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17u-ethynylestradiol (EE2), a synthetic estrogen, is a key ingredient in oral 
contraceptives pill. EE2 is reported as an endocrine disruptor, high in estrogenicity. Recent 
studies on the occurrence of pharmaceutical compounds in environments suggested the 
existence of EE2 in receiving water. Although previous studies suggested that EE2 persist in 
contact with activated sludge, more recent studies showed that EE2 can be degraded by 
ammonia-oxidizing bacteria (AOB) via co-metabolism. Nevertheless, all of the studies so far 
involved in only AOB enriched under high ammonium loads. The question still arises about 
whether AOB in municipal wastewater treatment systems (WWTS), as a potential reservoir for 
estrogens, which receive much lower ammonium loads than in the previous studies can degrade 
EE2. As a result, this study aimed to investigate the degradation of EE2 by nitrifying activated 
sludge (NAS) containing different AOB communities and factors affecting the degradation of 
EE2 by NAS (AOB communities, ammonia oxidation, and other organic matters). To develop 
NAS containing different AOB communities, sludge taken from a municipal wastewater 
treatment system was enriched in three reactors receiving inorganic medium containing 
different ammonium concentrations of2, 10 and 30 mM. Community of AOB in each NAS was 
analyzed using specific Polymersase Chain Reaction amplification followed by Denaturing Gel 
Gradient Elecrophoresis and sequencing of 16S rRNA genes or amoA genes. The results 
showed that AOB community in each reactor differed depending on the ammonium load 
supplied. Predominant AOB species in the seed sludge related to Nitrosomonas communis 
cluster and Nitrosomonas oligotropha cluster, while that of NAS from 2 mM reactor related to 
Nitrosomonas communis cluster and that from 10 mM reactor related to unknown 
Nitrosomonas cluster, which was related closely to the strain Nitrosomonas sp. 15343 
previously found in municipal, oil industry, and brewery WWTS. Whereas, that from 30 mM 
reactor related to Nitrosomonas europaea -Nitrosococcus mobilis cluster. Degradation studies 
suggested that EE2 can be degraded by all NAS under all different initial ammonium 
concentrations of 2, 10, and 30 mM. However, the degradation patterns varied among NAS. 
This result suggested that enzyme induction, enzyme expression, and enzyme activity may 
differ among AOB communities, and thus among distinct AOB species. Initial ammonium 
concentrations also affected the degradation of EE2. The results showed that the higher the 
initial ammonium concentration, more EE2 can be degraded. However, the amount of ammonia 
oxidized was not proportional to the amount of EE2 degraded. Study on the competition effect 
of other organic compounds on EE2 degradation showed that estradiol (E2), that have similar 
structure to EE2, competed the degradation of EE2, whereas organic compounds in canteen 
wastewater did not. The major fmding of this study is that AOB found in municipal WWTS can 
degrade EE2. This will lead to the new means of treatment technology in removing EE2 and 
also other persistent organic compounds in wastewater using AOB. , 
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CHAPTER I 

 

INTRODUCTION 

 
1.1 Background and motivation  

Estrogens are predominantly female hormones, which are important for 

maintaining health of reproductive tissues, breasts, skin and brain. Human and 

animals release of estrogens is widespread concern for endocrine disruptor which 

interfere the endocrine and reproductive function in human and living organisms. For 

example, as low as nanogram per litter of EE2 can cause decreasing in sperm count 

and increasing in incident to testicular cancer and male fertilizer disorder (Perdom et 

al., 1994). In addition, estrogens can induce vitellogenin synthesis in some fish 

(Routledge et al., 1998). Estrogens can be divided into two groups: natural estrogens 

and synthetic estrogens. Natural estrogens consisting of estrone (E1), 17α-estradiol 

(E2), and estriol (E3) are produced by living organism body and synthetic estrogen, 

17α-ethynylestradiol (EE2), is a key ingredient in oral contraceptives pill (Ying et al., 

2002). Estrogens can be released to the environments by excretion of humans and 

animals through their urine and feces, most of which flows into wastewater treatment 

systems (WWTS). In humans and animals estrogens undergo various transformations 

mainly in the liver and are excreted to the final conjugation with glucuronic acid or 

sulphates. Municipal WWTS are an important facility that markedly reduces the 

concentrations of estrogens. Removal efficiencies of estrogens by activated sludge 

treatment range from 61% to 89% for E1, 87 % and 99% for E2 and 80% to 85% for 

EE2 (Ternes et al., 1999a; Baronti et al., 2000). These results correspond to the study 

of degradation of natural estrogens in batch experiment but are in contrast to that of 

synthetic estrogen. In batch experiment with activated sludge, 1 μg/l of E2 was 

oxidized to E1, and then E1 was eliminated; whereas, 1μg/l of EE2 appeared to be 

mainly stable in contact with activated sludge (Ternes et al., 1999a). Regarding EE2, 

nitrifying activated sludge (NAS) in high ammonium concentration could degrade 

EE2 at an initial concentration of 50 μg/l within 6 days (Vader et al., 2000). These 

results allow the conclusion that NAS, consisting of heterotrophic and ammonia-

oxidizing bacteria (AOB), is able to degrade EE2. By using inhibitor for ammonia 

monooxygenase, which is the key enzyme for ammonia oxidation by AOB more 
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recent publication suggested that in NAS, natural estrogens (E1, E2, and E3) were 

degraded by heterotrophic bacteria whereas EE2 was degraded by AOB (Shi et al., 

2004). In general, physiological properties of AOB differ among distinct AOB 

species. This reflects the distribution pattern of AOB in the environments. For 

example, N. europaea-Nc. mobilis cluster, as the AOB with low affinity to ammonia, 

predominate in the environments high in ammonia, whereas N. communis cluster as 

the AOB with moderate affinity to free ammonia (Ks, 14 to 43 μM) and N. 

oligotropha cluster and Nitrosospira cluster, as the AOB with high affinity to 

ammonia, dominate in the environments low in ammonia (Limpiyakorn et al., 2005). 

Regarding EE2, although AOB in NAS have been proven for their ability to eliminate 

EE2, the question still arise about whether AOB in municipal WWTS, as a potential 

reservoir for estrogens, can degrade EE2 or not, since all studies so far concerning to 

the degradation of EE2 by NAS dealed with high ammonia enriching cultures which 

possible possess only N. europaea-Nc. mobilis cluster instead of N. communis cluster, 

N. oligotropha cluster and Nitrosospira cluster, the dominant AOB found in 

municipal WWTS. As ammonia in wastewater is the most important factor in the 

inclusion of AOB in WWTS, in order to apply NAS to remove EE2 from wastewater, 

it is necessary to understand how different AOB in WWTS degrade EE2. 

Consequently, this study investigated the degradation of EE2 by NAS containing 

different AOB communities and clarified factors, which consists of species of AOB, 

ammonia oxidation, and organic matter, affecting the degradation of EE2 by NAS. 

 

1.2 Objectives 

This study focuses mainly on degradation of EE2 by NAS containing different 

AOB communities. The objectives of this study are as follows: 

1. To analyze community of AOB in NAS. 

2. To study degradation of EE2 by NAS containing different AOB communities. 

3. To investigate effect of ammonia oxidation on degradation of EE2 by NAS 

containing different AOB communities.  

4. To observe competition effect of other organic compounds on degradation of EE2 

by NAS. 
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1.3 Hypotheses 

1. Different AOB degrade EE2 differently.  

2. Degradation of EE2 depends on ammonia oxidation. 

3. Other organic matters can deteriorate degradation of EE2 by AOB. 

4.  AOB belonging to N. communis cluster, N. oligotropha cluster and Nitrosospira 

cluster degrades EE2 in municipal wastewater treatment system.  

 

1.4 Scope of the study 

1. The study was focused on EE2 which is a synthetic estrogen. 

2. Seed sludge was taken from an aeration tank of a municipal wastewater treatment 

system. 

3. NAS was enriched in laboratory-scale continuous-flow reactor. 

4. Degradation study was carried out in laboratory-scale batch test. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER II 

 

LITERATURE REVIEW 
 

 Estrogens are steroid hormone that produces from ovary grand in female of 

living organism. In mammal body, estrogens are very important because they control 

the second sex characteristic and reproductive system. When estrogens are excreted 

out of the living organism they become high potential compound or so called 

“endocrine disruptor”. Although, they can be degraded by microorganisms, the 

estrogenic potential of them are in the range of nanogram level. The characterization 

of estrogens and related literature are described as following. 

 

2.1 Steroid hormone  

A steroid is a lipid characterized by a carbon skeleton with four combined 

rings. All steroids are derived from the cholesterol or the acetyl CoA biosynthetic 

pathway. Different steroids vary in the functional groups attached to these rings. 

Some of the common categories of steroids include: 

 a. Anabolic steroids are a class of steroids that interact with androgen 

receptors to increase muscle and bone synthesis. There are natural and synthetic 

anabolic steroids. There are the steroids used by athletes to increase performance. 

 b. Corticosteroids include glucocorticoid and mineralocorticoids 

  - Glucocorticoids regulate many aspects of metabolism and immune 

function, and are often prescribed by doctors to reduce inflammatory condition like 

asthma and arthritis.  

  - Mineralocorticoids are corticosteroids that help maintain blood 

volume and control renal excretion of electrolytes.  

 c. Sex steroids are a subset of sex hormones that produce sex differences or 

support reproduction. They include androgens, estrogens and progestagens 

 d. Phytosterols are steroids naturally occurring in plants 

 e. Ergosterols are steroids occurring in fungi. These includes some vitamin D 

supplements 
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2.2 Estrogen Hormones 

2.2.1 Type of estrogens 

Estrogens are female hormone that controls the second sex characteristic of 

female. Estrogens can be divided into two groups which are natural estrogens and 

synthetic estrogens. Natural estrogens are naturally produced in living organism body 

including human and animals. Natural estrogens consist of estrone (E1), estradiol (E2) 

and estriol (E3). The systematic IUPAC name of E1, E2, E3 and EE2 are 3-

hydroxyestra-1,3,5[10]-trien-17-one, 1,3,5[10]-estratriene-3,17β-diol, 1,3,5[10]-

estratriene-3,16α,17β-triol, and 17α-ethnyl-1,3,5[10]-oestratriene-3,17β-diol 

respectively. Synthetic estrogens are normally used as ingredient of contraceptive pill 

for birth control. Moreover, synthetic estrogens used to treat menopausal woman who 

suffer from lack of hormone as hormone therapy. Synthetic estrogens comprise 17α-

ethynylestradiol (EE2) and mestranol (MeEE2).  

 

2.2.2 Structures of estrogens 

 Natural and synthetic estrogens have a similar main structure. Estrogens 

consist of 1 aromatic ring at A ring, 2 hexacyclic rings at B and C ring and 1 

pentacyclic at D ring (Figure 2.1). 

 

 
Figure 2.1 Structure of estrogen 

 

 The distinguish parts between them are functional group at C3, C16 and 

C17 positions. E1 has hydroxyl (OH) and ketone (C=O) groups at C3 and C17. E2 has 

hydroxyl (OH) groups at both C3 and C17. Moreover, E2 has two patterns that 

depend on the position of hydroxyl (OH) group at C17. If a hydroxyl group is 

downward from the molecule, it is α configuration. If a hydroxyl group is upward 

from the molecule, it is β configuration (Hanselman, Graetz, and Wilkie, 2003). E3 
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has hydroxyl groups as C3, C16 and C17. EE2 has structure as same as structure of 

E2 except triple bond at C17. Main structure of conjugated estrogens is similar to the 

free form except the functional group at C3 and C17. The former functional groups at 

C3 and C17 are replaced by glucoronide and/or sulfate group. However, conjugated 

form is less concern because the potential of conjugated form is less than the potential 

of free form (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Structure of estrogens 

 

2.2.3 Physicochemical properties of estrogens 

The physicochemical properties of natural and synthetic estrogens in free form 

are shown in Table 2.1. From table, natural estrogens have water solubility about 13 

mg/l at 20 0C while synthetic estrogen has lower water solubility than natural estrogen 

which is about 4.8 mg/l at 20 0C. Moreover, Log Kow of E1, E2, E3 and EE2  is 3.43, 

3.94, 2.81 and 4.15, respectively. According to water solubility and Log Kow values, 

it can be indicated that estrogens are easily to be captured in soil or sediment more 

than to be dissolved in water, especially for EE2. Vapor pressure of E1, E2, E3 and 

EE2 is 2x10-10, 2.3x10-10, 6.7x10-15 and 4.5x10-11 mmHg, respectively. Vapor pressure 

of both natural and synthetic estrogens is significantly low. It indicated that they are 

hardly to vaporize (Lai et al., 2000). There is no information about the conjugated 

estrogens physicochemical properties. However, Hanselman et al. (2003) suggested 

that conjugated estrogens can be dissolved in water more than free form because of 

Estrone (E1) Estradiol (E2) Estriol (E3) 

Ethynylestradiol (EE2) 
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the high polarity of functional group as glucuronide and sulfate.  However, conjugated 

estrogens have been less concerned because they are less estrogenic potential than 

free forms.  

 

Table 2.1 Structures and properties of estrogens  

Substance MW a 
Water solubility 

(mg/l at 20๐) 
Vapor pressure 

(mmHg) 
Log Kow

b 

E1 270.4 13 2.3x10-10 3.43 

E2 272.4 13 2.3x10-10 3.94 

E3 288.4 13 6.7x10-15 2.81 

EE2 296.4 4.8 4.5x10-11 4.15 

Symbols and Abbreviations: a Molecular weight, b Octanol-water partitioning coefficient 

Available from: Lai et al. (2000) 

 

 2.2.4 Forms of estrogens 

 In humans and animals, estrogens undergo various transformations mainly in 

the liver and are excreted through their urine principally as inactive polar conjugate 

such as glucuronides and sulphates. Inactive polar conjugate can re-activate to active 

from (Figure 2.3). This re-formation or de-conjugation of estrogens depends on the 

acid-base properties of the environment and on the possibility of bacterial process. 

Conjugation of E2 and EE2 can occur in the C3 position, in the C17 position and in 

both the C3 and C17 position. E3 conjugate occurs in all the previous positions and can 

occur in the C18 position, as well. Sulphatation can also be expected in all the 

previously cited positions on the molecule. Conjugates possessing both 

Glucuronidation and Sulphatation also exist because the estrogen receptor is an 

unspecific receptor, a response will depend only on de-conjugation in the C3 position 

(Flemming and Bent, 2003). 

 

 

 

 



 

 

8

 
Figure 2.3 De-conjugation of 17β-estradiol (E2) into biological active compounds 

Available from: Flemming and Bent (2003) 

 

2.2.5 Fate of estrogens in environments 

Conjugate and de-conjugate estrogens are forms of estrogens that are found in 

excretion of human and animal through municipal wastewater treatment systems. 

Estrogens excreted in urine or feces are in glucuronides or sulfate conjugated forms 

(Orme, Back, and Breckenridge, 1983; Baronti et al., 2000). The structure of 

conjugated estrogens are similar to those of de-conjugation ones, except for a sulfate 

and/or glucuronides group which is instead of the C3 and /or C17 positions of the 

parent compound (Hanselman et al., 2003). However, the occurrence of free estrogens 

in MTSs effluents and rivers (Baronti et al., 2000; Belfroid et al., 1999; Desbrow et 

al., 1998; Johnson, Belfroid, and Di Corcia, 2000; Ternes et al., 1999) indicate that 

estrogen metabolites are converted back into active forms somewhere between houses 

and municipal wastewater treatment systems outlets. Conjugated estrogens can be 

cleaved to de-conjugated ones by bacteria in the collection system. Escherichia coli 

(E. coli), which is eliminated in large quantities in the feces, is able to synthesize large 

amounts of the β-glucuronidase enzyme. A laboratory biodegradation test confirmed 

that conjugation with glucuronic is readily de-conjugated in unmodified domestic 

wastewater, due to the large amounts of the β-glucuronidase enzyme (D’Ascenzo et 

al., 2003). 
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2.3 Adverse effects of estrogens 

2.3.1 Endocrine disruptors  

Endocrine disruptors are compound that have negative impact to human and 

animal. They can interfere with the normal function of endocrine and reproductive 

system of human and animal. The US Environmental Protection Agency (EPA) 

defines endocrine disruptors as: “An exogenous agent that interferes with the 

synthesis, secretion, transport, binding, action, or elimination of natural hormones in 

the body that are responsible for the maintenance of homeostasis, reproduction, 

development, and/or behavior”. Estrogenic endocrine disruptor compounds consist of 

natural hormones and pharmaceutical estrogens, phytoestrogens, surfactants, 

pesticides and industrial compounds. Although, surfactants, pesticide and industrial 

compounds are not estrogen hormones, they can affect to living organism the same as 

estrogens. They can also interfere with endocrine and reproductive system of human 

and animal. This research only concerns to estrogenic endocrine disruptor compound 

that are natural hormones and pharmaceutical estrogens (Institute of Population 

Health, 2007).  

 

2.3.2 Effects of estrogens on living organisms  

  2.3.2.1 Effect of estrogens on human being 

The intake of estrogens via food or drinking water may be caused 

decreasing of sperm count, increasing of incident of testicular cancer and male 

fertility disorder in human (Sharp and Skakkeback, 1993).  

 

2.3.2.2 Effect of estrogens on aquatic organisms 

When endocrine disruptors enter into environment, they affect on 

living organisms that live near the contaminated environment. Especially, aquatic 

organisms are directly affected by endocrine disruptor because water from wastewater 

treatment plant is discharged into water resources such as river, reservoir, lake, and 

ocean. Aquatic organisms can exposure to endocrine disruptor compounds especially 

natural hormone and pharmaceutical estrogens that remain in effluent of wastewater. 

Estrogen contamination of waterways is concerned because low concentrations (10-

100 ng/l) of estrogens in water can adversely affect the reproductive biology of 

vertebrate species such as fish, turtles, and frogs by disrupting the normal function of 

their endocrine systems (Hanselman et al., 2004). For example 1 ng/l of E2 can lead 
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to the induction of vitellogenin (an egg yolk precursor protein that is normally 

produced only by adult females) in male trout (Desbrow et al., 1998; Jobling et al., 

1998). A laboratory study on the endocrine disrupting potency of EE2 demonstrated 

that EE2 at low concentrations of 1-10 ng/l caused estrogenic response in caged fish 

(Purdom et al., 1994) and these changes may be expressed later in the life cycle or 

even in future generations.  

 

2.3.2.3 Effect of estrogens on terrestrial organisms 

Estrogens may interfere with the normal functioning of endocrine 

systems and affect reproduction and development in wildlife (Jobling et al., 1998). 

Hormone steroids in the environment may affect not only wildlife but also plants. 

Shore, Correll, and Charkraborty (1995) reported that Alfalfa irrigated with municipal 

effluent, which contained hormone steroids, was observed to have elevated levels of 

phytoestrogens. 

 

2.4 Sources of estrogens 

 2.4.1 Estrogens from humans 

Generally the endogenous excretion of hormones by healthy pre-menopausal 

women is reported to range from 10 to 100 µg/day (Table 2.2). Menstruating women 

excrete 8 µg/day of E1, 3.5 µg/day of E2 and 4.8 µg/day of E3. After menopause, 

women only excrete 4 µg/day of E1, 2.3 µg/day of E2 and 1 µg/day of E3. Pregnant 

women excrete 600 µg/day of E1, 259 µg/day of E2 and 600 µg/day of E3. Women 

using contraception pill are assumed to excrete the whole daily dose of 35 µg. The 

average values for normal men are 3.9 µg/day of E1, 1.6 µg/day of E2 and 1.5 µg/day 

of E3 in their urine (Johnson et al., 2000). 
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Table 2.2 Daily excretions (µg) of estrogens in humans  

Concentration (µg/day) 
Category 

E1 E2 E3 EE2 

Pre-menopausal females 100 10 10 - 

Menstruating females 8 3.5 4.8 - 

Menopausal females 4 2.3 1 - 

Pregnant women 600 259 600 - 

Women using contraception pill - - - 35 

Males 3.9 1.6 1.5 - 

Available from: Johnson et al. (2000) 

 

 2.4.2 Estrogens from animals 

Possible exposure to estrogens may come from animal manures that are 

applied to agricultural fields. The animal manures are from sheep, cattle, pigs and 

poultry, as well as other animals. Steroid drugs are frequently used in cattle as well as 

other livestock, which control the estrus cycle, treat reproductive disorders and induce 

abortion (Refsdal, 2000). This could greatly increase the generation of hormone 

steroids in urine of livestock. In poultry waste, a concentration ranging from 14 to 533 

ng/g dry waste with an average of 44 ng/g for E2 was reported by Shemesh and Shore 

(1994). The E2 concentration in urine of cattle was found to be 13 ng/l on average by 

Erb, Chew, and killer (1977). 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

12

2.5 Level of estrogens in the environments 

 2.5.1 Level of estrogens in surface water 

The concentrations of estrogens in surface water ranged from 0.4 to 1.5 ng/l 

for E1, from 0.11 to 2.1 ng/l for E2 and from less than 0.1 to 0.4 ng/l for EE2 (Table 

2.3). From table 2.3, it can be seen that E1 was detected in 7 of 11 Netherlands 

coastal/estuarine and freshwater samples with a median concentration of 0.3 ng/l, 

while E2 and EE2 were only detected in 4 and 3 of 11 samples, with the 

concentrations less than 0.3 for E2 and less than 0.1 for EE2 (Belfroid et al., 1999). 

The measurements in Italy resemble the situation in the Netherlands. E1 was found in 

Tiber River in Italy with a highest concentration of 1.5 ng/l, while E2, E3 and EE2 

were found to be 0.11, 0.33 and 0.04 ng/l, respectively (Baronti et al., 2000). The 

concentration of E2 found in 109 Japanese rivers is higher in summer more than in 

autumn (Tabata, 2001). Moreover, Estrogen, E1 E2 and EE2, were also detected in 

some water samples from southern Germany with an average concentration of 0.4, 0.3 

and 0.4 ng/l, respectively (Kuch and Ballschmiter, 2001).   

 

Table 2.3 Mean concentrations of estrogens in surface water 

Concentration (ng/l) 
Location 

E1 E2 E3 EE2 
Reference 

Netherlands 

   coastal/estuarine/fresh water 
0.3 <0.3 - <0.1 Belfroid et al. (1999) 

Italian river 1.5 0.11 0.33 0.04 Baronti et al. (2000) 

2.1a 
Japanese rivers  - 

1.8b 
- - Tabata (2001) 

Germany river 0.4 0.3 - 0.4 
Kuch and 

Ballschmiter (2001)  
Symbols and Abbreviations: a Summer,  b Autumn  
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2.5.2 Level of estrogens in municipal wastewater treatment systems 

2.5.2.1 Level of estrogens in influents of municipal wastewater 

treatment systems 

The concentrations of estrogens in influents of municipal wastewater 

treatment systems ranged from 11 to 140 ng/l for E1, from less than limit of detection 

(LOD) to 90 ng/l for E2 and from less than 0.2 to 8.8 ng/l for EE2 (Table 2.4). From 

table 2.4, in the raw sewage of the Brazilian MTSs (municipal wastewater treatment 

systems), E1, E2 and EE2 were detected with average concentrations of 40, 21 and 6 

ng/l, respectively (Ternes et al., 1999). Moreover,  estrogens were detected in three 

Netherlands MTSs with concentrations ranged from 11 to 140 ng/l for E1, from below 

LOD to 48 ng/l for E2 and from less than 0.2 to 8.8 ng/l for EE2 (Johnson et al., 

2000). For a median concentration of E1, E2, E3 and EE2 in influents of six Italian 

activated sludge municipal wastewater treatment systems were 52, 12, 80 and 3 ng/l, 

respectively (Baronti et al., 2000). In addition, the concentrations of E2 in influents of 

Japanese MTSs ranged from 20 to 94 ng/l in summer and from 30 to 90 ng/l in 

autumn (Nasu, 2000).  

 

Table 2.4 Concentrations of estrogens in influents of municipal wastewater 

treatment systems 

Concentration (ng/l) 
Location 

E1 E2 E3 EE2 
Reference 

Brazilian 40 21 - 6 Ternes et al. (1999) 

Netherlands 11-140 < LOD -48 - <0.2-8.8 Johnson et al. (2000) 

Italian 52 12 80 3 Baronti et al. (2000) 

20-94a 
Japanese - 

30-90b 
- - Nasu et al. (2000) 

Symbols and Abbreviations: a Summer,  b Autumn  
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 2.5.2.2 Level of estrogens in effluents of municipal wastewater 

treatment systems 

The concentrations of estrogens in the effluents ranged from below 

LOD to 64 ng/l for E2, from below LOD to 82 ng/l for E1, from 0.43 to 18ng/l for E3 

and from less than LOD to 42 ng/l for EE2 (Table 2.5). From the table 2.5, it can be 

seen that E2 was present at higher concentrations in the effluents from MTSs in 

Canada, UK and Japan than those from other countries. In British MTSs, the 

concentrations of E1 in the effluents varied widely from 1.4 to 76 ng/l, while E2 

concentrations from 2.7 to 4.8 ng/l (Desbrow et al., 1998). However, EE2 was only 

found in 7 of 21 effluent samples from domestic MTSs in British, with concentrations 

ranging from below LOD to 7 ng/l. In Canadian MTSs, E1 and E2 were determined 

with maximum concentrations of 48 and 64 ng/l, respectively. EE2 was detected in 9 

of 10 effluent samples with a maximum concentration of 42 ng/l (Ternes et al., 1999). 

The levels of estrone in the effluents from different countries are quite comparable. 

Estriol (E3) was only reported in Italian MTSs and Baronti et al. (2000) reported 

maximum concentrations are 82 ng/l for E1 and 18 ng/l for E3. E2 was detected in 

Japanese MTSs effluent samples with concentrations ranged from 3.2 to 55 ng/l in 

summer and from 2.8 to 30 ng/l in autumn (Tabata, 2001). In addition, Spengler, 

Korner, and Metzger (2001) recently reported a maximum concentration of 15 ng/l for 

E2 in effluents of MTSs in Germany.  

 

Table 2.5 Concentration of estrogens in effluents of municipal wastewater treatment 

systems 

Concentration (ng/l) 
Location 

E1 E2 E3 EE2 
Reference 

British  1.4-76 2.7-4.8 - < LOD-7 Desbrow et al. (1998) 

Canadian  <LOD-48 <LOD-64 - <LOD-42 Ternes et al. (1999) 

Italy  2.5-82 - 0.43-18 - Baronti et al. (2000) 

3.2-55a 
Japanese  - 

2.8-30b 
- - Tabata (2001) 

Germany  - <LOD-15 - - Spengler et al. (2001) 

Symbols and Abbreviations:  a Summer,  b Autumn  
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2.6 Biotransformation of estrogens 

2.6.1 Biotransformation by metabolisms 

2.6.1.1 Biotransformation by metabolisms in mixed culture  

Weber et al. (2005) used mixed culture consisting of two strains, which 

were Achromobacter xylosoxidans and Ralstonia picketii to transform E2 with 

transformation rate 0.013-0.015mg/hr. Moreover, 1μg/l of E2 was oxidized to E1, and 

then E1 was eliminated with activated sludge (Ternes et al., 1999a).      

2.6.1.2 Biotransformation by metabolisms in pure culture 

Shi et al. (2004) isolated EE2-degrading microorganism, Fusarium 

proliferatum strain HNS-1, which degrade EE2 at an initial concentration of 25 mg/l 

in 6 day. Moreover, Gram-negative bacteria were isolated from activated sludge, 

Novo-sphingobium sp., which degrades E2 within 44 days (Fujii et al., 2002), but long 

time was required for degradation. In contrast, R.zopfii Y 50158 and R.equi Y 50155, 

Y 50156, and Y 50157 degraded E2 and E1 at an initial concentration of 100 mg/l 

completely in 24 hr and EE2 was degraded by about 80% in 24 hr (Yoshimoto et al., 

2004).  

2.6.2 Biotransformation by co-metabolisms 

2.6.2.1 Biotransformation by co-metabolisms in mixed culture 

In batch experiments with nitrifying activated sludge (NAS), 0.050 

mg/l of EE2 was degraded completely within 6 days by oxidizing ammonium at rate 

of 50 mg NH4
+/gDW/ hr and degrading EE2 at maximum rate of 1 μg/gDW/hr (Vader 

et al., 2000). Furthermore, in initial concentration of 1 mgL-1 of estrogen were 

degraded with NAS by the degradation rate of 0.056 hr-1 for E1, 1.3 hr-1 for E2, 0.030 

hr-1 for E3, and 0.035 hr-1 for EE2. By using inhibitor for ammonia monooxygenase, 

the key enzyme for ammonia oxidation by AOB confirmed that NAS significantly 

degrade E1, E2, E3 and EE2. In NAS, E1, E2 and E3 were degraded by heterotrophic 

bacteria whereas EE2 was degraded by AOB (Shi et al., 2004). 

2.6.2.2 Biotransformation by co-metabolisms in pure culture 

Ammonia-oxidizing bacteria (AOB), Nitrosomonas europaea, 

degraded 0.4 mg/l estrogens with constant biodegradation rates of 0.0022 mg/l/hr for 

E1, 0.0020 mg/l/hr for E2, 0.0016 mg/l/hr for E3 and 0.0019 mg/l/hr for EE2. 

Corresponding ammonia consumption rates were 1.5 mgNH4+-N/l/hr for E1, 1.45 

mgNH4+-N/l/hr for E2, 1.35 mgNH4+-N/l/hr for E3 and 1.55 mgNH4+-N/l/hr for EE2 

(Shi et al., 2004). 
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2.7 Measurement of estrogens in environments 

 2.7.1 Sample storage 

Samples in form of liquid and solid must be stored in refrigerator at 4 °C. 

Samples from river and wastewater should be collected in glass bottles that prior are 

rinsed by samples. 1% formaldehyde should be added into sample to reduce the 

estrogen degradation by microorganism. Sample should be analyzed within 72 hrs. 

Baronti et al., (2000) studied the recovery of estrogen in the bottle in different time 

storage and preservation stage. The result expressed that estrogens that was not 

preserved with 1% formaldehyde and was kept more than 7 days were severally lost 

more than the preserved sample except for EE2. They found that the storage time for 

more than 60 days can cause 40-50 % loss in all types of estrogens except for E1. 

They believed that the increase in amount of E1 came from the oxidation of E2 to E1 

since formaldehyde is affected on the slow degradation of bacteria while activity is 

not completely inhibited.  

 

2.7.2 Sample preparation 

 2.7.2.1 Filtration method 

Because wastewater usually contains a high load of organic material 

and suspended particles, filtration is usually the first step of sample preparation. The 

filtration step is particularly necessary when subsequent extraction of the sample is 

based on the use of solid-phase extraction (SPE), because suspended solids could 

easily clog the absorbent bed. The most filtration step use glass filters with a pore size 

between 0.22-1.2 µm (Desbrow et al., 1998). Analysts often wash the filtration system 

with methanol after filtration of the wastewater samples to remove any analyze 

adsorbed on the particles in the filter. A few studies also use centrifugation of samples 

in addition to filtration for removing suspended matter. 

 

2.7.2.2 Extraction method 

Extraction of estrogen is usually performed by solid-phase extraction 

(SPE). Both disks and cartridges have been employed for the SPE of estrogens. Both 

disks and cartridges have advantages and disadvantages. Disks are not clogged by 

suspended matter present in the sample as easily as cartridges. Disks also have a 

comparatively larger surface area for adsorbent-matrix contact, which results in the 

higher extraction rates, and finally disk samples are free of contamination, whereas 
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cartridge samples can be contaminated by plasticizers leached from the cartridge 

support material during elution. Cartridge have the advantage of being amenable to 

system automation, because devices are available for automated washing, 

conditioning, sample loading, drying and elution of a large number of sample. SPE 

has many absorbent such as octadecyl (C18) boned silica, graphitized carbon black, 

and styrenedivinylbenzene. Sample loading flow rates varied greatly among 

applications but were usually between 0.5-70 ml/min. Subsequent drying of the 

cartridge with either nitrogen or air. Elution of the compounds retained by C18 is 

usually performed with pure or aqueous (80-85%) methanol, in two steps with total 

elution volumes varying between 10 and 20 ml for cartridges and between 15 and 60 

ml for disks. Graphitized carbon black adsorbents which are also often used for the 

extraction of estrogens behave both as non-specific adsorbents and anionic 

exchangers (D’Ascenzo et al., 2003).  

 

2.7.2.3 Evaporation method 

  Volume reductions techniques can be used in the different means, for 

example, rotary evaporation and nitrogen evaporation. The choice depended mainly 

on the volume of extract to be concentrated.      

 

2.7.3 Measurement of estrogens by gas chromatography (GC)  

The analytical determination of estrogens in environmental has been 

dominated by the use of GC-MS and GC-MS-MS. The detection limits achieved with 

the different methods employing GC-MS or GC-MS-MS as final analytical techniques 

were in the range of 0.5-7.4 ng/l and 0.1-24 ng/l. The analysis is conducted after 

sample derivatization. Several derivatization agents such as bis - (trimethylisilyl) -

triflouroacetamide, N – methyl - N-(tert.) – Butyl – dimethylsilyl - triflouroacetamide 

(MTBSTFA) and heptaflouro – butyric anhydride, have been used depending on the 

choice of ionization technique (Kelly 2000). The analytic are usually derivatized in 

the –OH groups of the steroid ring.  
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2.7.4 Measurement of estrogens by high performance liquid 

chromatography (HPLC)  

The main advantage of applying the liquid chromatography based methods for 

environmental analysis of estrogens is that glucuronic and sulphuric metabolites can 

be detected while the derivatisation of the analytic needed in the GC-systems is un-

necessary. The usual means of achieving separation is in columns with octadecyl 

silica based stationary phases. The mobile phases consist of water: acetonitrile or 

water: methanol mixtures with gradient elution from 20-50% to 100 % organic 

phases. Synder (1999) used fluorescence detection of E2 and EE2. Ying, Kookana, 

and Ru (2002) recently presented a similar method with similar limit of detection. The 

sensitivity of the fluorescence methods is low. This technique is rarely used because 

of severe problems with interference from the matrix and is obviously not 

recommended. The used of spectrophotometric techniques including diode array 

detectors (DAD) is common in HPLC systems. This technique is also widely used 

(Shimada, Mitamura, and Higashi, 2001). 

 

2.7.5 Measurement of estrogens by Immunoassays  

 Immunoassays were the first methods applied for detection of environmental 

estrogens (Shore et al., 1993). The analytical validity of these and other early works 

are generally considered insufficient when compared to the level of more recent 

publications. This may explain why the immunoassays are less used than classical 

analytical techniques for detection of steroid estrogens. This method provides very 

sensitive methods, especially for wastewater and MTSs effluent, but the selectivity is 

poor. 
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2.8 Ammonia-oxidizing bacteria  

2.8.1 Nitrification 

Nitrification is the two step process by which ammonia is oxidized to nitrite 

and subsequently to nitrate. Ammonia is first oxidized to nitrite by ammonia-

oxidizing bacteria (AOB), and subsequently nitrite is oxidized to nitrate by nitrite-

oxidizing bacteria (NOB).  

 

2.8.2 Phylogeny of ammonia-oxidizing bacteria 

The current understanding of evolutionary relationships and the natural 

diversity of AOB is based on comparative sequence analyses of their genes encoding 

the 16S rRNA genes and amoA genes the gene that encode enzyme ammonia 

monooxygenase (AMO). Comparative 16S rRNA gene sequence analyses of cultured 

AOB found that members of physiological group are limited to two monophyletic 

lineages within the Proteobacteria: Gammaproteobacteria and Betaproteobacteria. 

Nitrosococcus oceani is member in the Gammaproteobacteria, despite members of 

the genera Nitrosomonas (including Nitrosococcus mobilis), Nitrosospira, 

Nitrosolobus and Nitrosovibrio from a closely related grouping within the 

Betaproteobacteria (Perkhold et al., 2000). Figure 2.4 shows a phylogenetic 16S 

rRNA based tree of those AOB demonstrated to represent different genospies (DNA-

DNA similarity less than 60% and/or 16 rRNA sequence similarity less than 97.5%). 

Recently, the amoA gene, coding for the active site polypeptide of the ammonia 

monooxygenase has been used as an additional phylogenetic marker molecule for 

AOB. Phylogeny inference based on the deduced amino acid sequence of the amoA 

gene fragment is overall consistent with the 16S rRNA phylogeny of AOB (Figure 

2.5) (Koops et al., 2003). 
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Figure 2.4 16S rRNA-based phylogenetic tree of the Betaproteobacterial AOB. 

Described species are depicted in bold. Maximum likelihood, maximum parsimony, and 

neighbor-joining trees were calculated and merged. Multifurcations connect branches for 

which a relative order cannot be unambiguously determined by applying different treeing 

methods. Filled and empty dots indicate parsimony bootstrap values (100 resamplings) 

above 90% and 70%, respectively. Scale bar represents 10% estimated sequence 

divergence 

Available from: Koops et al. (2003) 
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Figure 2.5 AmoA-based phylogenetic tree of the Betaproteobacterial AOB. 

Described species are depicted in bold. The 453-bp gene fragment obtainable 

with the most commonly used amoA PCR primers was used for phylogeny 

inference. AmoA sequences shorter than 414 nucleotides were excluded from 

the analysis. Protein maximum likelihood, protein maximum parsimony, 

neighbor-joining, and Fitch trees were calculated and merged. Multifurcations 

connect branches for which a relative order cannot be unambiguously 

determined by applying different treeing methods. Filled and empty dots 

indicate parsimony bootstrap values (100 resamplings) above 90% and 70%, 

respectively. Scale bar represents 10% estimated sequence divergence. 

Available from: Koops et al. (2003) 
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2.8.3 Physiological properties of ammonia-oxidizing bacteria 

All AOB use ammonia as a sole energy source but the characterization of 

AOB differ significantly among species and various distribution patterns of distinct 

species in different habitats (Table 2.6; Koops et al., 2003). 

 

Table 2.6 Physiological properties and preferred habitats of described AOB species 

Species 
G+C 

(mol %) 

Substrate 

(NH3) 

affinity 

(Ks 

in μM) 

Maximum 

ammonia 

tolerance 

NH4Cl 

 (in mM ;  

pH 8.0) 

Salt 

Requirement 

Maximum 

salt 

tolerance 

(in mM) 

Preferred 

habitats 

N .europaea 50.6–51.4 400 – 400 

N. eutropha 47.9–48.5 600 – 400 

N. halophila 53.8 400 + 900 

Nc. mobilis 49.3 

30–61 

 

250 + 500 

Sewage 

disposal 

plants, 

freshwater 

and brackish 

water 

N. communis 45.6–46.0 14–43 250 – 250 

N. nitrosa 47.9 19–46 100 – 300 

N. ureae 45.6–46.0 200 – 200 

N. oligotropha 49.4–50.0 
1.9–4.2 

50 – 150 

Soils (not acid) 

and 

eutrophic 

freshwater 

Oligotrophic 

freshwater 

and natural 

soils 

N. marina 47.4–48.0 200 + 800 

N. aestuarii 45.7–46.3 
50–52 

400 + 600 

N. cryotolerans 45.5–46.1 42–59 400 + 550 

Marine 

environments 

Ns. multiformis 53.5 ND 50 – 200 Soils (not acid) 

Ns. tenuis 53.9 ND 100 – 100 

Ns. briensis 54 ND 200 – 250 

Soils, rocks 

and freshwater 

Symbols and Abbreviations: +, present; –, not present; +/–, present in some strains; and ND, no data. 

Available from: Koops et al. (2003) 
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2.8.4 Co-metabolism of organic compound by ammonia-oxidizing bacteria       

AOB, which is obligate chemolithotrophic aerobe using ammonia as a sole 

energy source, is widely for the oxidation of hydrocarbon substrates through the 

action of ammonia monooxgenase (AMO) (Arciero, Vannelli, and Hooper, 1989). 

During oxidation of ammonia to nitrite, AMO catalyzes the oxidation of 

ammonia to hydroxylamine. Subsequently, hydroxylamine is oxidized to nitrite by 

hydroxylamine oxidoreductase (HAO). During the last process four electrons are 

released. Two of four electrons transfer to AMO in order to activate oxygen and 

maintain steady-state rate of ammonia oxidation. The rest two electrons are used in 

another oxidation reaction which is called co-metabolism (Arciero et al., 1989; 

William and Daniel, 1993).  Currently, many hydrocarbons and halogenated 

hydrocarbons which are able to be degraded by co-metabolism of AOB such as in 

Figure 2.6 show ethylene is degraded by co-metabolism of AOB. 

 

 

 
Figure 2.6 Co-metabolism of ethylene by AOB 

     Available from: William and Daniel (1993) 

 

 

 

 
 
 
 
 
 



CHAPTER III 

 

METHODOLOGY AND MATERIALS 

 
3.1 Experimental framework 

 
Figure 3.1 Experimental framework 

  

The main part of this study concerns to the degradation EE2 by NAS 

containing different AOB communities. Experiment is divided into 5 parts (Figure 

3.1): 1) Preliminary experimental using activated sludge and NAS to degrade E1, E2 

and EE2, 2) Enrichment of NAS by inorganic medium containing different 

ammonium concentrations (2, 10, and 30 mM), 3) Analysis of AOB communities in 

NAS by using molecular techniques (PCR-DGGE-sequencing), 4) Degradation of 

EE2 by NAS containing different AOB communities, and 5) Competition effect of 

other organic compounds on degradation of EE2 by NAS. 

 

Sludge taken from 
municipal WWTS 

Enrichment of NAS by inorganic medium containing 
different ammonium concentrations (2, 10, and 30mM) 

Degradation of EE2 by NAS containing different AOB 
communities (Objective 2 and Objective 3) 

Analysis of AOB communities in NAS by using molecular 
techniques (PCR-DGGE-sequencing) (Objective 1) 

3.6 

3.7 

Degradation of E1, E2 and EE2 by activated 
sludge and NAS (Preliminary experimental) 

3.4 

Competition effect of other organic compounds on 
degradation of EE2 by NAS (Objective 4) 3.8 

3.5 
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3.2 Materials and apparatus 

  3.2.1 Chemicals 

E1, E2 (>99%pure), and EE2 (>98% pure) were purchased from Sigma 

(St.Louis, MO, USA). Stock solutions of estrogens were prepared to 40mg/l in 

methanol.  

 

3.2.2 Media 

3.2.2.1 Medium for degradation of estrogens by activated sludge 

The inorganic medium for degradation of estrogens by activated sludge 

contained 100 mg of NH4Cl, 1 g of NaNO3, 0.2 g of MgSO4•7H2O, 0.05 g of EDTA-

Fe, 0.05 g of CaCl2 •2H2O, 0.05 g of K2HPO4, 4 g of HEPES, 0.6 mg of 

MnCl2•4H2O, 0.5 mg of H3BO3, 0.1 mg of ZnCl2, 0.1 mg of Na2MoO4•2H2O, 0.6 mg 

of CoCl2•6H2O, 0.12 mg of NiCl2•6H2O, 0.12 mg of CuSO4•5H2O per liter, pH was 

adjusted to 7.5-8.0 using 40 g/l NaHCO3 (modified from Chao et al., 2004). For 

degradation test, estrogens in methanol solution were added to test tubes to achieve a 

final concentration of 10 mg/l. Nitrogen gas flow was purged to remove methanol and 

then 5 ml of inorganic medium described above was added. 

3.2.2.2 Medium for enriching nitrifying activated sludge 

The inorganic medium for enriching NAS contained (NH4)2SO4, 40 mg 

of MgSO4•7H2O, 40 mg of CaCl2•2H2O, 200 mg of KH2PO4, 1 mg of FeSO4•7H2O, 

0.1 mg of Na2Mo4O4•2H2O, 0.2 mg of MnCl2•4H2O, 0.02 mg of CuSO4•5H2O, 0.1 

mg of ZnSO4•7H2O, and 0.002 mg of CoCl2•6H2O per liter (Limpiyakorn et al., 

2007). NaHCO3 was added to achieve 2 mg bicarbonate (HCO3
-) per 1 mg of 

ammonium added. pH was adjusted to around 7.5-8.0 using 40 g/l NaHCO3. 

3.2.2.3 Medium for degradation of EE2 by nitrifying activated 

sludge 

The inorganic medium for degradation of EE2 by NAS contained 

(NH4)2SO4, NaHCO3, 40 mg of MgSO4•7H2O, 40 mg of CaCl2•2H2O, 200 mg of 

KH2PO4, 1 mg of FeSO4•7H2O, 0.1 mg of Na2Mo4O4•2H2O, 0.2 mg of MnCl2•4H2O, 

0.02 mg of CuSO4•5H2O, 0.1 mg of ZnSO4•7H2O, and 0.002 mg of CoCl2•6H2O, 5 g 

of CaCO3 and 0.5% phenol 10 mg/l (modified from Limpiyakorn et al., 2007).  

Nitrogen gas flow was purged to remove methanol and then 5 ml of inorganic 

medium described above was added. 
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3.2.3 Seed sludge 

 Seed sludge was taken from a sludge buffer tank of a Chong Nonsi municipal 

wastewater treatment plant in September 2006. This system is Cyclic Activated 

Sludge System (CASS) which is modified from Sequencing Batch Reactor (SBR) and 

can receive up to 200,000 m3/day. On the day of sampling, biological oxygen demand 

(BOD) in the influent was 40 mg/ l, whereas ammonium concentration was 13 mg 

N/l. BOD and ammonium removal efficiencies of this system were 92.5 % and 84.6 

%, respectively. Nitrite concentration in the aeration tank was 0.01 mg N/l, and pH 

was controlled around 6-7. Mixed-liquor suspended solids (MLSS) concentration on 

the day of sampling was 9385 mg/l. 

 

3.3 Sample preparation and analytical method 

3.3.1 Sample preparation 

1 ml of liquid medium was taken from test tubes to analyze for nitrogen 

concentrations. Equal volume of methanol (4 ml) was added into test tube containing 

remaining liquid medium (4 ml). Test tube was then vortexed to allow completely 

dissolving estrogens.   

 

3.3.2 Measurement of ammonium 

 Inorganic medium added with methanol was diluted with deionized water to 

achieve a final concentration of ammonium ranging from 0 to 0.5 mg/l. 5 ml of 

dilution sample and 0.2 mL of phenol solution (Mix 11.1 mL liquefied phenol (>89%) 

with 95% v/v ethyl alcohol to a final volume of 100 mL) were added and then mixed. 

0.2 mL of sodium nitroprusside solution (0.5% w/v: dissolve 0.5 g of sodium 

nitropusside in 100 mL of deionized water), and 0.5 mL of oxidizing solution (Mix 

100 mL alkaline citrate solution: dissolve 200 g of trisodium citrate and 10 g of 

sodium hydroxide in 1000 mL of deionized water with 25 mL of sodium 

hypochloride) were added into the tube. Sample was covered with plastic wrap or 

paraffin wrapper film and kept at room temperature in subdued light for at least 1 hr 

to develop color. Sample was measured for absorbance at 640 nm with UV visible 

spectrophotometers (Thermo Electron Corporation, Hexious α, Cambridge, UK) 

(Strickland and Parson, 1972).  
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 3.3.3 Measurement of nitrite  

Inorganic medium added with methanol was diluted with deionized water to 

achieve a final concentration of nitrite ranging from 0 to 0.3 mg/l. 5ml of diluted 

sample and 0.1mL of Sulphanilamide solution (dissolve 5 g of Sulphanilamide and 50 

mL of hydrochloric in 500 mL) was added, and allowed to react 5 min, then 0.1 mL of 

NNED solution (dissolve 1 g of (N-(1-Naphthyl)-Ethylenediamine Dihydrochloride in 

1000mL of de-ionized water) was added and allowed at room temperature in subdued 

light for at least 1 hr to develop color . Sample was measured for absorbance at 543 

nm with UV visible spectrophotometers (Thermo Electron Corporation, Hexious α, 

Cambridge, UK) (Strickland and Parson, 1972). 

 

3.3.4 Measurement of nitrate   

 Inorganic medium added with methanol was diluted with deionized water to 

achieve a final concentration of nitrate ranging from 0 to 0.5 mg/l. 5 mL of diluted 

sample was filtered and measured for absorbance at 220 nm to obtain NO3
- reading 

and absorbance at 275 nm to determine interference due to dissolved organic matter 

with UV visible spectrophotometers (Thermo Electron Corporation, Hexious α, 

Cambridge, UK) (Strickland and Parson, 1972). 

 

3.3.5 Measurement of estrogens 

1 ml of inorganic medium added with methanol was filtered through 0.45 μm 

filter. Estrogens were analyzed using High Performance Liquid Chromatography 

(HPLC; Agilent 1100 Series LC, Germany) with UV diode array detector (Agilent 

1100 Series LC, Germany) at λ= 210 nm. Elution was carried out by using 40 % v/v 

acetonitrile/water at a flow rate of 1 ml/min with retention time of 15 min (Weber et 

al., 2005). Retention time of E1, E2 and EE2 were 13.153 min, 9.257 min and 12.094 

min, respectively. 
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3.3.6 Measurement of COD using closed reflux method 

2.5 ml of sample, 1.5 ml of standard potassium dichromate solution (12.259 g 

of Potassium dichromate dissolved in 1 l of deionized water), and 3.5 ml of silver 

sulfate (22 g of diluted silver sulfate  in 4 kg of sulfuric acid) was added in digestion 

vessel and allowed to react for 2 hr in block digester. Solution were titrated with 

standard ferrous ammonium sulfate until color of ferroin indicator (1.485 g of 1,10 

phenanthroline monohydrate and 0.695 g of Ferrous sulfate dissolved in 100 ml of 

deionized water) changed from green to red (American Public Health Association, 

1992). 

 

3.3.7 Analysis of ammonia-oxidizing bacterial communities 

3.3.7.1 Preparation of sample 

Sludge of approximately 2 mg of MLSS was transferred into a 1.7 ml 

eppendorf tube and centrifuged at 14,000 rpm for 10 min. The supernatant was 

removed, and the pellet was kept at -20 0C until analysis. 

 

3.3.7.2 DNA extraction 

DNA was extracted from samples using Fast-DNA SPIN kits for soil 

(QBiogene, Solon, Ohio, USA) with a small modification at the initial step: 1 ml of 

sodium phosphate buffer solution was added to and mixed with the sample, and then 

the tube was sonicated for 30 s on ice. The remaining steps followed the 

manufacturer’s instructions. The product from DNA extraction was verified by 

electrophoresis in 2% agarose (Bio-Rad, Spain).  

 

3.3.7.3 Polymerase chain reaction (PCR) 

Primers CTO189f and CTO654r (Kowalchuck et al., 1997) were used 

to amplify 465-bp of 16S rRNA gene fragment and primers amoA 1F and amoA 2R 

were used to amplify 500-bp of amoA gene fragment of Betaproteobacteria. The 

oligonucleotide sequences of the primers are shown in Table 3.1. Extracted DNA was 

PCR-amplified using the primer sets (the forward primer had a GC clamp) for 35 

cycles in a 25 μl reaction volume. DNA eluted from bands excised from DGGE gels 

were amplified for 20–25 cycles using the primer set lacking the GC clamp in a 25 μl 

reaction volume. The PCR mixture was prepared using AmpliTaq Gold DNA 

polymerase (PE Applied Biosystems, CA, USA) following the manufacturer’s 
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instructions. PCR amplification was performed in an Authorized thermal cycler 

(Biorad, USA) under the conditions of 3 min at 94 0C followed by 35 cycles of 1min 

at 94 0C, 1min at 57 0C, and 1min at 72 0C, followed by 10min final extension at 72 0C 

(Limpiyakorn et al., 2007). 

 

Table 3.1 Primers used in this study 

Primer Nucleotide sequence (5/–3/) 
CTO 189A/Bf 

CTO189A/Bf-GC 

 

CTO 189Cf   

CTO 189Cf-GC 

 

CTO 654r 

amoA 1F 

amoA 1F-GC 

amoA 2R 

GGAGRAAAGCAGGGGATCG 

CGCCCGCCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGAGRAA

AGCAGGGGATCG 

GGAGGAAAGTAGGGGATCG 

CGCCCGCCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGAGGAA

AGTAGGGGATCG 

CTAGCYTTGTAGTTTCAAACGC 

GGGGTTTCTACTGGTGGT 

CGCCGCGCGGCGGGCGGGGCGGGGGCGGGGTTTCTACTGGTGGT 

CCCCTCTGCAAAGCCTTCTTC 

Available from: Limpiyakorn et al. (2005) 

 

3.3.7.4 Denaturing gradient gel electrophoreses  

Denaturing gradient gel electrophoreses was performed according to 

the modification of a described method (Kurisu et al., 2002). We use 8% 

polyacrylamide gels, and the urea–formamide denaturant gradient was 35–50%. Gels 

were run on the D Code system (Bio-Rad Laboratories, Hercules, CA, USA) for 16 h 

at 60 0C and 75 V. After electrophoresis, the gels are stained with Ethidium bromide 

(Amersham Biosciences, Munich, Germany) and analyzed by gel documentation 

(Dolphin-DOC Plus, NV, USA). Prominent bands were excised and dissolved in 30μl 

sterilized water. DNA was recovered from the gel by freeze–thawing three times.  

 

3.3.7.5 Homology Search 

Homology search of the analyzed sequences by using Blast program 

and aligned with those of closely related and reference AOB using ClustalW. 
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3.4 Degradation of E1, E2 and EE2 by activated sludge and nitrifying activated 

sludge (Preliminary experimental) 

This experiment aimed to investigate the potential of activated sludge from a 

municipal wastewater treatment system in Thailand in degrading natural estrogens 

(E1 and E2) and synthetic estrogen (EE2). Two parallel batch tests comprising of 

degradation test and control test were carried out in triplicate. Activated sludge was 

added into inorganic medium containing 10 mg/l of E1, E2 or EE2 to obtain final 

MLSS concentration of 150 mg/l. The control test was prepared in the same manner 

as the degradation test except that for the control test, no NAS was added. The 

cultivations were at 25 0C with a rotating speed of 250 rpm. Samples were taken at 

time 24, 48, 72, 96, 120, 144 and 168 hr for analysis of estrogen concentrations. 

 

3.5 Enrichment of nitrifying activated sludge by inorganic medium containing 

different ammonium concentrations (2, 10, and 30 mM) 

This experiment aimed to develop NAS containing different AOB 

communities. Sludge taken from the municipal wastewater treatment system was 

enriched in three laboratory-scale continuous flow reactors without sludge recycling 

introduced with inorganic medium containing three different ammonium 

concentrations: 2, 10 and 30 mM NH4
+-N (28, 140, and 420 mg N/l, respectively). 

Total volume of each reactor was 4 l, with an effective volume of 2 l. To obtain the 

optimum condition for AOB growth, temperature was kept at 30 0C, DO 

concentration was controlled at around 2 mgl-1, pH was maintained in a range of 7.5-

8.0 using 1 N HCl and 1 N NaOH, and mixing was provided at rotating speed of 

300rpm. Inorganic medium was introduced into all reactors at a fixed dilution rate of 

0.01 hr-1 (Limpiyakorn et al., 2007). 
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3.6 Analysis of ammonia-oxidizing bacterial communities in nitrifying activated 

sludge by using molecular techniques      

 

 
Figure 3.2 Experimental framework for analysis of ammonia-oxidizing bacterial 

communities in nitrifying activated sludge   

 

This experiment aimed to investigate AOB communities in NAS enriched with 

inorganic medium containing different ammonium concentrations. Communities of 

AOB in NAS were analyzed by specific PCR application followed by DGGE, and 

sequencing of 16S rRNA genes or amoA genes of AOB belonging to 

Betaproteobacteria (Figure 3.2). 
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3.7 Degradation of EE2 by nitrifying activated sludge containing different 

ammonia-oxidizing bacterial communities 

 

 
Figure 3.3 Experimental framework for degradation of EE2 by nitrifying activated 

sludge with different ammonia-oxidizing bacteria communities 

 

This experiment aimed to study degradation of EE2 by NAS containing 

different AOB communities (Objective 2), effect of ammonia oxidation on 

degradation of EE2 by NAS containing different AOB communities (Objective 3) and 

effect of EE2 concentration on degradation of EE2 by NAS.  

NAS from 3 reactors containing different AOB communities were tested for 

their ability to degrade 10 mg/l of EE2 under varying concentrations of ammonium (2, 

10 and 30 mM NH4
+-N). Three parallel batch tests comprising of degradation test, 

inhibition test and control test were performed in triplicate. In degradation test NAS 

was added into 5 ml of inorganic medium containing EE2 (10 mg/l) and varying 

concentration of ammonium (2, 10 and 30 mM NH4
+-N) to obtain final MLSS 

concentration of 150 mg/l. Inhibition test and control test were prepared in the same 

Enrichment of NAS by inorganic 
medium containing different ammonium 

concentrations (2, 10, and 30mM) 

3.7 

Effect of ammonium oxidation on 
degradation of EE2 by NAS containing 

different AOB communities (Objective 3) 

Effect of EE2 concentration on degradation 
of EE2 by NAS 

Degradation of EE2 by NAS containing different 
AOB communities 

Degradation of EE2 by NAS containing 
different AOB communities (Objective 2) 
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manner as the degradation test except that for inhibition test, allythiourea (10 mg/l) 

(Shi et al., 2004) was added to inhibit ammonia oxidation by AOB and for control 

test, no NAS was added. The cultivations were at 25 0C with rotating speed of 250 

rpm. Samples in each tube were taken at time 24, 48, 72, 96, 120, 144 and 168 hr. 

Concentrations of ammonium, nitrite, nitrate and EE2 were analyzed as described 

previously.  

 

                       

 
 

Figure 3.4 Degradation of EE2 by nitrifying activated sludge containing different 

ammonia-oxidizing bacteria communities 
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3.8 Competition effect of other organic compounds on degradation of EE2 by 

nitrifying activated sludge  

This experiment aimed to observe competition effect of other organic 

compounds on degradation of EE2 by NAS (Objective 4). E2 and canteen wastewater 

were selected as model compounds (separated study). E2 were selected as to represent 

organic compounds that have similar structure to EE2. Canteen wastewater was 

selected to observe the actual phenomena in municipal wastewater treatment systems. 

Six parallel batch tests (Table 3.2 and Table 3.3) comprising of four degradation tests, 

degradation test with additional E2 or wastewater, control test, and inhibition test 

were performed in triplicate for each study. In degradation test, NAS was added into 5 

ml inorganic medium containing EE2 (10 mg/l), ammonium (30 mM), and E2 (10 

mg/l) or wastewater (COD=217 mg/l) to obtain MLSS concentration of 150 mg/l. 

Control test and inhibition test were prepared in the same manner as degradation test 

except that for control test, no NAS was added, and for inhibition test, allythiourea 

was added to inhibit ammonia oxidation by AOB. The cultivations were at 25 0C with 

rotating speed of 250 rpm. Samples were taken at 24, 48, 72, 96, 120, 144 and 168 hr. 

Concentrations of ammonium, nitrite, nitrate, EE2, E2 and COD were analyzed as 

described above.  

 

Table 3.2 Competition effect of E2 on degradation of EE2 by nitrifying activated 

sludge 

Test 
NAS 

(2mM reactor) 

Ammonium 

(30mM) 
E2 EE2 Allythiourea 

EE2+E2 + + + + - 

EE2+E2+Inhibitor + + + + + 

EE2+E2+Control - + + + - 

EE2 + + - + - 

E2 + + + - - 

Medium  + + - - - 
                  Symbols and Abbreviations: +, added; –, not added 
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Table 3.3 Competition effect of canteen wastewater on degradation of EE2 by 

nitrifying activated sludge 

Test 
NAS 

(2mM reactor) 

Ammonium 

(30mM) 
Wastewater EE2 Allythiourea 

EE2+Wastewater + + + + - 

EE2+Wastewater+Inhibitor + + + + + 

EE2+Wastewater+Control - + + + - 

EE2 + + - + - 

Wastewater  + + + - - 

Medium  + + - - - 

Symbols and Abbreviations: +, added; –, not added 
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CHAPTER IV 

 

RESULTS AND DISCUSSION 
 

4.1 Degradation of E1, E2 and EE2 by activated sludge and nitrifying activated 

sludge (Preliminary experiment) 

 

Estrogens can be released into the environments by excretion of humans and 

animals through their urine and feces. Municipal wastewater treatment systems are an 

important facility that markedly reduced the concentrations of estrogens. This 

experiment was conducted to investigate the potential of activated sludge from 

municipal wastewater treatment system in Thailand (Chong Nonsi municipal 

wastewater treatment plant) in degrading natural estrogens (E1 and E2) and synthetic 

estrogen (EE2). The results suggested that activated sludge was able to degrade 10 

mg/l of E1 and E2 (Figure 4.1a). 96.25% and 96.62% of E1 and E2 can be degraded 

within 4 days.  

Previously, similar data was illustrated by Ternes et al. (1999a) and Shi et al. 

(2004). They found that E2 with initial concentration of 1 mg/l could be degraded by 

using activated sludge with in 2 hr (Shi et al., 2004) and 3 hr (Ternes et al., 1999a). 

Here, activated sludge degraded 10 mg/l of E1 and E2 within 4 days of which the 

degradation rates and the degradation rate constants were 0.103 mg/hr and 0.0334 

1/hr, respectively for E1 and 0.103 mg/hr and 0.0369 1/hr, respectively for E2. It was 

noted that E1 was formed during the degradation of E2. This compound was 

accumulated until hour 48 and then eliminated (Figure 4.1b). No other metabolite was 

found using HPLC analysis. 

In contrast to natural estrogens, EE2 was not degraded by activated sludge. 

These results confirmed that E1 and E2 were degradable, whereas EE2 was persistent 

in contact with activated sludge. 



 

 

37

0

2

4

6

8

10

12

0 48 96 144 192
Time (hr)

Es
tro

ge
n 

co
nc

. (
m

g/
l)

E1
E2
EE2

 

0

2

4

6

8

10

12

0 48 96 144 192
Time (hr)

Es
tro

ge
n 

co
nc

. (
m

g/
l)

E1 

E2

 
                                   (a)                                                          (b) 

 
Figure 4.1 Degradation of E1, E2 and EE2 by activated sludge (a) concentration of 

estrogens during degradation (b) formation of E1 during degradation of E2 

 

 Although EE2 was not degraded by activated sludge, recent publication 

suggested that AOB in NAS can degrade several persistence organic compounds via 

co-metabolism. Vader et al., (2000) suggested that 0.05 mg/l of EE2 was degraded 

completely within 6 days by NAS enriched with high ammonium concentration. 

Moreover, Shi et al., (2004) suggested that 1 mg/l of EE2 was degraded completely 

within 4 days. In this experiment, NAS from 30 mM reactor was used to degrade 

10mg/l of EE2 under an initial ammonium concentration of 2 mM. Three parallel 

batch tests comprising of degradation test, inhibition test and control test were 

performed. In the inhibition test, allythiourea was used as an inhibitor of ammonia 

oxidation by AOB (Figure 4.2a). The result suggested that ammonium concentration 

in degradation test decreased, nitrite temporarily increased and then decreased, nitrate 

increased, while total nitrogen were nearly stable. In contrast to the inhibition test, no 

reduction of ammonium concentrations was observed, which indicated that 

allythiourea completely inhibited ammonia oxidation of AOB. EE2 concentration in 

the degradation test decreased 25% within 48hr, whereas that in the inhibition tests 

remained the same throughout the experiment. These results indicated that EE2 

concentrations were decreased by co-metabolism of AOB.  
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Figure 4.2 Degradation of EE2 by nitrifying activated sludge (a) concentrations of 

nitrogen during degradation (b) concentration of EE2 during degradation 
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4.2 Enrichment of nitrifying activated sludge by inorganic medium containing 

different ammonium concentrations (2, 10, and 30 mM) 

 

This experiment aimed to develop NAS containing different AOB 

communities. Sludge taken from the municipal wastewater treatment system was 

enriched in three reactors receiving inorganic medium containing different 

ammonium concentration of 2, 10 and 30 mM. 2, 10, and 30 mM reactor were 

operated for 203, 147, and 203 days, respectively. 

In all three reactors, the tendencies of nitrogen concentrations were very 

similar (Figure 4.3). Ammonium concentration reached the steady state condition at 

zero after around 21 days of operation. This indicated that ammonium was completely 

oxidized. However, it must be noted that few ammonium peaks were found when 

sludge samples were taken due to adding medium to obtain volume of 2 l. Nitrite 

temporarily increased at the early operation period and then decreased. Nitrate 

increased and reached the steady state condition. Total nitrogen concentrations were 

nearly stable through at the experiment suggesting that no nitrate was reduced to 

nitrogen gas and thus no anoxic condition arose in the reactors. DO concentrations in 

each reactor were >2 mg/l confirmed again that the reactors were absolutely in 

aerobic condition. After reaching the steady state conditions of nitrogen, sludge 

samples were taken for molecular analysis and degradation tests. 
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Figure 4.3 Concentrations of nitrogens during enrichment of nitrifying activated 

sludge by inorganic medium containing different ammonium concentrations of (a) 2 

mM reactor, (b) 10 mM reactor, and (c) 30 mM reactor 
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4.3 Effect of EE2 on ammonia oxidation 

 

This experiment aimed to observe the inhibitory effect of EE2 on ammonia 

oxidation. Degradation tests and control tests were prepared in the same manner 

except that in the control test, no EE2 was added. All of the cases (Figure 4.4) 

suggested no significant difference in ammonium oxidations between the degradation 

tests (with EE2) and the control tests (without EE2). These confirmed that EE2 did 

not affect ammonia oxidation of AOB. 
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Figure 4.4 Concentrations of ammonium during the study of effect of EE2 on 

ammonia oxidation with NAS from 2, 10, and 30 mM reactors with initial ammonium 

concentrations of (a) 2 mM, (b) 10 mM, and (c) 30 mM 
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4.4 Analysis of ammonia-oxidizing bacterial communities in nitrifying activated 

sludge (Objective 1) 

 

Specific PCR amplification followed by DGGE, cloning, and sequencing of 

16S rRNA gene or amoA gene were used to analyze AOB communities in seed sludge 

and NAS from different reactors. Analysis based on sequence of 16s rRNA gene was 

performed for all samples. However, after several attempts, amplification of 16s 

rRNA gene of AOB in sample from 2 mM reactor never have been succeeded. To 

solve this problem, sequences of amoA gene were analyzed for this sample instead.  

After the PCR-amplified products of all samples had been run on DGGE gels (Figure 

4.5), a total of 11 bands were selected for sequence analysis.  

 

 
 

Figure 4.5 DGGE images of the PCR-amplified products of seed sludge (16S rRNA 

gene), and nitrifying activated sludge from 2 mM (amoA gene), 10 mM (16S rRNA 

gene), and 30 mM (16S rRNA gene) reactors 
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Homology search of the analyzed sequences using Blast program (Table 4.1) 

suggested that most of the sequences analyzed showed 97% to 100% identity to the 

AOB sequences available in the database. Sequences of 16s rRNA genes from this 

study were aligned with those of closely related and reference AOB using ClustalW, 

then phylogenetic tree was drawn (Figure 4.6). 

 

Table 4.1 Closely related neighbor of analyzed sequences from DGGE bands  

Reactor Band Score Percent 
identity Gap 

Accession 
No. of 
closely 
related 

sequence 

Closely related sequence 

S-1 819 98(436/443  ) 2/443 AB222811 DGGE 0NO2c-3 

S-2 821 98(441/446  ) 3/446 AJ297415 clone GaN50304 Seed sludge 

S-3 868 99(441/442  ) 0/442 AJ297415 clone GaN50304 

2mM-1 918 99(470/471 ) 1/471 DQ437762 clone Y41  

2mM-2 872 99(446/448 ) 0/448 AY352918 clone CB1-21  

2mM-3 848 100(428/428 ) 0/428 AF202649  clone S6  
2mM 

2mM-4 821 100(414/414 ) 0/414 EF105354  clone 3GN01a07  

10mM-1 848 99(445/448  ) 2/448 CP000450 Nitrosomonas eutropha C91 

10mM-2 745 97(434/446  ) 6/446 EF175894 clone S_1 10mM 

10mM-3 789 99(408/410  ) 1/410 EF175894 clone S_1 

30mM 30mM-1 833 99(437/440  ) 2/440 AF210051 clone HB3 
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Figure 4.6 16S rRNA-based phylogenetic tree based on partial 400-bp sequences of 

16S rRNA gene of ammonia-oxidizing bacteria of β-Proteobacteria. AOB genus 

abbreviations are N. for Nitrosomonas, Nc. for Nitrosococcus, and Ns. for 

Nitrosospira 
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Table 4.2 lists and summarizes the AOB found in each sample. All of the 

bands analyzed were related to Nitrosomonas spp which were always found in several 

studies of wastewater treatment systems (Limpiyakorn et al., 2005; Purkhold et al., 

2000). 

 

Table 4.2 Summary of ammonia-oxidizing bacteria found in samples 
 

 
AOB cluster 

 

Seed 
sludge 

2mM 
reactor 

10mM 
reactor 

30mM 
reactor 

Nitrosospira cluster 
    

Nitrosomonas communis cluster 
 + +   
Nitrosomonas europaea- Nitrosococcus mobilis 
cluster  + + + 
Nitrosomonas marina cluster 
     
Nitrosomonas oligotropha cluster 
 +    
Nitrosomonas cryotolerans cluster 
     
Unknown Nitrosomonas cluster 
   +  

Symbols and Abbreviations: +, present 
 

Bands analyzed from seed sludge related closely to N. communis cluster and 

N. oligotropha cluster. The sequences of N. oligotropha cluster was reported for their 

high affinity to free ammonium (Ks=1.9 to 4.2 μM; Koops et al., 2003). Sequence of 

this AOB cluster often are recovered from oligotrophic environments, including 

freshwater sediment (Bollmann and Laanbroek, 2001), wastewater treatment systems 

receiving low-ammonium influents (Gieseke et al., 2001). Although N. communis was 

reported to have moderate affinity to free ammonium (Ks=14 to 43 μM; Koops et al., 

2003). They were often recovered from wastewater treatment systems (WWTS) 

receiving influents low in ammonium load (Gieseke et al., 2001; Koops et al., 2003; 

Limpiyakorn et al., 2005). Recently (Limpiyakorn et al., 2005), the numbers of N. 

communis cluster and N. oligotropha cluster were first time revealed in 12 sewage 

treatment systems in Tokyo. This study suggested an importance of these two AOB in 

the systems. 

Bands analyzed from 2 mM reactor related closely to N. communis cluster and 

N. europaea – Nc. mobilis cluster. The sequences of N. communis cluster found in this 
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reactor were also found in the seed sludge. In contrast to N. communis that were often 

found in WWTS receiving low ammonium loads effluents , N. europaea – Nc. mobilis 

cluster were reported to have low affinity to free ammonium (Ks > 30 μM; Koops et 

al., 2003). This AOB were commonly found in eutrophic environments. However, 

previous study on effect of ammonium (Limpiyakorn et al., 2007) showed clearly that 

this AOB were not the predominant AOB in the systems with this ammonium load. 

The numbers of this AOB found at this ammonium load were lower that the detection 

limits of real time PCR quantification.   In addition, the homology search (Table 4.1) 

suggested that the sequence 2 mM-3 has 100% identity to clone S6 which was a 

member N. europaea – Nc. mobilis cluster. However, this clone was recovered from 

anoxic biofilm. As discussed previously, 2 mM reactor was strictly aerobic condition 

(DO >2 mg/l) and the intensity of this band was weak, this AOB should be present in 

the deep part of sludge floc and should not active. Therefore, in this reactor only N. 

communis cluster should be the dominant AOB. 

 Bands analyzed from 10 mM reactor related to unknown nitrosomonas cluster 

and N. europaea – Nc. mobilis cluster. The unknown Nitrosomonas cluster previously 

were found in WWTP (municipal, oil industry, brewery), which in general low in 

ammonium concentration. In this reactor, this band was strong compared to others. 

This implied that this AOB should be the dominant AOB in this reactor. Band related 

to N. europaea – Nc. mobilis cluster was also found as very smear and weak. This 

result suggested that this AOB may occur as minority in this reactor. Previous study 

using the similar operational condition to this study (Limpiyakorn et al., 2007) found 

that N. europaea – Nc. mobilis cluster were not an important AOB in 10 mM reactor. 

Band analyzed from 30 mM reactor related to only N. europaea – Nc. mobilis 

cluster which was reported for their low affinity to free ammonium (Ks > 30 μM; 

Koops et al., 2003). This AOB were common for eutrophic environments, including 

in high ammonium concentration reactors (Limpiyakorn et al., 2007). Previously 

(Limpiyakorn et al., 2007), this AOB comprised the majority of AOB population in 

30 mM reactor. Therefore, it can be implied that this AOB was also predominate in 

this reactor.  
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4.5 Degradation of EE2 by nitrifying activated sludge containing different 

ammonia-oxidizing bacteria communities (Objective2 and Objective3) 

 

This experiment aimed to study effect of AOB communities (Objective2) and   

ammonia oxidation (Objective3) on degradation of EE2 by NAS containing different 

AOB communities. Different AOB communities in NAS (2, 10, 30 mM reactor) were 

tested to degrade 10mg/l of EE2 under different initial ammonium concentrations of 

2, 10, 30mM in three parallel batch tests comprising of degradation test, inhibition test 

and control test which were performed in triplicate. Inhibition test were prepared in 

the same manner as the degradation test except that allythiourea was added to inhibit 

ammonia oxidation by AOB. Figure 4.7-4.9 suggested that during the test, ammonium 

concentrations in degradation tests decreased, nitrite concentrations temporarily 

increased and then decreased, nitrate concentrations increased, while the total nitrogen 

concentrations were nearly stable. In contrast, no change in ammonium concentrations 

was observed in the inhibition tests. This indicated that allythiourea completely 

inhibited ammonia oxidation of AOB. EE2 concentrations in the degradation tests 

also decreased whereas EE2 concentrations in the inhibition tests were not changed. 

This suggested that EE2 were degraded by AOB in NAS. 

In order to observe the activity of ammonia oxidation during the test, ammonia 

oxidation rate were calculated for each test base on the steady state conditions of 

nitrogen (Table 4.3). The degradation of ammonium obeyed first-order reaction 

kinetic. The results suggested that AOB in 2 mM reactor had lowest activity (0.0299, 

0.0287, and 0.0131 1/hr) whereas 10mM and 30 mM reactor had similar activities 

(0.0673, 0.0675, and 0.0417 1/hr for 10mM reactor, and 0.0595, 0.0510, and 0.0204 

1/hr for 30 mM reactor). 
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Figure 4.7 Degradation of EE2 by nitrifying activated sludge from 2 mM reactor with 

initial ammonium concentrations of 2 mM (a and b), 10 mM (c and d), and 30 mM (e 

and f) 

(f) (e) 
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Figure 4.8 Degradation of EE2 by nitrifying activated sludge from 10 mM reactor 

with initial ammonium concentrations of 2 mM (a and b), 10 mM (c and d), and 30 

mM (e and f) 

(f) (e) 
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Figure 4.9 Degradation of EE2 by nitrifying activated sludge from 30 mM reactor 

with initial ammonium concentrations of 2 mM (a and b), 10 mM (c and d), and 30 

mM (e and f) 

(f) (e) 
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Table 4.3 Degradation rate of 10mg/l EE2 until ammonia disappearance 
 

ammonia (mg) ammonia rate Reactor Initial NH4 conc. (mM) 
initial end loss 

time 
(gNH4/hr) K (1/hr) 

2 26.40 0.40 26.00 144 180.56 0.0299 
10 142.05 1.45 140.60 168 836.90 0.0287 2 
30 491.50 0.02 491.48 264 1861.67 0.0131 

               
2 28.73 0.23 28.50 72 395.83 0.0673 

10 146.50 0.23 146.27 96 1523.65 0.0675 10 
30 422.50 0.08 422.42 192 2200.10 0.0417 

               
2 30.60 0.34 30.26 72 420.28 0.0595 

10 154.20 0.23 153.97 120 1283.08 0.0510 30 
30 424.50 14.65 409.85 168 2439.58 0.0204 
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4.5.1 Effect of ammonia-oxidizing bacterial communities on degradation of EE2 

by nitrifying activated sludge containing different ammonia-oxidizing 

bacterial communities (Objective2) 

 

EE2 can be degraded by all NAS under all different ammonium concentrations 

via co-metabolism (Table 4.4). However, the level of EE2 degradation varied 

depending on several factors which will be discussed further. Previously, municipal 

wastewater treatment systems were found to remove EE2. However, in batch 

experiment, Ternes et al. (1999a) found that 1 μg/l of EE2 appeared to be mainly 

stable in contact with activated sludge. Recently, Vader et al. (2000) and Shi et al. 

(2004) found that EE2 was degraded by NAS enriched with high ammonium 

concentration expecting N.europaea cluster as a predominant AOB species. So far, 

the ability of other AOB cluster has never been observed. The question still appears 

about how EE2 degrade in municipal WWTS and whether AOB in municipal WWTS 

can degrade EE2. The major finding of this study over other studies is that AOB 

community found in municipal WWTS can degrade EE2. This study will lead to the 

new means of treatment technology in removing persistence organic compounds in 

municipal WWTS using AOB.  

In this part, we consider effect of ammonia-oxidizing bacterial community on 

EE2 degradation at each initial ammonium concentration (Table 4.4). By comparing 

among different NAS, the amounts of EE2 degraded (loss) for NAS from 2mM 

reactor were < those from 10mM reactor < those from 30 mM reactor at every initial 

ammonium containing (initial ammonium concentration of 2 mM: 0.47, 0.84, and 

2.57 mg; initial ammonium concentration of 10 mM: 2.04, 1.91, and 2.81 mg; initial 

ammonium concentration of 30 mM: 3.83, 4.03, and 10.10 mg, for NAS from 2, 10, 

and 30 mM reactors, respectively).  

In addition, the decrease in EE2 concentrations obeyed first-order reaction 

kinetic (Table 4.4). The degradation rates and the degradation rate constants for NAS 

from 2 mM reactor were < that from 10 mM reactor < that from 30 mM reactor 

(initial concentration of 2 mM: the degradation rate and the degradation rate constants 

were 0.0098 mg/hr and 0.0011 1/hr for NAS from 2 mM reactor, 0.0175 mg/hr and 

0.0018 1/hr for NAS from 10 mM reactor, and 0.0535 mg/hr and 0.0061 1/hr for NAS 

from 30 mM reactor; initial concentration of 10 mM: the degradation rate and the 

degradation rate constants were 0.0142 mg/hr and 0.0016 1/hr for NAS from 2 mM 
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reactor, 0.0398 mg/hr and 0.0044 1/hr for NAS from 10 mM reactor, and 0.1171 

mg/hr and 0.0136 1/hr for NAS from 30 mM reactor; initial concentration of 30 mM: 

the degradation rate and the degradation rate constants were 0.0177 mg/hr and 0.0023 

1/hr for NAS from 2 mM reactor, 0.0280 mg/hr and 0.0035 1/hr for NAS from 10 mM 

reactor, and 0.2806 mg/hr and 0.1324 1/hr for NAS from 30 mM reactor). 

Although, the amounts of EE2 degraded, the rates of EE2 degradation, and the 

rate constants of EE2 degradation for NAS from 2 mM reactor were < that from 10 

mM reactor < that in 30 mM reactor (Table 4.4). The amounts of degraded EE2 per 

the amounts of ammonia oxidized for NAS from 2 mM reactor were as same as those 

of 10 mM reactor, and lower than those of 30 mM reactor. 

The amounts of EE2 degraded may depend on the amount of enzyme 

produced. Our results showed the similar EE2 degradation patterns (mgEE2/gNH4
+) 

for NAS from 2 mM and 10 mM reactors which were different from these of 30 mM. 

This result suggested the difference in enzyme expression between NAS from 2 mM 

and 10 mM reactors and that from 30 mM reactor. So far, there was no report on the 

difference of enzyme expression among distinct AOB species. This needs further 

study to clarify since this aspect is very important for taking advantage of AOB co-

metabolism in degrading persistence organic compound in environments. 

 

4.5.2 Effect of ammonia oxidation on degradation of EE2 by nitrifying activated 

sludge containing different ammonia-oxidizing bacterial communities 

(Objective 3) 

 

In this part, we consider effect of ammonia oxidation of degradation of EE2 by 

each NAS (Table 4.4). By comparing among different initial ammonium 

concentrations, the amounts of degraded EE2 (loss) under an initial ammonium 

concentration of 2 mM were < those of 10 mM < those of 30 mM. (2 mM reactor: 

0.47, 2.04, and 3.83 mg; 10 mM reactor: 0.84, 1.91, and 4.03 mg; initial 30 mM 

reactor: 2.57, 2.81, and 10.10 mg, for initial ammonium concentrations of 2, 10, and 

30 mM, respectively).   

In addition, the decrease in EE2 concentrations obeyed first-order reaction 

kinetic (Table 4.4). The degradation rates and the degradation rate constants with an 

initial ammonium concentrations of 2 mM were < those of 10 mM < those of 30 mM 

for each NAS. (2 mM reactor: the degradation rate and the degradation rate constant 
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were 0.0098 mg/hr and 0.0011 1/hr for an initial ammonium concentration of 2 mM, 

0.0142 mg/hr and 0.0016 1/hr for an initial ammonium concentration of 10 mM, and 

0.0177 mg/hr and 0.0023 1/hr for an initial ammonium concentration of 30 mM; 10 

mM reactor: the degradation rate and the degradation rate constant were 0.0175 mg/hr 

and 0.0018 1/hr for an initial ammonium concentration of 2 mM, 0.0398 mg/hr and 

0.0044 1/hr for an initial ammonium concentration of 10 mM, and 0.0280 mg/hr and 

0.0035 1/hr for an initial ammonium concentration of 30 mM; 30 mM reactor: the 

degradation rate and the degradation rate constant were 0.0535 mg/hr and 0.0061 1/hr 

for an initial ammonium concentration of 2 mM, 0.1171 mg/hr and 0.0136 1/hr for an 

initial ammonium concentration of 10 mM, and 0.2806 mg/hr and 0.1324 1/hr for an 

initial ammonium concentration of 30 mM). 

In general, initial substrate concentrations affect the induction of enzyme in 

metabolism and co-metabolism (Michael and Oliver, 1998). In this study, higher 

initial ammonium concentration may induce more genes to produce more enzyme 

causing increasing in EE2 degradation. 

However, the ratio of the amounts of EE2 degraded per the amounts of 

ammonia oxidized decrease with increasing initial ammonium concentrations for 

NAS from 2 and 10 mM reactors (except for those of in 30 mM reactor). The question 

occurs about why when increasing in initial ammonium concentration EE2 

degradation increased (more enzymes produced), the ration of EE2:NH4
+ was in 

contrast. One possible explanation is that the level of enzyme induction and enzyme 

expression may not be related proportionally. For example, in case of NAS from 2 

mM reactor, although the amounts of enzyme produced were less when exposed to 

initial ammonium of 2 mM than that of 30 mM. One unit of enzyme in the first case 

may degrade more ammonium than in the second case. 

However, this phenomenon did not occur for the case of NAS from 30 mM 

reactor. This may be caused by the fact that the enzyme of this AOB expressed 

differently. The results from the analysis of AOB communities suggested that the 

predominant AOB in the NAS from 2 and 10 mM reactors were previously found in 

the systems with lower ammonium load whereas, that of 30 mM were found in 

eutrophic environments. AOB in NAS from 2 and 10 mM reactors may express 

enzyme differently from those from 30 mM reactor. So far, there was no report on the 

difference of enzyme expression among distinct AOB species. This needs further 

study to clarify. 
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Table 4.4 Degradation of EE2 by nitrifying activated sludge from 2, 10, and 30 mM reactor with initial ammonium concentrations of 2, 10, and 

30 mM 

estrogen (mg) ammonia (g) EE2 rate Ammonia rate EE2:ammonia 
Reactor 

Initial 
NH4 
conc. 
(mM) initial end loss initial end loss 

time 

mg/hr K (1/hr) mg/hr K (1/hr) mgEE2/gNH4 mgEE2/gNH4/hr 
2 9.25 8.78 0.47 26.40 11.25 15.15 48 0.0098 0.0011 0.32 0.0178 31.02 0.646 

10 10.04 8.00 2.04 142.05 3.72 138.33 144 0.0142 0.0016 0.96 0.0239 14.75 0.102 2 

30 9.44 5.61 3.83 495.00 19.65 475.35 216 0.0177 0.0023 2.20 0.0131 8.06 0.037 
    

2 10.11 9.27 0.84 28.73 0.54 28.19 48 0.0175 0.0018 0.59 0.0828 29.80 0.621 
10 10.12 8.21 1.91 143.50 20.76 122.74 48 0.0398 0.0044 2.56 0.0403 15.56 0.324 10 

30 10.15 6.12 4.03 422.50 11.15 411.35 144 0.0280 0.0035 2.86 0.0248 9.80 0.068 
    

2 10.10 7.53 2.57 30.60 6.50 24.10 48 0.0535 0.0061 0.50 0.0323 106.64 2.222 
10 10.12 7.31 2.81 154.20 110.82 43.38 24 0.1171 0.0136 1.81 0.0318 64.78 2.699 30 

30 10.17 0.07 10.10 424.50 339.00 85.50 36 0.2806 0.1324 2.38 0.0061 118.13 3.281 
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4.6 Degradation of EE2 by nitrifying activated sludge from 2mM reactor with 

lower initial EE2 concentration (2mg/l) 

 

 This experiment aimed to observe the ability of AOB to degrade EE2 at low 

concentration. NAS from 2 mM reactor were selected as a model for the test as the 

community of AOB in this NAS was similar to those in full-scale municipal 

wastewater treatment systems. Two initial ammonium concentrations of 2 mM and 30 

mM were selected for the test. 2 mM was selected to represent the actual ammonium 

concentration found in municipal wastewater treatment systems and 30 mM was 

selected to show the clear effect. 2 mg/l of EE2 was selected as the solubility of EE2 

is around this value and also to ensure the detectability of EE2 during the degradation. 

By comparing among different initial EE2 concentration (Table 4.5), the 

amount EE2 degraded for 2 mg/l was < 10 mg/l for both initial ammonium 

concentrations (in initial ammonium concentration of 2 mM: 0.23 mg and 0.47 mg; in 

initial ammonium concentration of 30 mM: 1.54 mg and 3.83 mg, for initial EE2 

concentrations of 2 mg/l and 10 mg/l, respectively). 

   In addition, the decrease in EE2 concentrations obeyed first-order reaction 

kinetic, the degradation rates and the degradation rate constants for initial EE2 

concentration of 2 mg/l was <10 mg/l (in initial ammonium concentration of 2mM: 

0.0024 mg/hr and 0.0013 1/hr  for initial EE2 concentration of 2 mg/l, and  0.0098 

mg/hr and 0.0011 1/hr for initial EE2 concentration of 10 mg/l; in initial ammonium 

concentration of 30 mM: 0.0071 mg/hr and 0.0071 1/hr for initial EE2 concentration 

of 2 mg/l, and  0.0177 mg/hr and 0.0023 1/hr for initial EE2 concentration of 10 

mg/l), while those of ammonia oxidation did not differ significantly. These results 

suggested that initial EE2 concentration affect the degradation of EE2. 
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Table 4.5 Degradation of EE2 by nitrifying activated sludge from 2mM reactor with different EE2 concentrations 
 

estrogen (mg) ammonia (mg) EE2 rate Ammonia rate EE2:ammonia 
Reactor 

Initial 
NH4 
conc. 
(mM) 

initial 
EE2 
conc. 
(mM) initial end loss initial end loss 

time 
mg/hr K (1/hr) mg/hr K (1/hr) mgEE2/gNH4 mgEE2/gNH4/hr 

2 2.00 1.77 0.23 30.40 0.48 29.92 96 0.0024 0.0013 0.31 0.0427 7.69 0.080 
2 

10 9.25 8.78 0.47 26.40 11.25 15.15 48 0.0098 0.0011 0.32 0.0178 31.02 0.646 

2 2.03 0.49 1.54 426.12 1.17 424.95 216 0.0071 0.0071 1.97 0.0276 3.62 0.017 
2 

30 
10 9.44 5.61 3.83 495 19.65 475.35 216 0.0177 0.0023 2.2 0.0131 8.06 0.037 
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4.7 Competition effects of other organic compounds on degradation of EE2 by 

nitrifying activated sludge from 2 mM reactor (Objective 4) 

 

AOB in NAS is capable of co-metabolism several organic compounds. So far, 

no research mentions on the competitions effect of other organic compounds on co-

metabolism of AOB. This experiment therefore aimed to observe the competition 

effect of other organic compounds on the degradation of EE2 by NAS. We used NAS 

from 2 mM reactor as the model NAS because the AOB communities in this NAS 

represent that of full-scale municipal wastewater treatment systems. The initial 

ammonium concentration of 30 mM was selected for the test as this concentration will 

show the clear effect. E2 and canteen wastewater were selected as model organic 

compounds (separated study). 10 mg/l of E2 was selected to represent the organic 

compounds that have similar structure to EE2 and wastewater from canteen was 

selected to observe the actual phenomena in municipal wastewater treatment systems. 

Six parallel batch tests comprising of four degradation tests, degradation test with 

additional organic compound (E2 or wastewater), inhibition test, and control test were 

performed in triplicate. 
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4.7.1 Competitions effect of E2 on degradation of EE2 by nitrifying activated 

sludge from 2mM reactor 

 

Ammonium concentrations in EE2+E2, EE2, E2, and medium (no EE2 and 

E2) decreased during the test (Figure 4.10a). No remarkable difference was found 

among these four batch tests. These results suggested that EE2 and E2 did not inhibit 

ammonium oxidation. In contrast, ammonium concentration in the inhibition tests 

showed no change, indicating that allythiourea completely inhibited ammonia 

oxidation of AOB. 

Concentrations of EE2 in EE2+E2 and EE2 (Figure 4.10b) decreased whereas 

EE2 concentrations in the inhibition tests remained the same throughout the 

experiment. These results suggested that EE2 were degraded by AOB in NAS. In 

addition, the decrement of EE2 concentration in EE2 was > EE2+E2 indicating that 

E2 which represent organic compounds that have similar structure to EE2, competed 

the degradation of EE2 during co-metabolism of AOB.  

Concentrations of E2 in EE2+E2, E2, and even in EE2+E2+Inhibitor 

decreased (EE2+E2+inhibit < EE2+E2 < E2) (Figure 4.10c). These results suggested 

that most of E2 were decreased by heterotrophic bacteria in NAS. Some parts of E2 in 

EE2+E2 and E2 were decreased by co-metabolism of AOB. When compare between 

E2 concentration in EE2+E2 and E2, E2, increased more in the absence of EE2, 

suggest the competition effect of these two estrogens on co-metabolism.  

 

 

 

 

 

 

 



 

 

61

0

90

180

270

360

450

0 48 96 144 192 240 288
Time (hr)

A
m

m
on

ia
 c

on
c.

(m
g/

l)
EE2+E2 EE2+E2+Inhibitor
EE2+E2+Control EE2
E2 (No EE2) Medium (No EE2 and E2)

 
(a) 

0
2
4
6
8

10
12

0 48 96 144 192 240 288
Time (hr)

EE
2 

co
nc

. (
m

g/
l) 

   

EE2+E2 EE2+E2+Inhibitor

EE2+E2+Control EE2
 

(b) 

0
2
4
6
8

10
12

0 48 96 144 192 240 288
Time (hr)

E2
 c

on
c.

 (m
g/

l) 
  .

EE2+E2 EE2+E2+Inhibitor

E2 EE2+E2+control
 

(c) 

 

Fiugure 4.10 Competition effect of E2 (10 mg/l) on degradation of EE2 (10 mg/l) by 

nitrifying activated sludge from 2 mM reactor (a) ammonium concentrations (b) EE2 

concentrations (c) E2 concentrations  
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4.7.2 Competitions effect of canteen wastewater on degradation of EE2 by 

nitrifying activated sludge from 2 mM reactor 

 

Ammonium concentrations in EE2+wastewater (WW), EE2, WW, and 

medium (no EE2 and E2) decreased during the test. No remarkable difference was 

found among these four batch tests. These results suggested that EE2 and organics in 

wastewater did not inhibit ammonium oxidation. In contrast, ammonium 

concentration in the inhibition test showed no change, which indicated that 

allythiourea completely inhibited ammonia oxidation of AOB. 

Concentrations of EE2 in EE2+WW and EE2 decrease whereas EE2 

concentrations in the inhibition tests remained the same throughout the experiment. 

These results suggested that EE2 were degraded by AOB in NAS. No remarkable 

difference was observed between EE2+WW and EE2 indicating that organic 

compounds in wastewater did not compete the degradation of EE2 by NAS.  

Concentrations of COD in EE2+WW, EE2+WW+Inhibitor, and EE2+WW+ 

control were more than that in wastewater alone suggesting that added EE2 can be 

account for 109 mg/l of COD. However, the concentrations of COD in all tests were 

stable through out the experiment. This suggested that heterotrophic bacteria in 

wastewater and NAS did not degrade organic compounds in wastewater and also 

organic compound in wastewater did not degrade via co-metabolism of AOB.  
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Fiugure 4.11 Competition effect of canteen wastewater on degradation of EE2 (10 

mg/l) by nitrifying activated sludge from 2 mM reactor (a) ammonium concentrations 

(b) EE2 concentrations (c) COD concentrations  

 



CHAPTER V 

 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS 

 
5.1 Conclusions 

This study investigated the degradation of EE2 by NAS containing different 

AOB communities and factors affecting EE2 degradation by NAS. The findings of 

this study fulfill all the objectives. Significant details of the findings can be 

summarized as follow. 

1. E1 and E2 were easily degraded by activated sludge, whereas EE2 was 

persist in contact with activated sludge. During the degradation of E2, formation of 

E1 occurred and then was eliminated. However, EE2 can be degraded by AOB in 

NAS via co-metabolism EE2 did not significantly affect ammonia oxidation of AOB. 

2. Community of AOB in each NAS differed depending on the levels of 

ammonium for enrichment. Predominant AOB in seed sludge were N. communis 

cluster and N. oligotropha cluster whereas that of NAS from 2mM reactor related to 

N. communis cluster, that of NAS from 10mM reactor were unknown Nitrosomonas 

cluster which was closely to related strain Nitrosomonas sp. Is343 found in WWTP 

(municipal, oil industry, and brewery). Whereas that of 30mM reactor related to N. 

europaea- Nc.  mobilis cluster. 

3. EE2 can be degraded by all NAS under all different initial ammonium 

concentrations via co-metabolism. These results also indicated that AOB in municipal 

wastewater treatment systems can degrade EE2 which may be main reason for the 

reduction of EE2 in full-scale municipal WWTS.  

4. AOB communities in NAS affect the degradation of EE2. The degradation 

patterns varied among NAS. This result suggested that enzyme induction, enzyme 

expression, and enzyme activity may differ among AOB communities, and thus 

among distinct AOB species.  

5. Initial ammonium concentrations also affected the degradation of EE2. 

The results showed that the higher the initial ammonium concentration, more EE2 can 

be degraded. However, the amount of ammonia oxidized was not proportional to the 

amount of EE2 degraded. One possible explanation is that the level of substrate 

induction and enzyme expression may not be related proportionally. 



 

 

65

6. Initial concentrations of EE2 (2 and 10 mg/l) also affected the degradation 

of EE2. The amount degraded EE2 for 2 mg/l was < 10 mg/l. 

7. Study on the competition effects of other organic compounds on EE2 

degradation showed that E2, that have similar structure to EE2, competed the 

degradation of EE2, whereas organic compounds in canteen wastewater did not. 

8. This was the first study investigating the degradation of persistent organic 

compounds by NAS containing different AOB communities. The major finding is that 

AOB community found in municipal WWTS can degraded EE2. This will lead to the 

new means of treatment technology in removing EE2 and also other persistent organic 

compounds in wastewater using AOB. 

 

5.2 Suggestions for future works 

 As this is one of the pioneer studies on this area. Several findings should be 

studied in more detail as listed below: 

1. Mechanism of different AOB species in substrate induction, enzyme 

expression, and enzyme activity. 

2. Mechanism of co-metabolism in distinct AOB species. 

3. Degradation of other persistent organic compounds (pharmaceutical 

compounds and endocrine disruption compounds) via co-metabolism of AOB. 

4. Detailed competition effects of other organic compounds on EE2 

degradation. 
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Sequences of DGGE bands 
 
>S-1 
GGGATCGAAAGACCTTATGCTTTTGGAGCGGCCGATGTCTGATTAGCTAG
TTGGTAGGGTAATGGCCTACCAAGGCGACGATCAGTAGTTGGTCTGAGAG
GATGgCCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGG
CAGCAGTGGGGAATTTTGGACAATGGGCGCAAGCCTGATCCAGCAATGCC
GCGTGAGTGAAGAAGGCCTTCGGGTTGTAAAGCTCTTTCAGTTGAGAGGA
AAAGNTTGTGACTAATAATCACAATTCATGACAGTATCAGACAGAAGAAG
CACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCG
TTAATCGGAATTATTGGGCGTAAAGGGTGCGCAGGCGGTTCTGTAAGTCA
GATGTGAAATCCCCGGGCTTAACCTGGGAATTGCGTTTGAAACT 
 
>S-2 
GGGATCGAAAGACCTCGTGCTTTGAGGGTGGCCGATGTCTGATTAGCTAG
TTGGTAGGGTAAAGGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAG
GACGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAG
GCAGCAGTGGGGAATTTTGGACAATGGGCGAAAGCCTGATCCAGCCATGC
CGCGTGAGTGAAGAAGGCCTTCGGGTTGTAAAGCTCTTTCGGTCGGAAAG
AAATATCTATAAAAAATATTTATAGAGGATGACGGTANCCGACATAAGAA
GCCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAG
CGTTAATCGGAATTATTGGGCGTAAAGGGTGCGCAGGCGGTGTTGTAAGT
CAGATGTGAAATCCCCCGGGCTTAACCTGGGAATTGCGTTTGAAACTAC 
 
>S-3 
GGGATCGAAAGACCTCGTGCTTTGAGGGTGGCCGATGTCTGATTAGCTAG
TTGGTAGGGTAAAGGCCTACCAAGGCGACGATCAGTAGCTGGTCTGAGAG
GACGATCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAG
GCAGCAGTGGGGAATTTTGGACAATGGGCGAAAGCCTGATCCAGCCATGC
CGCGTGAGTGAAGAAGGCCTTCGGGTTGTAAAGCTCTTTCGGTCGGAAAG
AAATATCTATAAAAAATATTTATAGAGGATGACGGTACCGACATAAGAAG
CACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCG
TTAATCGGAATTATTGGGCGTAAAGGGTGCGCAGGCGGTGCTGTAAGTCA
GATGTGAAATCCCCGGGCTTAACCTGGGAATTGCGTTTGAAAC 
 
>2mM-1 
CCAATCAACTTTGTTACCCCATCGATCATGATTCCGGGTGCATTGATGTTG
GATATCACGTTGTACTTGACCCGTAACTGGATTGGTAACGGCGCTGATCG
GAGGCGGATTCTTTGGTCTGTTATTCTATCCAGGCAACTGGCCAATTTTTG
GACCGACTCACTTGCCTGTCGTTGCAGAAGGCGTATTGCTTTCAATGGCAG
ACTACATGGGACACCTTTATATCCGTACAGGTACACCTGAATACGTACGC
CTGATTGAGCAGGGTTCACTGCGTACCTTTGGCGGCCATACCACGGTGATT
GCTGCGTTCTTTGCGGCGTTTGTATCGATGTTGATGTTTGTTGTTTGGTGGT
TCCTCGGTAAAGTTTACTGTACAGCATTCTTTTACGTTAAAGGTAAAAGAG
GCCGTATT 
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>2mM-2 
CCAATCAACTTTGTTACCCCATCGATCATGATTCCGGGTGCATTGATGTTG
GATATCACGTTGTACTTGACTCGTAACTGGTTGGTAACGGCGCTGATCGGA
GGCGGATTCTTTGGTCTGTTATTCTATCCGGGCAACTGGCCAATTTTTGGA
CCGACGCACTTGCCTGTCGTTGCAGAAGGCGTATTGCTTTCAATGGCAGAC
TACATGGGTCACCTCTACATCCGTACAGGTACACCTGAGTATGTGCGTTTG
ATTGAACAAGGATCGTTGCGTACCTTTGGTGGCCATACCACGGTGATTGCT
GCGTTCTTTGCGGCGTTTGTATCGATGTTGATGTTTGTTGTTTGGTGGTTCC
TCGGTAAAGTTTACTGTACCGCATTCTTTTACGTTAAAGGTAAAAGAGGCC
GTATT 
 
>2mM-3 
CCCATCAACTTCGTGACACCGGGCATTATGCTTCCGGGTGCGCTGATGCTG
GACTTCACGCTGTATCTGACGCGCAACTGGCTGGTAACAGCTCTGGTTGG
AGGTGGATTCTTCGGTCTGCTGTTCTACCCAGGTAACTGGCCGATCTTTGG
TCCAACGCATCTGCCAATCGTTGTAGAAGGAACACTGTTGTCGATGGCTG
ACTACATGGGCCATATGTATGTTCGTACGGGTACACCCGAGTATGTTCGTC
ATATTGAGCAAGGTTCACTGCGTACCTTTGGTGGTCATACtACCGTTATTGC
AGCATTCTTCTCTGCGTTCGTATCAATGTTGATGTTCACTGTATGGTGGTAT
CTCGGAAAAGTTTACTGTACAGCCTTTTTCTACGTTAAAGGTAAAAGAGGT
CGTAT 
 
>2mM-4 
CCAATCAACTTTGTAACCCCATCGATCATGATTCCGGGTGCATTGATGTTG
GATATCACGCTGTACTTGACCCGTAGCTGGTTGGTAACGGCACTGATTGGC
GGTGGCTTCTTTGGTCTGTTATTCTATCCAGGCAACTGGCCAATTTTTGGA
CCGACTCACTTGCCTGTCGTTGCAGAAGGCGTATTGCTTTCAATGGCAGAC
TACATGGGGCACCTTTATATCCGTACAGGTACACCTGAGTATGTGCGTTTG
ATTGAACAAGGATCGTTGCGTACCTTTGGTGGTCATACCACGGTGATTGCT
GCGTTCTTCTCAGCGTTTGTATCGATGCTGATGTTTGTTGTTTGGTGGTACC
TCGGTAAAGTCTATTGCACAGCCTTCTTCTACGTTAAAGGTAAAAGAGGC
CGTATT 
 
>10mM-1 
GGGATCGAAAGACCTTGCGGCTAAAGGAGCGGCTGATGTCTGATTAGCTA
GTTGGTGGGGTAAgGGCTTACCAAGGCAACGATCAGTAGCTGGTCTGAGA
GGACGACCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGA
GGCAGCAGTGGGGAATTTTGGACAATGGGCGAAAGCCTGATCCAGCCATG
CCGCGTGAGTGAAGAAGGCCTTCGGGTTGTAAAGCTCTTTTAGTCGGAAA
GAAAGAGTCATAGTAAATAGCTATGATTTATGACGGTACCGACAGAAAAA
GCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGC
GTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGCCTTGTAAGTC
AGATGTGAAAGCCCCTGGGCTTAACCTGGGAATTGCGTTTGAAAC 
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>10mM-2 
GGGATCGNAAGACCTTGCGTTTTTGGGAGCGGGCCGATGTCTGATTAGCT
AGTTGGTGGGGTAAGGGCCTACCAAGGNCgACGATCAGTAGTTGGTCTGA
GAGGACGACCAgCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGG
AGGCAGCAGTGGGGAATTTTGGACAATGGGCGAAAGCCTGATCCAGCaAT
GCCGCGTGAGtGAAGAAGGCCTTCGGGTTGTAAAGCCTCTTTCACTCGAgA
AGAAAAGGTGCAgTGAATAACTGTAgTTTATGACGGTATCGACAGAANAA
GCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGC
GTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTTTTGTAAGTC
AGATGTGAAATCCCCCGGGCTTAACCTGGGAATTGCGTTTGAAA 
 
>10mM-3 
CGATGTCTGATTAGCTAGTTGGTGGGGTAAGGGGCCTACCAAGGCGACGA
TCAGTAGTTGGTCTGAGAGGACGACCAGCCACACTGGGACTGAGACACGG
CCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGCGCA
AGCCTGATCCAGCAATGCCGCGTGAGTGAAGAAGGCCTTCGGGTTGTAAA
GCTCTTTCAGTCGAGAAGAAAAGGCTGCAGTGAATAACTGTAGTTTATGA
CGGTATCGACAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGT
AATACGTAGGGTGCGAGCGTTAATCGGAATTACTGGGCGTAAAGGGTGCG
CAGGCGGTTTTGTAAGTCAGATGTGAAATCCCCGGGCTTAACCTGGGAAT
TGCGTTTGAAA 
 
>30mM-1 
GGGTATCGCAAGACCTTGCGCTAAAGGAGCGGGCCGATGTCTGATTAGCT
AGTTGGTGGGGTAAAGGGCTTACCAAGGCAACGATCAGTAGTTGGTCTGA
GAGGACGGCCAACCACACTGGGACTGAGACACGGCCCAGACTCCTACGG
GAGGCAGCAGTGGGGAATTTTGGACAATGGGCGAAAGCCTGATCCAGCC
ATGCCGCGTGAATGAAGAAGGCCTTCGGGTTGTAAAGCTCTTTTAGTCGG
AAAGAAAGAGTTGCAATGAATAATTGTGATTTATGACGGTACCGACAGAA
AAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCG
AGCGTTAATCGGAATTACTGGGCGTAAAGGGTGCGCAGGCGGTCTTGCAA
GTCAGATGTGAAAGCCCCGGGCTTAACCTGGGAATTGCGTTTGAAA 
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APPENDICES B 
 
 
 
 
 
 
 
 



Table B-1 Concentration of estrogens during degradation ofE1, E2 and EE2 by activated sludge 

Estrogen concentrations (mgll) 
Hr 

E1 E1-control E2 E2-control EE2 EE2-control 

0 10.30 10.09 10.25 10.09 10.00 10.17 

24 8.43 10.17 8.28 10.19 10.02 10.07 

36 7.69 10.13 7.13 10.24 10.07 10.15 

48 6.40 10.14 4.07 10.23 10.11 10.07 

60 4.73 10.16 2.05 10.30 10.07 10.01 

72 1.69 10.14 1.23 10.23 10.09 10.13 

96 0.39 10.13 0.35 10.24 10.13 10.06 
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Table B-2 Fonnation ofEl during degradation ofE2 by activated sludge 

Estrogen concentrations (mgll) 
Hr 

E2 E2-control El 

0 10.25 10.09 0.00 

24 8.28 10.14 2.11 

36 7.13 10.49 2.88 

48 4.07 10.48 3.84 

60 2.05 10.50 0.13 

72 1.23 10.43 0.00 

96 0.35 10.24 0.00 

-.I 
ex> 

user
Text Box
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Table C-1 Degradation of EE2 by nitrifying activated sludge from 2 mM reactor with initial ammonium concentrations of 2 mM 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 26.40 24.20 25.20 0.11 0.14 0.10 0.02 0.40 7.00 9.25 9.17 9.38 

24 18.55 24.20 27.00          

48 11.25 24.20 27.00 1.60   13.26   8.78   

96 2.21 21.00 27.80 0.40 0.08 0.12 24.24 0.64 7.44 8.91 9.16 9.35 

144 0.40 21.00 27.80 0.12   25.24   9.01   

192 0.48   0.12      9.22   

216 0.55   0.10      9.07   

264 0.20 23.43 26.50 0.11 0.10 0.10 26.62 0.04 6.54 8.99 9.20 9.46 
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Table C-2 Degradation of EE2 by nitrifying activated sludge from 2 mM reactor with initial ammonium concentrations of 10 mM 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 142.05 143.20 144.00 0.26 0.04 0.03 3.17 0.11 2.58 10.04 10.51 10.40 

24 135.51 143.20 144.00       9.53   

48 116.50 139.60 140.00 7.70 0.03 0.03 16.07 0.09 2.58 9.07 9.52 9.75 

72 93.05 143.20 140.20 25.50 0.03 0.03 24.07 0.10 2.68 9.05   

96 52.20 140.20 142.00 44.10 0.03 0.03 43.55 0.10 2.98 8.32 9.47 9.86 

144 3.72 141.20 142.00 20.90 0.03 0.04 121.53 0.10 3.05 8.00   

168 1.45 141.20 143.00 3.21 0.01 0.03 138.71 0.10 3.02 7.98 9.35 9.87 

216 1.04 147.25 144.40 2.54 0.03 0.04 140.99 0.10 3.05 8.08 10.12 9.82 
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Table C-3 Degradation of EE2 by nitrifying activated sludge from 2 mM reactor with initial ammonium concentrations of 30 mM 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 426.50 421.00 426.00 0.10 0.10 0.10 0.30 0.01 0.02 10.11 10.13 10.18 

24 371.50   7.80   44.30   9.43   

48 298.50   15.00   112.40   9.26   

96 154.00 429.00 432.00 74.80 0.08 0.10 195.00 0.05 0.01 8.84 10.05 10.11 

144 60.50   13.50   348.00   8.38   

192 9.25   3.00   409.45   8.07   

240 1.45 426.00 427.00 0.10 0.20 0.20 424.50 0.02 0.01 7.97 10.12 10.21 
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Table C-4 Degradation of EE2 by nitrifying activated sludge from 10 mM reactor with initial ammonium concentrations of 2 mM 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 28.73 28.20 28.40 0.02 0.02 0.01 0.01 0.01 0.01 10.11 10.16 10.15 

24 2.86 28.50 28.23 12.36 0.02 0.02 13.22 0.02 0.02 9.49 10.10 10.08 

48 0.54   2.14   26.12   9.27   

72 0.23   0.32   27.81   9.13   

96 0.24 29.20 29.31 0.09 0.02 0.02 28.43 0.01 0.01 9.17 10.15 10.10 
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Table C-5 Degradation of EE2 by nitrifying activated sludge from 10 mM reactor with initial ammonium concentrations of 10 mM 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 143.50 142.00 148.00 0.30 0.20 0.30 0.01 0.01 0.02 10.12 10.05 10.07 

24 72.75 143.00 144.00 28.00 0.10 0.10 41.50 0.03 0.03 9.28 10.06 10.05 

48 20.76   11.00   108.60   8.21   

72 2.60   1.90   134.50   8.11   

96 0.23   0.50   140.05   8.02   

120 0.13 144.00 145.00 0.20 0.20 0.20 143.23 0.02 0.01 8.13 10.08 10.03 
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Table C-6 Degradation of EE2 by nitrifying activated sludge from 10 mM reactor with initial ammonium concentrations of 30 mM 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 422.50 426.00 424.00 0.02 0.01 0.01 0.01 0.10 0.10 10.15 10.08 10.14 

24 353.50   6.00   61.00   9.13   

48 275.50 421.00 425.00 12.50 0.02 0.01 134.76 0.20 0.10 8.07 10.15 10.22 

96 102.50   72.00   251.00   6.87   

144 11.15   10.50   401.09   6.12   

192 0.08 435.00 424.00 0.58 0.02 0.01 421.13 0.20 0.10 6.14 10.05 10.12 
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Table C-7 Degradation of EE2 by nitrifying activated sludge from 30 mM reactor with initial ammonium concentrations of 2 mM 

 
 
 
 

 
 
 
 
 
 
 
 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 30.60 30.16 31.45 0.02 0.01 0.01 0.02 0.20 0.10 10.10 10.16 10.19 

24 13.50 30.23 31.13 9.00 0.01 0.02 7.20 0.10 0.20 8.78 10.11 10.23 

48 6.50   2.10   21.00   7.53   

72 0.34   1.10   28.23   7.43   

96 0.32   0.20   29.83   7.41   

120 0.19 30.12 31.25 0.10 0.01 0.02 30.10 0.20 0.10 7.37 10.12 10.17 



 

 

87 

Table C-8 Degradation of EE2 by nitrifying activated sludge from 30 mM reactor with initial ammonium concentrations of 10 mM 

 
 
 
 
 
 
 
 
 
 
 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 154.20 152.00 153.20 0.01 0.02 0.02 0.10 0.10 0.10 10.12 10.08 10.19 

24 110.82 153.12 155.21 8.00 0.03 0.01 33.00 0.10 0.20 7.31 10.05 10.07 

48 55.50   35.00   65.00   7.03   

72 27.00   11.00   112.00   6.80   

96 4.50   4.70   142.00   6.76   

120 0.23 153.00 151.00 0.30 0.01 0.02 153.60 0.20 0.10 6.75 10.03 10.12 
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Table C-9 Degradation of EE2 by nitrifying activated sludge from 30 mM reactor with initial ammonium concentrations of 30 mM 

 
 
 
 

Ammonia concentrations (mg/l) Nitrite concentrations (mg/l) Nitrate concentrations (mg/l) Estrogen concentrations (mg/l) 
Hr 

Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control Degradation Inhibition Control 

0 424.50 421.00 424.00 0.19 0.12 0.16 0.01 0.01 0.03 10.17 10.03 10.08 

12 392.00   8.00   21.20   6.23   

24 372.00   14.00   42.92   3.02   

36 339.00 423.00 428.00 33.00 0.10 0.10 52.00 0.02 0.02 0.07 10.12 10.14 

48 318.50   9.00   96.00   0.00   

72 220.50   1.20   202.00   0.00   

120 55.29   1.02   367.76   0.00   

168 14.65 431.00 428.00 0.24 0.14 0.13 409.31 0.01 0.02 0.00 10.17 10.08 
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Figure C-1 First-order reaction kinetic of ammonium and estrogens during 

degradation of EE2 by nitrifying activated sludge from 2 mM reactor with initial 

ammonium concentrations of 2 mM (a), 10 mM (b), and 30 mM (c) 
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Figure C-2 First-order reaction kinetic of ammonium and estrogens during 

degradation of EE2 by nitrifying activated sludge from 10 mM reactor with initial 

ammonium concentrations of 2 mM (a), 10 mM (b), and 30 mM (c) 
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Figure C-3 First-order reaction kinetic of ammonium and estrogens during 

degradation of EE2 by nitrifying activated sludge from 30 mM reactor with initial 

ammonium concentrations of 2 mM (a), 10 mM (b), and 30 mM (c) 
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Table D-1 Ammonium concentrations during competitive effect of E2 on degradation of EE2 by nitrifying activated sludge from 2mM reactor 

 
 
 
 
 
 
 
 
 
 
 

Table D-2 Nitrite concentrations during competitive effect of E2 on degradation of EE2 by nitrifying activated sludge from 2mM reactor 

 
 
 
 
 
 
 
 
 
 
 
 

Ammonium concentrations (mg/l) Time 
(hr) EE2+E2 EE2+E2+Inhibitor EE2+E2+Control EE2 E2 Medium

0 424.50 420.00 424.00 424.00 435.00 426.00 
24 363.00     365.00 361.00 357.00 
48 326.50     319.00 321.00 329.00 
72 252.50     257.00 250.00 253.00 
96   428.00 430.00      

120 130.50     127.00 119.00 121.00 
168 52.00     42.00 41.50 39.00 
192 31.50     21.00 27.13 17.00 
216 16.65     4.14 13.20 3.00 
240 2.26 419.00 426.00 0.21 1.40 0.11 

Nitrite concentrations (mg/l) Time 
(hr) EE2+E2 EE2+E2+Inhibitor EE2+E2+Control EE2 E2 Medium

0 0.20 0.20 0.01 0.01 0.10 0.10 
24 2.80   2.70 3.10 2.30 
48 12.00   14.60 15.10 12.30 
72 32.00   25.00 22.00 17.00 
96  0.02 0.01    

120 54.00   57.00 74.50 65.80 
168 56.80   77.60 81.30 80.30 
192 48.00   56.00 41.00 51.80 
216 12.30   14.00 9.00 15.00 
240 3.29 0.01 0.02 0.12 0.02 3.50 
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Table D-3 Nitrate concentrations during competitive effect of E2 on degradation of EE2 by nitrifying activated sludge from 2mM reactor 
 
 
 
 
 
 
 
 
 
 
 
Table D-4 Estrogens concentrations during competitive effect of E2 on degradation of EE2 by nitrifying activated sludge from 2mM reactor 
 
 
 
 
 
 
 
 
 
 
 
 

Nitrate  concentrations (mg/l) Time 
(hr) EE2+E2 EE2+E2+Inhibitor EE2+E2+Control EE2 E2 Medium

0 0.20 0.20 0.01 0.10 0.03 0.01 
24 62.00   62.00 65.00 64.00 
48 97.00   101.00 102.00 94.00 
72 145.00   147.00 142.00 158.00 
96  0.02 0.01    

120 234.00   236.00 228.00 232.00 
168 312.00   301.00 298.00 306.00 
192 352.00   342.00 351.00 353.00 
216 397.00   402.00 398.00 406.00 
240 419.00 0.01 0.02 421.00 422.00 416.00 

EE2 concentrations (mg/l) E2 concentrations (mg/l) Time 
(hr) EE2+E2 EE2+E2+Inhibitor EE2+E2+Control EE2 EE2+E2 EE2+E2+Inhibitor EE2+E2+Control E2 

0 10.05 10.14 10.18 10.06 10.17 10.14 10.15 10.05
24 8.80     8.98 9.13     8.95 
48                 
72 8.60     8.13 7.15     7.10 
96   10.06 10.17     8.23 10.20   

120 7.66     7.59 6.18     6.17 
168 6.57 10.13   6.16 4.02 4.46   3.54 
192 5.28     5.28 3.35     2.88 
216 5.34     5.09 1.23     0.74 
240 5.09 10.09 10.15 4.86 1.18 2.61 10.14 0.73 
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Table D-5 Ammonium concentrations during competitive effect of wastewater (WW) on degradation of EE2 by nitrifying activated sludge 

from 2mM reactor 
 

Ammonium concentrations (mg/l) Time 
(hr) EE2+WW EE2+WW+Inhibitor EE2+W+Control EE2 WW Medium

0 420.00 428.00 426.00 424.00 420.00 426.00 
24 362.00   365.00 371.00 357.00 
48 315.00   319.00 311.00 329.00 
72 251.00   257.00 250.00 253.00 
96  418.00 428.00    

120 141.00   127.00 137.00 132.80 
168 36.50   42.00 47.00 31.00 
192 16.30   21.00 25.00 15.20 
216 7.56   4.14 12.00 4.00 
240 0.02 426.00 417.00 0.21 1.30 0.21 
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Table D-6 Nitrite concentrations during competitive effect of wastewater (WW) on degradation of EE2 by nitrifying activated sludge from 

2mM reactor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nitrite concentrations (mg/l) Time 
(hr) EE2+WW EE2+WW+Inhibitor EE2+WW+Control EE2 WW Medium
0 0.20 0.10 0.20 0.10 0.10 0.10 

24 2.80     2.70 2.90 2.30 
48 12.00     14.60 14.00 12.30 
72 27.00     25.00 22.00 17.00 
96   0.10 0.10       

120 61.70     57.00 42.00 38.80 
168 42.80     77.60 65.00 53.00 
192 54.20     56.00 50.00 42.10 
216 8.04     14.00 9.50 3.43 
240 4.68 0.02 0.01 0.12 0.67 0.01 
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Table D-7 Nitrate concentrations during competitive effect of wastewater (WW) on degradation of EE2 by nitrifying activated sludge from 

2mM reactor 
Nitrate concentrations (mg/l) Time 

(hr) EE2+WW EE2+WW+Inhibitor EE2+W+Control EE2 WW Medium 
0 0.20 0.01 0.01 0.10 0.03 0.01 

24 61.00     62.00 53.00 64.00 
48 97.00     101.00 101.00 94.00 
72 144.00     147.00 150.00 158.00 
96   0.02 0.01       
120 223.00     236.00 243.00 251.00 
168 342.00     301.00 312.00 336.00 
192 352.00     342.00 337.00 362.00 
216 407.00     402.00 398.00 413.00 
240 416.00 0.01 0.02 421.00 418.00 422.00 
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Table D-8 Estrogen and COD concentrations during competitive effect of wastewater (WW) on degradation of EE2 by nitrifying activated 

sludge from 2mM reactor 

Time EE2 concentrations (mg/l) COD concentrations (mg/l) 
(hr) EE2+WW EE2+WW+Inhibitor EE2+WW+Control EE2 EE2+WW EE2+WW+Inhibitor EE2+WW+Control WW 

0 10.11 10.09 10.07 10.06 326.4 326.4 326.4 217.6
24 9.13     8.98 326.4     217.6
48         326.4     217.6
72 8.16     8.13 326.4     217.6
96   10.11 10.1     326.4 326.4   

120 7.35     7.59 326.4     217.6
168 6.51 10.07   6.16 326.4 326.4 326.4 217.6
192 5.43     5.28 326.4     217.6
216 5.24     5.09 326.4     217.6
240 4.62 10.08 10.08 4.86 326.4 326.4 326.4 217.6
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