1}^{\prime}\right),\left(X, E_{2}^{\prime}\right)\right)$, $y=\left(\left(Y, \mathbb{E}_{1}^{\prime}\right),\left(Y, \mathbb{E}_{2}^{\prime \prime}\right)\right)$ be as in Theorem 4.1.1. Then $x=y=8$, and $\left(X, \mathbb{E}_{1}^{\prime}\right)$ must be isomorphic to G_{3} in Fig. 4.9.

Proof: By Theorem 4.7.1, \#is a $(3,4 ; 2)$-chromatic subgraph of $\left(\left(S, E_{1}\right),\left(S, E_{2}\right)\right), Y$ is of $(4,3 ; 2)$-chromatic subgraph of $\left(\left(S, \mathbb{E}_{1}\right),\left(S, E_{2}\right)\right)$ and $x+y+1=17$. Thus $x \leqslant N(3,4 ; 2)-1, y \leqslant \mathbb{N}(4,3 ; 2)-1$. Since $\mathbb{N}(3,4 ; 2)=\mathbb{N}(4,3 ; 2)=9$, hence $x=y=8$. From this, it follows that V_{0} is incident with 8 red lines. Since $)_{0}$ is arbitrary, hence every point of S is incident with 8 red lines. Assume that " has red lines. Therefore, there are 8.8 - 2. .r redllines from X to the points outside K . Among these lines, 8 l of them are the lines joined to V_{O}. Thus there are $8.8-2 r-8$ red lines from t to y. Since every point of Y is incident with 8 red lines. Therefore, $\left(Y, E_{1}^{\prime \prime}\right)$ has [$8.8-(8.8-2 . r-8)] / 2$ red lines. By Remark 4.1.5, $\left(Y, \mathbb{E}_{1}^{\prime \prime}\right)$ has at least 16 red lines. Hence we have $[8.8-(8.8-2 . r-8)] / 2 \geq 16$. Thus $r \geqslant 12$. By Lerma 4.1.3, $\left(X, \mathbb{E}_{1}^{\prime}\right)$ has at most 12 red lines. Hence $\left(X, E_{1}^{\prime}\right)$ has exactly 12 red lines. Thus $\left(X, E_{1}^{\prime}\right)$ is isomorphic to G_{3} in Fig.4.9.
4.1.7 Theorem Let G_{3}, G_{4} be as shown in Fig. 4.9. Then G_{4} contains no subgraph isomorphic to G_{3}.

Proof : Suppose that six lines can be removed from G_{4} to obtain a graph isomorphic to G_{3}. Now G_{3} does not contain a triangle or an independent set of four points, furthermore every point of G_{3} has degree 3. By Remark 3.1., the six lines must be removed from G_{4} in such a way that in the resulting graph there does not exist a triangle or an independent set of four points and every point has degree 3.

For convenience, we denote the lines $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}$, $\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\}:\left\{v_{5}, v_{6}\right\},\left\{v_{6}, v_{7}\right\},\left\{v_{7}, v_{8}\right\},\left\{v_{8}, v_{1}\right\},\left\{v_{1}, v_{3}\right\}$, $\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{5}, v_{7}\right\},\left\{v_{6}, v_{8}\right\},\left\{v_{7}, v_{1}\right\},\left\{v_{8}, v_{2}\right\}$, $\left\{v_{1}, v_{5}\right\}$ and $\left\{v_{2}, v_{6}\right\}$ of G_{4} by $p_{1}, p_{2}, \ldots, p_{8}, s_{1}, s_{2}, \ldots, a_{8}, d_{1}$ and d_{2}, respectively (see Fig. 4.10 below).

Fig. 4.10

First, let us suppose that the lines d_{1}, d_{2} are among the six lines removed from G_{4}. Then we obtain the graph G_{6} as show in Fig.4.11.

The other four lines must bo removed from G_{6} to obtain G_{3}.
Suppose further that the line s, can be among the four lines removed from G_{6}. Thus we have the graph as in Fig. 4. 12.

Fig. 4.12

We see that the point v_{7} has degree 3 , so the lines s_{5}, p_{6}, p_{7} can not be removed. In order that no triangle occurs in the resulting erarh, the lines p_{5}, s_{6} must be removed. But, if these lines are removed, the resulting graph (see Fig. 4.13 below) contains a point of do res 2 .

Hence the line s_{7} can not be among the removed lines. The same argument shows that none of the lines s_{i} can be among the removed lines.

If both of the lines p_{1} and p_{2} are removed from G_{6}, the resulting graph (see Fig. 4.74 below) contains a point of degree 2.

Fig. 4.14

Hence the lines p_{1} and p_{2} can not be both removed from G_{6}. Similary, we can show that no pain of adjacent lines p's can be both removed from G_{6}. So the only possibilities are that $p_{1}, p_{3}, p_{5}, p_{7}$ or $p_{2}, p_{4}, p_{6}, p_{8}$ are the four removed lines.

If the lines $p_{1}, p_{3}, p_{5}, p_{7}$ are the four lines removed from G_{6}, the resulting graph (see Fig. 4.15 below) contains an independent set of four points. $\left\{v_{3}, v_{4}, v_{7}, v_{8}\right\}$ is such a set.

Hence the lines $p_{1}, p_{3}, p_{5}, p_{7}$ can not be the four removed lines. Similary, we can show that the lines $p_{2}, p_{4}, p_{6}, p_{8}$ can not be the four removed lines. HULALONGKORN UNIVERSITY

The above argument shows that not both of the lines d_{1}, d_{2} can be among the removed lines. So at most one of di can be among the six removed lines.

Suppose that the line d_{2} is removed from G_{4}. Thus we obtain the graph G_{5} as shown in Fig.4.16.

In order that no triangle occurs, the line s_{5} or s_{7} must be removed. If the line s_{7} is removed. Thus we obtain the graph as shown in Fig. 4.17

Fig. 4.17

We see that the point v_{7} has degree 3 , so the lines s_{5}, p_{6}, p_{7} can not be removed. In order that no triangle occurs in the resulting graph, the lines p_{5}, s_{6} must be removed. But, if these lines are
removed, the resulting graph (see Fig.4.18) contains a point of degree 2.

Hence the line sp can not be removed. The same argument shows that the line s_{5} can not be removed. In order that no triangle occurs in the resulting graph the line d_{1} must be removed, which is a contradiction. Therefore, the line α_{2} can not be removed from G_{4}. Similary, we can show that the line d_{1} can not be removed from G_{4}. Hence none of the lines d_{i} can be among the removed lines. So the other six lines are removed from G_{4}.

Suppose that the line sf is among the six lines removed from G_{4}. Thus we obtain the graph as shown in Fig. 4.19

Fig. 4.19

We see that the point v_{8} has degree 3 , so the line s_{6}, p_{7}, p_{8} can not be removed. In order that no triangle occurs in the resulting graph, the lines p_{6}, s_{7} must be removed. But, if these lines are removed, the resulting graph (see Fig. 4.20) contains a point of degree 2.

Fig. 4.20

Hence the line s_{8} can not be among the removed lines. The same argument shows that the lines s_{1}, s_{4}, s_{5} can not be among the removed lines.

Since d_{2} and s_{8} can not be among the removed lines, hence s_{6} must be among the removed lines. Otherwise d_{2}, s_{8} and s_{6} would form a triangle. By the same reasoning we can conclude that s_{2}, s_{3}, s_{7} must be removed. Thus we have the graph as shown in Fig. 4.21.

We see that each of the points $v_{3}, v_{4}, v_{7}, v_{8}$ has degree 3 . So no more lines which are incident with the points $v_{3}, v_{4}, v_{7}, v_{8}$ can be removed. In order that no triangle occurs in the resulting graph, the lines p_{1}, p_{5} must becremoved. But, if these lines are removed, the resulting graph (see Fig. 4.22) contains an independent set of four points. $\left\{v_{1}, v_{2}, v_{4}, v_{7}\right\}$ is such a set

Fig. 4.22

Hence no six lines can be removed from G_{4} to obtain a graph isomorphic to G_{3}. Therefore, G_{4} contains no subgraph isomorphic to G_{3}.
Q.E.D.

จุฬาลงกรณ์มหาวิทยาลัย

