CHAPTER V

THE MILPOTENT ALGEBRAS

In this chapter we classify the multiplications in nilpotent algebras of dimensions 1,2 and 3. Then we prove a theorem which tells when there exists an isomorphism between a nilpotent algebra and the quotientalagebra of the polynomial algebra $K_{0}[x]$ by the radical $\left(x^{n-1}\right)^{1}$

Theorem 5.1 : Let A be a nilpotent algebra of dimension 1 over a field K. Then $A^{2}=\{0\}$, or equivalently $x y=0$ for all x, y in A.

Proof : Since A is a nilpotent algebra over I, there exists a $k>0$ such that $A^{k}=\{0\}$. Next, we shall prove that $A^{2} \neq A$. To prove this, suppose that $A^{2}=A$. Then we have

$$
\left.\begin{array}{rl}
A^{k} & =A^{k-2} \cdot A^{2}=A^{k-2} \cdot A \\
& =A^{k-3} \cdot A^{2}=A^{k-3} \cdot A \\
& =A^{k-4} \cdot A^{2}=A^{k-4} \cdot A \\
-------1
\end{array}\right)
$$

That is $A=A^{k}=\{0\}$ which contradicts the hypothesis that dimension of A is 1 . Therefore $A^{2} \subset A$ which implies that dim $A^{2}=0$. This completes the proof of the theorem.

Theorem 5.2 : Let A be a nilpotent algebra of dimension 2 over a field K. If the multiplication in A is nontrivial, then it is unigue (up to isomorphism).

Proof : We can similarly prove as in Theorem 5.1 that $A \supset A^{2} \supset A^{3} \ldots \supset A^{k}=\{0\}$. Therefore the dimension of A^{2} is 1 or 0 . If dimension $A^{2}=0$, then this is the trivial case, so we may assume that dimension of A^{2} is 1 which implies that $A^{3}=\{0\}$. Since dimension $A^{2}=1$, we may let e $e_{2} \neq 0$ be a basis of A^{2}. For dimension of A is 2 , we can have $e_{1} \neq 0$ independent to e_{2} such that e_{1}, e_{2} is a basis of A. For $x=a_{1} e_{1}+a_{2} e_{2}, y=b_{1} e_{1}+b_{2} e_{2},\left\{a_{i}, b_{j}\right\} i, j=1,2,3$, CK, we have
$x y=a_{1} b_{1} e_{1}^{2}+a_{1} b_{2} e_{1} e_{2}+a_{2} b_{1} e_{2} e_{1}+a_{2} b_{2} e_{2}^{2}$.
Since $e_{1} e_{2}, e_{2} e_{1} \in A^{3}=\{0\}$ and $e_{2}^{2} \in A^{4}=\{0\}$,
(1) $x y=a_{1} b_{1} e_{1}^{2}$.

If $e_{1}^{2}=0$, then $x y=0$ for all x, y in A. Therefore $e_{1}^{2} \neq 0$ and we may let $e_{1}^{2}=e_{2}$. Hence (1) becomes

$$
x y=a_{1} b_{1} e_{2}, \text { for } a l 1 \quad x, y \text { in } A
$$

Therefore the nontrivial multiplication in A is unique (up to isomorphism).
Q.E.D.

Next, we consider the case where a nilpotent algebra A over a field K has dimension 3. We can similarly prove
(as we did in Theorem 5.1) that $\& \supset A^{2} \supset A^{3} \supset \ldots \partial A^{k}=\{0\}$. Thus we see that dimension $A^{2}=2$ or 1 oro. Dimension $A^{2}=0$ is the trivial case, so we just consider the case where dimension $A^{2}=1$, or dim $A^{2}=2$. If dimension A^{2} is 2 , then dimension A^{3} is 1 or 0 and $A^{4}=\{0\}$. If dimension $A^{2}=1$, then $A^{3}=\{0\}$.

Now, let us start by investigating the case where the dimension of A^{2} is 2 and $A^{3}=\{0\}$. Therefore, we may let e_{1} and e_{2} be a basis of A^{2}, and then let e_{3} be linearly independent with respect to e_{1} and e_{2} such that e_{1}, e_{2}, e_{3} forms basis of A. For x, y inA we can write

$$
\begin{aligned}
& x=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, \\
& y=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}, \quad\{a i, \quad b j\} c K, i, j=1,2,3,
\end{aligned}
$$

Hence,

$$
\begin{aligned}
x y= & a_{1} b_{1} e_{1}^{2}+a_{1} b_{2} e_{1} e_{2}+a_{1} b_{3} c_{1} e_{3}+a_{2} b_{1} e_{2} c_{1} \\
& +a_{2} b_{2} e_{2}^{2}+a_{2} b_{3} c_{2} c_{3}+a_{3} b_{1} e_{3} c_{1}+a_{3} b_{2} c_{3} e_{2}+a_{3} b_{3} e_{3}^{2}
\end{aligned}
$$

Since $e_{1}^{2}, e_{2}^{2}, e_{1} e_{2}, e_{2} e_{1} \in A^{4}=\{0\}$ and $e_{1} e_{3}, e_{3} e_{1}, e_{2} e_{3}, e_{3} e_{2} \in t^{3}=\{\theta\}$, we have

$$
x y=a_{3} b_{3} e_{3}^{2}
$$

and consequently, dimension of A^{2} is $1:$ This contradicts the hypothesis that dimension $A^{2}=2$, so this case is impossible.

Next, we shall consider the other multiplication cases of a nilpotent algebra of dimension 3 . Let us begin with a definition.

Definition 5.3 : Let A be an algebra with multiplication o
and B be an algebra with multiplication * Then the multiplications in A and B are isomorphic eff there exists a linear, $\mathbf{1 - 1}$, function f of A onto B such that $f(x, y)$ $=f(x) * f(y)$.

Let A be an algebra of dimension 3 over \mathbb{R}. Suppose that $\left\{c_{1}, e_{2}, e_{3}\right\}$ and $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ are two distinct bases of A respectively, then claim that the linear mapping $f: A \rightarrow A$ such that

$$
\begin{align*}
& \mathrm{f}\left(\mathrm{e}_{1}\right)=(\mathrm{km})^{1 / 3} \mathrm{e}_{1}^{1}, \tag{I}\\
& \mathrm{f}\left(\mathrm{e}_{2}\right) \quad=\frac{\mathrm{m}}{(\mathrm{~km})^{1 / 3}} e_{1}^{1}+\left(\frac{-\mathrm{n}}{\mathrm{k}}\right) e_{2}^{1}, \\
& \mathrm{f}\left(\mathrm{e}_{3}\right)=e_{3}^{\prime},
\end{align*}
$$

for $k \neq 0, m \neq 0, n \neq 0$ in R, is $1-1$ and onto. To see that f is 1-1 and onto we need only show that the determinant of the coefficients on the right.side.is. not zero. See proof in [3].

$$
\text { Set } \begin{aligned}
\mathbf{f} & =\operatorname{det}\left[\begin{array}{ccc}
(\mathrm{km})^{1 / 3} & 0 & 0 \\
\frac{m}{(\mathrm{~km})^{1 / 3}} & \left(\frac{-\mathrm{n}}{\mathrm{k})}\right. & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =(\mathrm{km})^{1 / 3}\binom{-\mathrm{n}}{\mathrm{k}}
\end{aligned}
$$

Which is not zero for $k \neq 0, m \neq 0, n \neq 0$. Therefore E is linear, 1-1 and onto function on \mathbb{A}.

Next we shall show that the following linear
maps of A to itself are $1-1$ and onto by showing that their determinants are not 0 .

$$
\begin{align*}
& f\left(e_{1}\right)=k_{1} e_{2}^{\prime}, \tag{II}\\
& f\left(e_{2}\right)=k_{2} e_{1}^{\prime}, \\
& f\left(e_{3}\right)=k_{3} e_{3}^{\prime}, \quad k_{i} \in \mathbb{R} \text { and } k_{i} \neq 0, j=1,2,3,
\end{align*}
$$

f is $1-1$, onto, since
(III)
f is $1-1$, onto since

$$
\operatorname{det}[f]=\operatorname{det}\left[\begin{array}{ccc}
1 & 2 & \\
0 & k_{3} & 0 \\
0 & 0 & 1
\end{array}\right]=k_{1} k_{3}=0
$$

(IV) $f\left(e_{1}\right)=k_{1} e_{i}$,
$f\left(e_{2}\right)=k_{2} e_{1}^{\prime}+k_{2} e_{2}^{\prime}$,
$f\left(e_{3}\right)=e_{3}^{\prime}, \quad\left\{k_{1}=0\right\} \subset \mathbb{R}, i=1,2,3$,
f is $1-1$ and onto, since
$\operatorname{det}[f]=\operatorname{det}$

$$
\left[\begin{array}{lll}
k_{1} & 0 & 0 \\
k_{2} & k_{3} & 0 \\
0 & 0 & 1
\end{array}\right]=k_{1} k_{3}=0
$$

(v) $f\left(e_{1}\right)=e_{1}^{1}+e_{2}^{f}$,

$$
f\left(e_{2}\right)=-e_{1}^{\prime}+e_{2}^{\prime},
$$

$$
f\left(e_{3}\right)=e_{3}^{\prime},
$$

$$
\left.\begin{array}{l}
f \text { is } 1-1, \text { onto, since }\left[\begin{array}{rrr}
1 & 1 & 0 \\
\operatorname{det}[f] & =\operatorname{det}\left[\begin{array}{r}
-1 \\
0
\end{array}\right. & 0 \\
0
\end{array}\right]=2=0 \text { i }
\end{array}\right]=
$$

$$
\begin{aligned}
& f\left(e_{1}\right) \quad=k_{1} e_{1}^{\prime}+k_{2} e_{2}^{\prime} \text {, } \\
& f\left(e_{2}\right) \quad=k_{3} e_{2}^{\prime} \text {, } \\
& f\left(e_{3}\right)=e_{3}^{1}, \quad\left\{k_{i}=0\right\}(\mathbb{R}, i=1,2,3,
\end{aligned}
$$

Theorem 5.4: Let a be a nilpotent algebra of dimension 3 over the field \mathbb{R}. If dimension of A^{2} is 2 and dimension of $A^{3}=1, A^{4}=\{0\}$, then the multiplication in A is uniquely determined up to isomorphism.

Proof From the hypothesis that dimension $A=3$, dimension $A^{2}=2$, dimension $A^{3}=1$ and $A^{4}=\{0\}$, we may $1 e t\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis in A such that $\left\{e_{2}, e_{3}\right\}$ is a basis of A^{2} and e_{3} is a basis of A^{3}. For each x, y in A we may write

$$
\begin{aligned}
& x=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, \\
& y=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}, \quad\{a i, \quad b j\} c \mathbb{R}, i, j=1,2,3,
\end{aligned}
$$

and thus we obtain

$$
\begin{aligned}
x y= & a_{1} b_{1} s_{1}^{2}+a_{1} b_{2} e_{1} e_{2}+a_{1} b_{3} e_{1} e_{3}+a_{2} b_{1} e_{2} e_{1}+a_{2} b_{2} e_{2}^{2} \\
& +a_{2} b_{3} e_{2} e_{3}+a_{3} b_{1} e_{3} e_{1}+a_{3} b_{2} e_{3} e_{2}+a_{3} b_{3} e_{3}^{2}
\end{aligned}
$$

Since $e_{2}^{2}, e_{1} e_{3}, e_{3} e_{1} \in A^{4}=\{0\}, e_{2} e_{3}, e_{3} e_{2} \in A^{5}=\{0\}$ and $e_{3}^{2} \in A^{6}=\{0\}$, we have

$$
x y=a_{1} b_{1} e_{1}^{2}+a_{1} b_{2} e_{1} e_{2}+a_{2} b_{1} e_{2} e_{1}
$$

Since $e_{1}^{2} \in A^{2}$, we can write $e_{1}^{2}=k_{1} e_{2}+k_{2} e_{3}$ for some k_{1}, $k_{2} \in \mathbb{R}$ and since, $o_{1} \rho_{2}, e_{2} e_{1} \in A^{3}$ we get $e_{1} e_{2}=k_{3} e_{3}$ and $e_{2} e_{1}=k_{4} e_{3}$ for some k_{3}, k_{4} in \mathbb{R}. That is, the multiplication $x y$ can be expressed in the form:

$$
\begin{align*}
& x y=a_{1} b_{1}\left(k_{1} e_{2}+k_{2} e_{3}\right)+a_{1} b_{2} k_{3} e_{3}+a_{2} b_{1} k_{4} e_{3}, \text { i.e. } \\
& x y=k_{1} a_{1} b_{1} e_{2}+\left(k_{2} a_{1} b_{1}+k_{3} a_{1} b_{2}+k_{4} a_{2} b_{1}\right) e_{3} . \tag{*}
\end{align*}
$$

We begin the final step of the proof with an observation about $k_{1}, k_{2}, k_{3}, k_{4}$. Since dimension of $A^{2}=2$, the case $k_{1}=0$ and the case $k_{2}=k_{3}=k_{4}=0$ cannot occur. The proof
now proceeds with 7 cases.

Case 1. In this firct case, we consider the multiplication (*) when $k_{1} \neq 0, k_{2} \neq 0$ and $k_{3}=k_{4}=0$. In particular,
$x y=k_{1} a_{1} b_{1} e_{2}+k_{2} a_{1} b_{1} e_{3}, k_{1}, a_{1}, b_{1}, k_{2} \in \mathbb{R}$. Therefore,
$x y=a_{1} b_{1}\left(k_{1} e_{2}+k_{2} e_{3}\right)$.
This formula holds for all x, y in A and since $k_{1} e_{2}+k_{2} e_{3}$ is a vector in A, we have dimension $A^{2}=1$ which contradicts the hypothesis. Therefore this first case is impossible.

Case 2. For this second case, we shall investigate the $m_{u l t}$ tiplication (*) when $k_{1} \neq 0, k_{4} \neq 0$ and $k_{2}=k_{3}=0$. That is

$$
\begin{equation*}
x y=k_{1} a_{1} b_{1} e_{2}+k_{4} a_{2} b_{1} e_{3}, k_{1}, k_{4}, a_{1}, a_{2}, b_{1} \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

Our objective is to check whether A is associative under the multiplication in this case. To do this, let

$$
z=c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}, \quad\left\{c_{i}\right\} \mathbb{R}, i=1,2,3 \text { and then }
$$ consider $(x y) z$ and $x(y z)$. We have,

$$
(x y) z=\left(a_{1} e_{1}+a_{2} e_{2}+a_{3}\right)\left(b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right)\left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right)
$$

(2.1) asserts that

$$
\begin{aligned}
(x y) z & =\left[k_{1} a_{1} b_{1} e_{2}+k_{4} a_{2} b_{1} e_{3}\right]\left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right) \\
& =k_{4} k_{1}\left(a_{1} b_{1}\right) c_{1} e_{3}
\end{aligned}
$$

whereas, on the other hand

$$
\begin{aligned}
x(y z)= & \left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)\left[(b _ { 1 } e _ { 1 } + b _ { 2 } e _ { 2 } + b _ { 3 } e _ { 3 }) \left(c_{1} e_{1}+c_{2} e_{2}\right.\right. \\
& \left.\left.+c_{3} e_{3}\right)\right] \\
= & \left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)\left(k_{1} b_{1} c_{1} e_{2}+k_{4} b_{2} c_{1} e_{3}\right) \\
= & 0
\end{aligned}
$$

Hence A is not associative under the multiplication (2.1) in this case, or equivalently; the multiplication in this case is impossible.

Case 3. Assuming $k_{1} \neq 0, k_{3} \neq 0, k_{2}=k_{4}=0$ it followstrhat

$$
x y=k_{1} a_{1} b_{1} c_{2}+k_{3} a_{1} b_{2} e_{3}
$$

This case is similar to the second case in that the same method of proof shows that A is not associative under this multiplication. Therefore the multiplication in this case is impossible.

Cose 4. We begin this case by expressing $k_{1} \neq 0$, $k_{3} \neq 0, k_{2} \neq 0$ and $k_{2}=0$. The multiplication (*) becomes,

$$
x y=k_{1} a_{1} b_{1} \epsilon_{2}+\left(k_{3} a_{1} b_{2}+k_{4} a_{2} b_{1}\right) e_{3}
$$

Now let $e_{1}^{1}, e_{2}^{1}, e_{3}^{1}$ be another basis of A such that $e_{1}^{\prime}=e_{1}, \quad e_{2}^{\prime}=k_{1} e_{2}, e_{3}^{\prime}=k_{1} k_{3} e_{3}$, then for

$$
\begin{aligned}
& x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, \\
& y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime},\left\{a_{1}^{\prime}, b_{1}^{\prime}\right\} C \mathbb{R}, i \\
& \left.x y=a_{1}^{\prime} b_{1}^{\prime}\left(e_{1}^{\prime}\right)^{2}+a_{1}^{\prime} b_{2}^{\prime} e_{1}^{\prime} e_{2}^{\prime}+a_{2}^{\prime}\right\}_{1}^{\prime} e_{2}^{\prime} e_{1}^{\prime}
\end{aligned}
$$

$$
y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{i}+b_{3}^{\prime} e_{3}^{\prime},\left\{a_{1}^{\prime}, b_{j}^{\prime}\right\} \subset \mathbb{R}, i, j=1,2,3 \text {, we get }
$$

But we have; $\left(e_{1}^{\prime}\right)^{2}=e_{1}^{2}=k_{1} e_{2}+k_{2} e_{3}=e_{2}^{*}$,

$$
\begin{aligned}
& e_{1}^{1} e_{2}^{\prime}=k_{1} e_{1} e_{2}=k_{1} k_{3} e_{3}=e_{3}^{\prime} \\
& e_{2}^{1} e_{1}^{\prime}=k_{1} e_{2} e_{1}=k_{1} k_{4} e_{3}=\frac{k_{4}}{k_{3}} e_{3}^{1}
\end{aligned}
$$

Therefore

$$
x y=a_{1}^{\prime} b_{1}^{\prime} e_{2}^{\prime}+\left(a_{1}^{\prime} b_{2}^{\prime}+\frac{k_{k}}{k_{3}} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime}
$$

To check the associative 1 aw we let $z=c_{1}^{\prime} e_{1}^{\prime}+c_{2}^{\prime} e_{2}^{\prime}+c_{3}^{\prime} e_{3}^{\prime}$, $\left\{e_{i}^{\prime}\right\} C R, i=1,2,3$, It follows that

$$
\begin{aligned}
(x y) z:= & {\left[\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right)\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right)\right] } \\
& \left(c_{1}^{\prime} e_{1}^{\prime}+c_{2}^{\prime} e_{2}^{\prime}+c_{3}^{\prime} e_{3}^{\prime}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[a_{1}^{\prime} b_{1}^{\prime} e_{2}^{\prime}+\left(a_{1}^{\prime} b_{2}^{\prime}+\frac{k_{4}}{k_{3}} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime}\right]\left(c_{1}^{\prime} e_{1}^{\prime}+c_{2}^{\prime} e_{2}^{\prime}+c_{3}^{\prime} e_{3}^{\prime}\right) \\
& =\frac{k_{4}}{k_{3}}\left(a_{1}^{\prime} b_{1}^{\prime}\right) c_{1}^{\prime} e_{3}^{\prime} .
\end{aligned}
$$

on the other hand,

$$
\begin{aligned}
x(y z)= & \left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right)\left[\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right)\right. \\
& \left.\left(c_{1}^{\prime} e_{1}^{\prime}+c_{2}^{\prime} e_{2}^{\prime}+c_{3}^{\prime} e_{3}^{\prime}\right)\right] \\
= & \left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{i}+a_{3}^{\prime} e_{3}^{\prime}\right)\left[b_{1}^{\prime} c_{1}^{\prime} e_{2}^{\prime}+\left(b_{1}^{\prime} c_{2}^{\prime}+\frac{\left.\left.k_{4} b_{2}^{\prime} c_{1}^{\prime}\right) e_{3}^{\prime}\right]}{=}\right.\right. \\
= & a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime} e_{3}^{\prime} .
\end{aligned}
$$

To have $(x y) z=x(y z)$, we must have

$$
\frac{k_{4}}{k_{3}} a_{1}^{\prime} b_{1}^{\prime} c_{1}^{\prime}=a_{1}^{\prime} b_{1}^{\prime} c_{1}^{1}
$$

That is $\frac{k_{4}}{k_{3}}=1$. Therefore in this case the multiplication of x, y in A can be expressed as

$$
x y=a_{1}^{\prime} b_{1}^{\prime} e_{2}^{\prime}+\left(a_{1}^{\prime} b_{2}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime} .
$$

Case 5. Set $k_{1} \neq 0, k_{2} \neq 0, k_{4} \neq 0$, and $k_{3}=0$. Then the multiplication (*) becomes,

$$
x y=k_{1} a_{1} b_{1} e_{2}+\left(k_{2} a_{1} b_{1}+k_{4} a_{2} b_{1}\right) e_{3}
$$

The same method of the proof in the second case shows that A is not associative under this multiplication. Therefore, the multiplication in this case is impossible.

Case 6. In this case we have that $k_{1} \neq 0, k_{2} \neq 0$, $k_{3} \neq 0$ and $k_{4}=0$. Then from (*) the multiplication $x y$ is

$$
x y=k_{1} a_{1} b_{1} e_{2}+\left(k_{2} a_{1} b_{1}+k_{3} a_{1} b_{2}\right) e_{3}
$$

Similarly to case 2, we can prove that A is not associative under this multiplication. Therefore, the multiplication in this case is impossible.

Case 7. For this final case, let $k_{1} \neq 0, k_{2} \neq 0$, $k_{3} \neq 0$ and $k_{4_{2}} \neq 0$. Then the multiplication (*) is

$$
\begin{equation*}
x y=k_{1} a_{1} b_{1} e_{2}+\left(k_{2} a_{1} b_{1}+k_{3} a_{1} b_{2}+k_{4} a_{2} b_{1}\right) e_{3} \tag{7.1}
\end{equation*}
$$

To check associativity, we let $z=c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}$, \{ci\}i= 1,2,3 $\in \mathbb{R}$. Then (7.1) implies that

$$
\begin{aligned}
(x y) z= & {\left[\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)\left(b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right)\right] } \\
& \left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right) \\
= & {\left[k_{1} a_{1} b_{1} e_{2}+\left(k_{2} a_{1} b_{1}+k_{3} a_{1} b_{2}+k_{4} a_{2} b_{1}\right) e_{3}\right] } \\
& \left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right) \\
= & k_{4}\left(k_{1} a_{1} b_{1}\right) c_{1} e_{3}
\end{aligned}
$$

whereas,

$$
\begin{aligned}
x\left(y^{z}\right)= & \left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)\left[\left(b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right)\right. \\
& \left.\left(c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}\right)\right] \\
= & \left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right)\left[k_{1} b_{1} c_{1} e_{2}+\left(k_{2} b_{1} c_{1}+k_{3} b_{1} c_{2}\right.\right. \\
& \left.\left.+k_{4} b_{2} c_{1}\right) e_{3}\right] \\
= & k_{3} a_{1}\left(k_{1} b_{1} c_{1}\right) e_{3}
\end{aligned}
$$

Since A is an associative algebra, we must have

$$
(x y) z=x(y z)
$$

That is

$$
k_{1} k_{4} a_{1} b_{1} c_{1}=k_{1} k_{3} a_{1} b_{1} c_{1},\left\{k_{i}, a_{i}, b_{i}\right\} \subset R, \quad i=1,2,3, L_{1}
$$

Therefore, $k_{3}=k_{4}$ (or else A is not associative). Hence, the multiplication in this case becomes

$$
\begin{equation*}
x y=k_{1} a_{1} b_{1} e_{2}+\left(k_{2} a_{1} b_{1}+k_{3} a_{1} b_{2}+k_{3} a_{2} b_{1}\right) e_{3} \tag{7.2}
\end{equation*}
$$

Furthermore, we claim that the multiplication in
this case is isomorphic to the multiplication in case 4 . In case 4 we have
(4.1) $\quad x$ o $y=a_{1}^{\prime} b_{1}^{\prime} e_{2}^{\prime}+\left(a_{1}^{\prime} b_{2}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime}$
where

$$
\begin{aligned}
& x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, \\
& y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime},\left\{a_{i}^{\prime}, b_{j}^{\prime}\right\} C R, i, j=1,2,3 .
\end{aligned}
$$

Let $f: A \rightarrow A$ be a function defined by

$$
\begin{aligned}
& f\left(e_{1}\right)=\left(k_{1} k_{3}\right)^{1 / 3} e_{1}^{\prime}, \\
& f\left(e_{2}\right)=\frac{k_{3}^{\prime}}{\left(k_{1} k_{3}\right)^{\prime / 3}} \frac{k_{2}}{k_{1}} e_{3}^{\prime}, \\
& f\left(e_{3}\right)=e_{3}^{!}, \quad k_{1}, k_{2}, k_{3} \in \mathbb{R}
\end{aligned}
$$

for $k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0$ in \mathbb{R}^{0}. Then (7.2) implies, that

$$
\begin{aligned}
f(x y) & =f\left[k_{1} a_{1} b_{1} e_{2}+\left(k_{2} a_{1} b_{1}+k_{3} a_{1} b_{2}+k_{3} a_{2} b_{1}\right) e_{3}\right] \\
& =k_{1} a_{1} b_{1}\left[\frac{k_{3}}{\left(k_{1} k_{3}\right)^{1 / 3} e_{2}^{\prime}}-\frac{k_{2}}{k_{1}} e_{3}^{\prime}\right]+\left(k_{2} a_{1} b_{1}+k_{3} a_{1} b_{2}+k_{3} a_{2} b_{1}\right) e_{3}^{\prime} \\
& =\left(k_{1} k_{3}\right)^{2 / 3} a_{1} b_{1} e_{2}^{1}+k_{3}\left(a_{1} b_{2}+a_{2} b_{1}\right) e_{3}^{\prime}
\end{aligned}
$$

On the other hand, the multiolication (4.1) implies that

$$
\begin{aligned}
f(x) \circ f(y)= & f\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right) f\left(b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right) \\
= & {\left[\left(k_{1} k_{3}\right)^{1 / 3} a_{1} e_{1}^{\prime}+\left(\frac{k_{3}}{\left.\left.\left(k_{1} k_{3}\right)^{1 / 3} e_{2}^{\prime}-\frac{k_{2}}{k_{1}} e_{3}^{\prime}\right) a_{2}+a_{3} e_{3}\right]}\right.\right.} \\
& {\left[\left(k_{1} k_{3}\right)^{1 / 3} b_{1} e_{1}^{\prime}+\left(\frac{k_{3}}{\left(k_{1} k_{3}\right)^{1 / 3}} e_{2}^{\prime}-\frac{k_{2}}{k_{1}} e_{3}^{\prime}\right) b_{2}+b_{3} e_{3}^{\prime}\right] } \\
= & {\left[\left(k_{1} k_{3}\right)^{1 / 3} a_{1} e_{1}^{\prime}+\frac{k_{3}}{\left(k_{1} k_{3}\right)^{1 / 3} a_{2} e_{2}^{\prime}}\right.} \\
& \left.+\left(-\frac{k_{2}}{k_{1}} a_{2}+a_{3}\right) e_{3}^{\prime}\right] \\
& {\left[\left(k_{1} k_{3}\right)^{1 / 3 b_{1} e_{1}^{\prime}+\frac{k_{3}}{\left(k_{1} k_{3}\right)^{1 / 3} b_{2} e_{2}^{\prime}}} \begin{array}{rl}
& \left.+\left(-\frac{k_{2}}{k_{1}} b_{2}+b_{3}\right) e_{3}\right] \\
= & \left(k_{1} k_{3}\right)^{2 / 3} a_{1} b_{1} e_{2}^{\prime}+k_{3}\left(a_{1} b_{2}+a_{2} b_{1}\right) e_{3}^{\prime}
\end{array}\right.}
\end{aligned}
$$

That is $f(x o y)=f(x) f(y)$. This result, together with the previous argument about the map f in case I implies that these two multiplications are isomorphic. Therefore, we have already proved that the multiplication in a nilpotent algebra A of dimension 3 over a field \mathbb{R} with dimension of $A^{2}=2$, dimension $A^{3}=1$ and $A^{4}=0$, is uniquely determined up to isomjophism,

Q.B.D.

Remark: Suppose A is a nilpotent algebra of dimension 3 with dimension $A^{2}=1$ and $A^{3}=\{0\}$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ and $\left\{e_{1}^{1}, e_{2}^{1}, e_{3}^{\prime}\right\}$ be bases in A such that e_{3} and e_{3}^{1} are in A^{2}. Moreover, let $f: A \rightarrow A$ be an isomorphism. then $f: A^{2} \rightarrow A^{2}$. Therefore, $f\left(e_{3}\right) \in A^{2}$. Consequently, we may wite

$$
\begin{aligned}
& f\left(e_{1}\right)=m_{1} e_{1}^{\prime}+m_{2} e_{2}^{\prime}+m_{3} e_{3}^{\prime} \\
& f\left(e_{2}\right)=p_{1} e_{1}^{\prime}+p_{2} e_{2}^{\prime}+p_{3} e_{3}^{\prime}, \\
& f\left(e_{3}^{\prime}\right)=q e_{3}^{\prime}, \quad\left\{m_{i}, p_{j}, q\right\} C R, j, i=1,2,3
\end{aligned}
$$

Now we begin our discussion of multiplications in a 3-dimensional inipotent algebra A over t with dimension $A^{2}=1$, by choosing a basis e_{1}, e_{2}, e_{3} in A such that $e_{3} \in \mathbb{A}^{2}$. First, note that there is never any need to check associativity in this case since $A^{3}=\{0\}$. For each x, y in f we have

$$
\begin{aligned}
& x=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, \\
& y=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}, \quad\left\{a_{i}, b_{j}\right\} \subset \mathbb{R}, \quad i=1,2,3
\end{aligned}
$$

It follows that the multiplication is

$$
\begin{aligned}
x y= & a_{1} b_{1} e_{1}^{2}+a_{1} b_{2} e_{1} e_{2}+a_{1} b_{3} e_{1} e_{3}+a_{2} b_{1} e_{2} e_{1}+a_{2} b_{2} e_{2}^{2} \\
& +a_{2} b_{3} e_{2} e_{3}+a_{3} b_{1} e_{3} e_{1}+a_{3} b_{2} e_{3} e_{2}+a_{3} b_{3} e_{3}^{2}
\end{aligned}
$$

Since $e_{1} e_{3}, e_{3} e_{1}, e_{2} e_{3}, e_{3} e_{2} \in A^{3}=\{0\}$ and $e_{3}^{2} \in A^{4}=\{0\}$, then $x y=a_{1} b_{1} e_{1}^{2}+a_{1} b_{2} e_{1} e_{2}+a_{2} b_{1} e_{2} e_{1}+a_{2} b_{2} e_{2}^{2}$.
Since $e_{1}^{2}, e_{1} e_{2}, e_{2} e_{1}, e_{2}^{2} \in A^{2}$, we may write

$$
\begin{aligned}
& e_{1}^{2}=k_{1} e_{3}, \\
& e_{1} e_{2}=k_{2} e_{3}, \\
& e_{2} e_{1}=k_{3} e_{3}, \\
& e_{2}^{2}=k_{4} e_{3}, \quad \text { for some } k_{i} \in \mathbb{R}, i=1,2,3
\end{aligned}
$$

Therefore,
(**)

$$
x y=\left(k_{1} a_{1} b_{1}+k_{2} a_{1} b_{2}+k_{3} a_{2} b_{1}+k_{4} a_{2} b_{2}\right) e_{3}
$$

Our task is to classify the multiplications $x y$ by
studying $k_{1}, k_{2}, k_{3}, k_{4}$.
We observe that the case where $k_{1}=k_{2}=k_{3}=k_{4}=0$ cannot happen since the dimension of $A^{2}=1$. Therefore, we consider the following cases.

Case 1. If $k_{1} \neq 0$ and $k_{2}=k_{3}=k_{4}=0$, then the multiplication $(* *)$ becomes

$$
x y=k_{1} a_{1} b_{1} e_{3}
$$

As in Theorem 5.4, we may choose a new basis e $e_{1}^{\prime}=e_{1}, e_{2}^{1}$
$=e_{2}, e_{3}^{i}=k_{1} e_{3}$.
Therefore,

$$
x y=a_{1}^{\prime} b_{1}^{\prime}\left(e_{1}^{\prime}\right)^{2}+a_{1}^{\prime} b_{2}^{\prime} e_{1}^{\prime} e_{2}^{\prime}+a_{2}^{\prime} b_{1}^{\prime} e_{2}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\left(e_{2}^{\prime}\right)^{2},
$$

for

Since $\left(e_{1}^{1}\right)^{2}=e_{1}^{2}=k_{1} e_{3}=e_{3}^{!}$

$$
e_{1}^{\prime} e_{2}^{\prime}=e_{1} e_{2}=k_{2} e_{3}=0
$$

$$
\begin{aligned}
& e_{2}^{\prime} e_{1}^{\prime}=e_{2}^{e_{1}}=k_{3} e_{3}=0 \\
& \left(e_{2}^{\prime}\right)^{2}=e_{2}^{2}=k_{4} e_{3}=0
\end{aligned}
$$

then

$$
(1.1) \text { my }=a_{1}^{\prime} b_{1}^{\prime} e_{3}^{\prime}
$$

Case 2. Let $k_{4} \neq 0$ and $k_{1}=k_{2}=k_{3}=0$. Then the multiplication (**) can be written as

$$
\begin{equation*}
x o y=k_{4_{2}} a_{2} b_{2} e_{3} \tag{2.1}
\end{equation*}
$$

We assert that the multiplication in this case is isomorphic to the multiplication in case 1. Let f be the linear map of A to itself defined by

$$
\begin{aligned}
& f\left(e_{1}^{\prime}\right)=e_{2}, \\
& f\left(e_{2}^{\prime}\right)=e_{1}, \\
& f\left(e_{3}^{\prime}\right)=k_{4} e_{3}, \quad k_{4} \in \mathbb{R}
\end{aligned}
$$

Then by the argument in page 42 case II we know that f is $1-1$ and onto. Multiplication (2.1) implies that

$$
\begin{aligned}
f(x) \text { of }(y) & =f\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right) o f\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right) \\
= & \left(a_{2}^{\prime} e_{1}+a_{1}^{\prime} e_{2}+k_{\Lambda_{2}}^{\prime} a_{3}^{\prime} e_{3}\right) \circ\left(b_{2}^{\prime} e_{1}+b_{1}^{\prime} e_{2}\right. \\
& \left.+k_{4} b_{3}^{\prime} e_{3}\right) \\
& =k_{\Lambda_{2}} a_{1}^{\prime} b_{1}^{\prime} e_{3}
\end{aligned}
$$

whereas; the multiplication (1.1) implies that

$$
\begin{aligned}
f(x y) & =f\left(a_{1}^{\prime} b_{1}^{\prime} e_{3}^{\prime}\right) \\
& =k_{1_{2}} a_{1}^{\prime} b_{1}^{\prime} e_{3}
\end{aligned} \quad \begin{aligned}
& f(x y)=f(x) \text { of }(y) \text { and these two multiplications are }
\end{aligned}
$$ isomorphic.

Case 3. In this case we assume that $k_{3} \neq 0$, $k_{1}=k_{2}=k_{4}=0$. This, together with (**), implies that

$$
x y=k_{3} a_{2} b_{1} e_{3}
$$

Like the other cases we choose a new basis $e_{1}^{\prime}=e_{1}, e_{2}^{0}=e_{2}$, $\therefore e_{3}^{\prime}=k_{3} e_{3}$ and get the result,

$$
\begin{align*}
\mathbf{x y} & =a_{2}^{\prime} b_{1}^{\prime} e_{3}^{\prime} \tag{3.1}\\
\mathbf{x} & =a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, \\
y & =b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime},\left\{a_{i}^{\prime}, b_{j}^{\prime}\right\} \subset \mathbb{R}, i, j=1,2,3
\end{align*}
$$

where

Notice that A is not a commutative algebra
over R under this multiplication, but A is commutative minder the multiplication (1.1) in case 1. Therefore, the multiplication in this case is not isomorphic, to the one in case 1 (and. in case 2).

Case 4. Starting with the assumption that $k_{2} \neq 0, k_{1}=k_{3}=k_{4}=0$, we can write (**) as

$$
\begin{equation*}
x a y=k_{2} a_{1} b_{2} e^{\circ} \tag{4.1}
\end{equation*}
$$

This multiplication is isomorphic to the multiplication (3.1) in case 3. To show this, let $f: A \rightarrow A$ be the linear map defined by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{e}_{1}^{\prime}\right)=\mathrm{e}_{2}, \\
& \mathrm{f}\left(\mathrm{e}_{2}^{\prime}\right)=\mathrm{e}_{1}, \\
& \mathrm{f}\left(\mathrm{e}_{3}^{\prime}\right)=\mathrm{k}_{2} e_{3}, \quad \mathrm{k}_{2} \in \mathbb{R}
\end{aligned}
$$

We already proved that case II on page 42 is a $1-1$, onto map so f is a $1 \mathbf{1}$, onto map. Then the multiplication (3.1) in case 3 implies that

$$
\begin{aligned}
f(x y) & =f\left(a_{2}^{\prime} b_{1}^{\prime} e_{3}^{\prime}\right), \\
& =k_{2} a_{2}^{\prime} b_{1}^{\prime} e_{3},
\end{aligned}
$$

whereas, on the other hand, (4.1) implies that

$$
\begin{aligned}
f(x) \text { of }(y)= & f\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right) o \\
& f\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right) \\
= & \left(a_{2}^{\prime} e_{1}+a_{1}^{\prime} e_{2}+k_{2} a_{3}^{\prime} e_{3}\right) \circ\left(b_{2}^{\prime} e_{1}+b_{1}^{\prime} e_{2}+k_{2} b_{3}^{\prime} e_{3}\right) \\
= & k_{2} a_{2}^{\prime} b_{1}^{\prime} e_{3}
\end{aligned}
$$

Therefore, it is immediate that these two multiplications are isomorphic.

Case 5. Assume that $k_{1} \neq 0, k_{2} \neq 0$ and $k_{3}=k_{4}=0$ in this case. Then (${ }^{*}$) becomes (5.1)

$$
x o y=k_{1} a_{1} b_{1} e_{3}+k_{2} a_{1} b_{2} e_{3}
$$

We claim that this multiplication is isomorphic to the multiplication (3.1) in case 3. To prove this, let $f: A \rightarrow A$ be the linear map defined by

$$
\begin{array}{ll}
f\left(e_{1}\right)=k_{1} e_{1}^{\prime}+e_{2}^{\prime}, \\
f\left(e_{2}\right)=k_{2} e_{2}^{\prime} \\
f\left(e_{3}\right)=e_{3}^{1} & k_{1}, k_{2} \in \mathbb{R}
\end{array}
$$

Then, the multiplication $(5,1)$ implies that

$$
\begin{aligned}
f(x o y) & =f\left[\left(k_{1} \varepsilon_{1} b_{1}+k_{2} a_{1} b_{2}\right) e_{3}\right] \\
& =\left(k_{1} a_{1} b_{1}+k_{2} a_{1} b_{2}\right) e_{3}^{\prime},
\end{aligned}
$$

and we use the multiplication (3.1) in case 3 page 53 to get

$$
\begin{aligned}
f(x) f(y)= & f\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right) f\left(b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right) \\
= & {\left[\left(k_{1} a_{1}+k_{2} a_{2}\right) e_{1}^{i}+a_{1} e_{2}^{\prime}+a_{3} e_{3}^{i}\right] } \\
& {\left[\left(k_{1} b_{1}+k_{2} b_{2}\right) e_{1}^{\prime}+b_{1} e_{2}^{i}+b_{3} e_{3}^{\prime}\right] } \\
= & a_{1}\left(k_{1} b_{1}+k_{2} b_{2}\right) e_{3}^{i} \\
= & \left(k_{1} a_{1} b_{1}+k_{2} a_{1} b_{2}\right) e_{3}^{\prime}
\end{aligned}
$$

This with the property of f in case III page 43 implies
that these two multiplications are isomorphic.
Case 6. Let $k_{3} \neq C, k_{4} \neq 0, k_{1}=k_{2}=0$. Then from
(**) we have

$$
\begin{equation*}
x o y=\left(k_{3} a_{2} b_{1}+k_{4} a_{2} b_{2}\right) e_{3} \tag{6.1}
\end{equation*}
$$

This muitiplication is isomorphec to the multiplication in case 3. To prove this, let $f: A \rightarrow A$ be a linear map difined by

$$
\begin{aligned}
& f\left(e_{1}\right)=k_{3} e_{1}^{\prime} \\
& f\left(e_{2}\right)=k e_{1}^{\prime}+e_{2}^{\prime} \\
& f\left(e_{3}\right)=e_{3}^{\prime} \quad k_{3}, k_{4} \in \mathbb{R}
\end{aligned}
$$

Then f is a 1-1, onto map by the case IV pabe 43. This with the multiplication (6.1) implies that

$$
\begin{aligned}
f(x \circ y) & =f\left[\left(k_{3} a_{2} b_{1}+k_{2} a_{2} b_{2}\right) e_{3}\right] \\
& =\left(k_{3} a_{2} b_{1}+k_{4} a_{2} b_{2}\right) e_{3}^{\prime}
\end{aligned}
$$

whereas, from the multiplication (3.1) of case 3 page 53, we have

$$
\begin{aligned}
f(x) f(y)= & f\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right) f\left(b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right) \\
= & {\left[a_{2} e_{1}^{i}+\left(k_{3} a_{1}+k_{4} a_{2}\right) e_{2}^{\prime}+a_{3} e_{3}^{\prime}\right]\left[b_{2} e_{1}^{i}\right.} \\
& \left.+\left(k_{3} b_{1}+k_{4} b_{2}\right) e_{2}^{\prime}+b_{3} e_{3}^{:}\right] \\
= & \left(k_{3} a_{1}+k_{4} a_{2}\right) b_{2} e_{3}^{\prime} \\
= & \left(k_{3} a_{1} b_{2}+k_{4} a_{2} b_{2}\right) e_{3}^{\prime}
\end{aligned}
$$

That is $f(x \circ y)=f(x) f(y)$, and consequently these two multiplications are isomorphic.

Case 7. We begin this case with the assumption that $k_{1} \neq 0, k_{3} \neq 0$ and $k_{2}=k_{4}=0$, then from (**) we have,

$$
x o y=\left(k_{1} a_{1} b_{1}+k_{3} a_{2} b_{1}\right) e_{3}
$$

We claim that this multiplication is isomorphic to the multiplication in case 3. Let $f: 4 \rightarrow A$ be the linear map defined by

$$
\begin{aligned}
& f\left(e_{1}\right)=e_{1}^{\prime}+k_{1} e_{2}^{\prime} \\
& f\left(e_{2}\right)=k_{3} e_{2}^{\prime} \\
& f\left(e_{3}\right)=e_{3}^{\prime}
\end{aligned}
$$

Then we have that f is a linear, $1-1$, onto map by the case III page 43. Moreover

$$
\begin{aligned}
f(x o y) & =f\left[\left(k_{1} a_{1} b_{1}+k_{3} a_{2} b_{1}\right) e_{3}\right] \\
& =\left(k_{1} a_{1} b_{1}+k_{3} a_{2} b_{1}\right) e_{3}^{1}
\end{aligned}
$$

whereas, the multiplication (3.1) of case 3 page 53 gives

$$
\begin{aligned}
f(x) f(y)= & f\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right) f\left(b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right) \\
= & {\left[a_{1} e_{1}^{i}+\left(k_{1} a_{1}+k_{3} a_{2}\right) e_{2}^{1}+a_{3} e_{3}^{\prime}\right] } \\
& {\left[b_{1} e_{1}^{i}+\left(k_{1} b_{1}+k_{3} b_{2}\right) e_{2}^{\prime}+b_{3} e_{3}^{!}\right] } \\
= & \left(k_{1} a_{1}+k_{3} a_{2}\right) b_{1} e_{3} \\
= & \left(k_{1} a_{1} b_{1}+k_{3} a_{2} b_{1}\right) e_{3}
\end{aligned}
$$

Therefore, these two multiplications are isomorphic.

Case 8. In this case we take $k_{2} \neq 0, k_{\Lambda_{2}} \neq 0$, $k_{1}=k_{3}=0$ in $\left(*^{*}\right)$. This assumption, together with (**), implies that

$$
\begin{equation*}
\text { xoy }=\left(k_{2} a_{1} b_{2}+k_{4} a_{2} b_{2}\right) e_{3} \tag{8.1}
\end{equation*}
$$

As in the abofe cases, we can prove that this multiplication is isomorphic to the muliplication (3.1) in case 3, We let f: $A \rightarrow A$ be the linear map defined by

$$
f\left(e_{1}\right)=k_{2} e_{2}^{\prime}
$$

$$
\begin{aligned}
& f\left(e_{2}\right)=e_{1}^{1}+k_{4} e_{2}^{\prime} \\
& f\left(e_{3}\right)=e_{3}^{\prime}
\end{aligned}
$$

By (IV) page 43 , f is a $1-1$, onto map. We have from (8.1) that

$$
\begin{aligned}
f(x \circ y) & =f\left[\left(k_{2} a_{1} b_{2}+k_{4} a_{2} b_{2}\right) e_{3}\right] \\
& =\left(k_{2} a_{1} b_{2}+k_{4} a_{2} b_{2}\right) e_{3}^{\prime}
\end{aligned}
$$

and, by using (3.1) of case 3 page 53 , we get

$$
\begin{aligned}
f(x) f(y) & =f\left(a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}\right) f\left(b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}\right) \\
= & {\left[a_{2} e_{1}^{\prime}+\left(k_{2} a_{1}+k_{4} a_{2}\right) e_{2}^{\prime}+a_{3} e_{3}^{\prime}\right] } \\
& {\left[b_{2} e_{1}^{1}+\left(k_{2} b_{1}+k_{4} b_{2}\right) e_{2}^{\prime}+b_{3} e_{3}^{\prime}\right] } \\
& =\left(k_{2} a_{1}+k_{4} a_{2}\right) b_{2} e_{3}^{\prime} \\
& =\left(k_{2} a_{1} b_{2}+k_{4} a_{2} b_{2}\right) e_{3}^{\prime}
\end{aligned}
$$

That is $f(x \circ y)=f(x) f(y)$, these two multiplication are isomorphic.

In the proof of the next cases, it will be
useful to have the following definitions and lemma.
Definition 5,5 : The center Cof an algebra A is the set

$$
C=\{x \in A \mid x y=y x=0 \forall y \in A\} \text {. }
$$

By the left-center C_{L} of A ahd the right - center C_{R} of
A we mean
that

$$
C_{\mathbf{L}}=\{x \in A \mid x y=0, \forall y \in A\}
$$

and

$$
C_{R}=\{x \in A \mid y x=0, \forall y \in A\}
$$

Lemma 5.6 : Let A and B be finite dimensional algebras over a field \mathbb{R} with multiplication 0 and *respectively. Suppose that these two multiplications are isomorphic,
with respect to the function $f: A \rightarrow A$, then f takes the center (left center, right center) $C\left(C_{L}, C_{R}\right)$ of A isomorphically onto the center (leftcenter, right center) $C^{\prime}\left(C_{L}^{\prime}, C_{R}^{\prime}\right)$ of B.

Proof By the definition of center, we have

$$
C=\{x \in A \mid x y=y x=0, \forall y \in A\}
$$

and

$$
C^{\prime}=\left\{x^{\prime} \in B \mid x^{\prime} y^{\prime}=y^{\prime} x^{\prime}=0, \forall y^{\prime} \in B\right\}
$$

Let $x \in C$, consider $f(x)$. Since f is un isomorphism; of A onto B, then for all $y^{\prime} \in B$ we can find a unique $y \in A$ such that f $(y)=y^{\prime}$.

Therefore

$$
f(x) * y^{\prime}=f(x) * f(y)
$$

By using the definition of isomorphism of multiplications,
we have

$$
\begin{aligned}
f(x) * y^{\prime} & =f(x) * f(y) \\
& =f(x \circ y) \\
& =f(0) \\
& =0
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime} * f(x) & =f(y) * f(x) \\
& =f(y \circ x) \\
& =f(0) \\
& =0
\end{aligned}
$$

That is $f(x) * y^{\prime}=y^{\prime} *^{f}(x)=0$ for all y^{\prime} in B, and
hence $f(x) \in C^{\prime}$.
Now, let $x^{\prime} \in C^{\prime}$, therefore $x^{\prime} * y^{\prime}=y^{\prime} * x^{\prime}=0$ for all y^{\prime} in B. Since f is onto, we can find a unique $x \in A$ such that $f(x)=x^{\prime}$. To prove that $x \in C$, suppose otherwise, i.e $x \notin C$, then there exists a $y \in A$ such that roy $\neq 0$ or you $\neq 0$. Since f is an isomorphism , the kernel of $\mathrm{f}=\{0\}$, implying that $\mathrm{f}(\mathrm{xoy}) \neq 0$ if soy $\neq 0$. Hence, $f(x) * f(y) \neq 0$ for some $y \in A$. This implies that $x^{\prime}=f(x) \notin C^{\prime}$ which is a contradiction (we can similarly prove that $f(x) \notin C^{\prime}$ for you $\neq 0$). Therefore, if $f(x) \in C$ we must have $x \in C$. Using the fact that f is an isomorphism of A onto B and the proof above we can conclude that f takes C isomorphically on to $C ?$.

We can use the same method as above to prove the same result for the left and right centers of A and B.
Q.B.D.

Now we continue to the next cases.
Case 9. Keeping our earlier notation, we have
from (**) with $k_{2} \neq 0, k_{3} \neq 0, k_{1}=k_{4}=0$ that roy $=\left(k_{2} a_{1} b_{2}+k_{3} a_{2} b_{1}\right) a_{3}$,
for $x=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, \quad y=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3},\left\{a_{i}, b_{j}\right\} \subset \mathbb{R}, i, j=1,2.3$ Like the other previous cases, we may choose a
new basis $e_{1}^{t h}=e_{1}, e_{2}^{l t}=e_{k_{2}}^{2}, e_{3}^{l \prime}=k_{2} e_{3}$ such that

$$
x o y=\left(a_{1}^{\prime \prime} b_{2}^{\prime \prime}+\frac{k_{3}}{k_{2}} a_{2}^{\prime \prime} b_{1}^{\prime \prime}\right) e_{3}^{n}
$$

for $x=a_{1}^{\prime \prime} e_{1}^{\prime \prime}+a_{2}^{\prime \prime} e_{2}^{\prime \prime}+a_{3}^{\prime \prime} e_{3}^{\prime \prime}, y=b_{1}^{\prime \prime} e_{1}^{\prime \prime}+b_{2}^{n} e_{2}^{\prime \prime}+b_{3}^{\prime \prime} e_{3}^{\prime \prime}$, $\left\{a_{i}^{\prime \prime}, b_{j}^{\prime \prime}\right\} \subset \mathbb{R}, i, j=1,2,3$

Let $k^{\prime \prime}=\frac{k_{3}}{k_{2}}$, then we have
(9.1) \quad soy $=\left(a_{1}^{\prime \prime} b_{2}^{\prime \prime}+k^{\prime \prime} a_{2}^{\|} b_{1}^{\prime \prime}\right) e_{3}^{\prime \prime}$, for some $k " \neq$ in \mathbb{R}. We claim that the multiplication (9.1) is not
isomorphic to the multiplications in case 1 and case 3. First, we shall prove that it is not isomorphic to case 1. Since, we have, in case 1, that (1.1) $\quad x y=a_{1}^{\prime} D_{1}^{\prime} e_{3}^{\prime}$
for $x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, \quad y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}$, $\left\{a_{i}^{\prime}, b_{j}^{\prime}\right\} \subset \mathbb{R}, i, j=1,2,3$. Therefore, the center C of A under the multiplication (1.1) is generated by e_{2} and e_{3}, that is $c=\left[e_{2}, e_{3}\right]$. Hence, the dimension of C is 2. But the center C^{\prime} of A under the multiplication (9.1) is generated by e_{3} and the dimension of C^{\prime} is 1. These imply that the center C cannot be isomorphic to the center C^{\prime} and hence, these two multiplications are not isomorphic.

Secondly we shall prove that the multiplication in case 3 is not isomorphic to the multiplication in case 9. We begin by recalling that the multiplication in case 3 is

$$
\begin{equation*}
x y=a_{2}^{\prime} b_{1}^{\prime} e_{3}^{\prime}, \tag{3.1}
\end{equation*}
$$

for $x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, \quad y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}$,
$\left\{a_{i}, b_{j}^{i}\right\} \subset \mathbb{R}, i, j=1,2,3$. We can see that the left center C_{L} of A under the multiplication (3.1) is $C_{L}=\left[e_{1}, e_{3}\right]$ whereas the left center C_{L} of A under the
multiplication (9.1) is $C_{L}=\left[e_{3}\right]$. Therefore, the dimensions of C_{L} and C_{L} are not equal, and consequently they cannot be isomorphic. Thus the multiplication (3.1) is not isomorphic to the multiplication (9.1).

Suppose that $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}$ is another basis of A such that we have the multiplication (9.2) $\quad x^{*} y=\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime}, \quad k_{1}^{\prime} \neq 0$ in \mathbb{R},
 We claim that the multiplication (9.1) and (9.2) are isomorphic iff $k^{\prime}=k^{\prime \prime}$ or $k^{\prime}=\frac{1}{k^{\prime \prime}}$. First we assume that the multiplication (9.1) and (9.2) are isomorphic. Therefore, we can find a linear, $1-1$, onto function $f:$ $A \rightarrow A$ such that (9.3)

$$
f(x * y)=f(x) \text { of }(y) .
$$

This function f is in the form

$$
\begin{aligned}
& f\left(e_{1}^{\prime}\right)=m_{1} e_{1}^{\prime \prime}+m_{2} e_{2}^{\prime \prime}+m_{3} e_{3}^{n}, \\
& f\left(e_{2}^{\prime}\right)=p_{1} e_{1}^{\prime \prime}+p_{2} e_{2}^{\prime \prime}+p_{3} e_{3}^{\prime \prime}, \\
& f\left(e_{3}^{\prime}\right)=q e_{3}^{\prime \prime}, \quad \text { for }\left\{m_{i}, p_{j}, q\right\} \subset \mathbb{R}, i, j=1,2,3, q \neq 0 \text { in } \mathbb{R} .
\end{aligned}
$$

Since th formula (9.3) holds for all x,yin A. Let x $=e_{1}, y=e_{i}$, then $(9.2),(9.1)$ and (9.3) imply that

$$
\begin{align*}
& m_{1} m_{2}(1+k ")=0 \tag{1.}\\
\text { If } x= & e_{1}^{\prime}, y=e_{2}^{\prime}, \text { then } \\
& m_{1} p_{2}+k{ }^{\prime \prime} m_{2} p_{1}=q \tag{2}\\
\text { If } x= & e_{2}^{\prime}, y=e_{1}^{\prime}, \text { then } \\
& m_{2} p_{1}+k k^{\prime \prime} m_{1} p_{2}=q \cdot k^{\prime} \tag{3}\\
\text { If } x= & e_{2}^{\prime}, y=e_{2}^{\prime}, \text { then }
\end{align*}
$$

$$
p_{1} p_{2}\left(1+k^{\prime \prime}\right)=0
$$

Suppose that $k "=-1$, then from (2) we have

$$
\begin{equation*}
m_{1} p_{2}-m_{2} p_{1}=q \tag{5}
\end{equation*}
$$

and from (3) implies that

$$
\begin{equation*}
m_{2} p_{1}-m_{1} p_{2}=q \cdot k^{\prime} \tag{6}
\end{equation*}
$$

Adding (5) and (6) together we get

$$
q\left(1+k^{\prime}\right)=0
$$

Since $q \neq 0$ (or else ger $f \neq 0$ which is a contradiction), $1+k^{1}=0$. That is $k^{\prime}=-1$.

Suppose that $k " \neq-1$, then $1+k " \neq 0$. Therefore (1)
and (4) imply that $m_{1}=0$ or $m_{2}=0$ and $p_{1}=0$ or $p_{2}=0$. If $m_{1}=0$ and $m_{2}=0$, then $f\left(e_{1}^{1}\right)=m_{3} e_{3}^{\prime \prime}$ and f is not an isomorphism. Therefore $m_{1}=0$ or $m_{2}=0$ and not both. Suppose that $m_{1}=0$, then $m_{2} 0$.

From (2) we have

$$
k n m_{2} p_{1}=q,
$$

whereas (3) implies that

$$
m_{2} p_{1}=q \cdot k^{v},
$$

Therefore,

Since $q \neq 0$, then

$$
k^{\prime \prime} \mathrm{qk}^{\prime}=\mathrm{q}
$$

Similarly, if $m_{2}=0$, then $m_{1} 0$ and we have from
(2) that

$$
m_{1} p_{2}=q
$$

whereas (3) implies that

$$
k^{\prime} m_{1} p_{2}=q \cdot k^{\prime \prime}
$$

Therefore,

$$
k^{\prime} q=q k^{\prime \prime}
$$

That is $k^{\prime}=k^{\prime \prime}$. Therefore, if (9.1) is isomorphic to (9.2), then $k^{\prime}=k^{\prime \prime}$ or $k^{\prime}=\frac{1}{k^{\prime \prime}}{ }^{\prime}$

Conversely, suppose that $k^{\prime}=k^{\prime \prime}$. We let f :
$A \rightarrow A$ be the linear map defined by

$$
\begin{aligned}
& f\left(e_{1}^{\prime}\right)=e_{1}^{\prime \prime}, \\
& f\left(e_{2}^{\prime}\right)=e_{2}^{\prime \prime}, \\
& f\left(e_{3}^{\prime}\right)=e_{3}^{\prime \prime},
\end{aligned}
$$

Then (9.1) implies that

$$
\begin{aligned}
f(x) \circ f(y) & =f\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right) \circ f\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right) \\
& =\left(a_{1}^{\prime} e_{1}^{\prime \prime}+a_{2}^{\prime} e_{2}^{\prime \prime}+a_{3}^{\prime} e_{3}^{\prime \prime}\right) \circ\left(b_{1}^{\prime} e_{1}^{\prime \prime}+b_{2}^{\prime} e_{2}^{\prime \prime}+b_{3}^{\prime} e_{3}^{\prime \prime}\right) \\
& =\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime \prime} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime \prime},
\end{aligned}
$$

whereas (9.2) implies that

$$
\begin{aligned}
f(x * y) & =f\left[\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime}\right] \\
& =\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime \prime} .
\end{aligned}
$$

Therefore $f\left(x^{*} y\right)=f(x)$ of (y) for $k^{\prime}=k "$, and f is $1-1$, onto from case II page 42. Hence, the multiplications (9.1) and (9.2) are isomorphic.

Suppose further that $k^{\prime}=\frac{1}{k^{\prime}} \|^{\prime}$ Let $f: A \rightarrow A$ be defined by

$$
\begin{aligned}
& f\left(e_{1}^{\prime}\right)=k^{\prime} e_{2}^{\prime \prime}, \\
& f\left(e_{2}^{\prime}\right)=e_{1}^{\prime \prime}, \\
& f\left(e_{3}^{\prime}\right)=e_{3}^{\prime \prime}, \quad k^{\prime} \neq 0 \text { in } \mathbb{R} .
\end{aligned}
$$

Then (9.2) implies that,

$$
f\left(x^{*} y\right)=f\left[\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime}\right]
$$

$$
=\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime \prime},
$$

and on the other hand, (9.1) implies that

$$
\begin{aligned}
f(x) \circ f(y) & =f\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right) \text { of }\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right) \\
& =\left(a_{2}^{\prime} e_{1}^{\prime \prime}+k^{\prime} a_{1}^{\prime} e_{2}^{\prime \prime}+a_{3}^{\prime} e_{3}^{\prime \prime}\right) \circ\left(b_{2}^{\prime} e_{1}^{\prime \prime}+k^{\prime} b_{1}^{\prime} e_{2}^{\prime \prime}+b_{3}^{\prime} e_{3}^{\prime \prime}\right) \\
& =\left[k^{\prime} a_{2}^{\prime} b_{1}^{\prime}+k^{\prime \prime}\left(k^{\prime} a_{1}^{\prime}\right) b_{2}^{\prime}\right] e_{3}^{\prime \prime} \\
& =\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}\right) e_{3}^{\prime \prime}, \text { since }=\frac{1}{k}, \cdot
\end{aligned}
$$

That is $f\left(x^{*} y\right)=f(x) 0$ f y^{\prime} for $k^{\prime}=\frac{1}{k \prime \prime}$. Case (II) page 42 implies that f is $1 \mathbf{- 1}$ and onto. Therefore these multiplications are isomorphic. Thus the multiplications (9.1) and (9.2) are isomorphic iff $k^{\prime}=k^{\prime \prime}$, or $k^{\prime}=\frac{1}{k^{\prime \prime}}$. Case 10. Let $\mathrm{k}_{1} \pm 0, \mathrm{k}_{4} \mathrm{H}_{0}, \mathrm{k}_{2}=\mathrm{k}_{3}=0$, Then (${ }^{*}$) becomes

$$
(10.1) \quad x * y=\left(k_{1} a_{1} b_{1}+k_{4} a_{2} b_{k_{1}}\right) e_{3}
$$

If $\frac{k_{1}}{k_{4}}<0$, then we let $h=-\frac{k_{1}}{k_{4}}$. That is $h>0$, we can choose a new basis $e_{1}^{\prime}=e_{2}^{:}=\sqrt{h} e_{2}$ (take the positive
square root.), $e_{\frac{1}{3}}=k_{1} e_{3}$, and get
(10.2)

$$
x * y=\left(a_{1}^{\prime} b_{1}^{\prime}-a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}
$$

for $x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}$,
$\left\{a_{i}^{t}, b_{j}^{i}\right\} \subset \mathbb{R}, i, j=1,2,3$.
Consider the multiplication (9.1) of case 9
page 60. If $\mathbf{k}^{\prime \prime}=1$ we have

$$
(9.3) \quad x \circ y=\left(a_{1}^{\prime \prime} b_{2}^{\prime \prime}+a_{2}^{\prime \prime} b_{1}^{\prime \prime}\right) e_{3}^{\prime \prime}
$$

$$
\text { for } x=a_{1}^{\prime \prime} e_{1}^{\prime \prime}+a_{2}^{\prime \prime} e_{2}^{\prime \prime}+a_{3}^{\prime \prime} e_{3}^{\prime \prime}, y=b_{1}^{\prime \prime} e_{1}^{\prime \prime}+b_{2}^{\prime \prime} e_{2}^{\prime \prime}+b_{3}^{\prime \prime} e_{3}^{\prime \prime} \text {, }
$$

$$
\left\{a_{i}^{\|}, b_{j}^{\prime \prime}\right\} \subset \mathbb{R}, i, j=1,2,3
$$

$$
\text { We claim that the multiplications }(10.2) \text { and (9.3) }
$$

are isomorphic. To prove this, let $f: \mathbb{A} \rightarrow \mathbb{A}$ be the
linear map defined by

$$
\begin{aligned}
& f\left(e_{1}^{\prime}\right)=e_{1}^{\prime \prime}+e_{2}^{\prime \prime}, \\
& f\left(e_{2}^{\prime}\right)=-e_{1}^{\prime \prime}+e_{2}^{\prime \prime}, \\
& f\left(e_{3}^{\prime}\right)=2 e_{3}^{\prime \prime},
\end{aligned}
$$

then case V page 43 implies that f is $1-1$ and onto
mapping on A. The multiplication (10.2) implies that

$$
\begin{aligned}
f\left(x^{*} y\right) & =f\left[\left(a_{1}^{\prime} b_{1}^{\prime}-a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}\right] \\
& =2\left(c_{1}^{\prime} b_{1}^{\prime}-a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime \prime},
\end{aligned}
$$

whereas, the multiplication (9.3) implies that

$$
\begin{aligned}
f(x) \circ f(y)= & f\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right) \circ f\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right) \\
= & {\left[\left(a_{1}^{\prime}-a_{2}^{\prime}\right) e_{1}^{\prime \prime}+\left(a_{1}^{\prime}+a_{2}^{\prime}\right) e_{2}^{\prime \prime}+2 a_{3}^{\prime} e_{3}^{\prime \prime}\right] \circ\left[\left(b_{1}^{\prime}-b_{2}^{\prime}\right) e_{1}^{\prime \prime}\right.} \\
& \left.+\left(b_{1}^{\prime}+b_{2}^{\prime}\right) e_{2}^{\prime \prime}+2 b_{3}^{\prime} e_{3}^{\prime \prime}\right] \\
= & {\left[\left(a_{1}^{\prime}-a_{2}^{\prime}\right)\left(b_{1}^{\prime}+b_{2}^{\prime}\right)+\left(a_{1}^{\prime}+a_{2}^{\prime}\right)\left(b_{1}^{\prime}-b_{2}^{\prime}\right)\right] e_{3}^{\prime \prime} } \\
= & 2\left(a_{1}^{\prime} b_{1}^{\prime}-b_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime \prime}
\end{aligned}
$$

that is $f\left(x^{*} y\right)=f(x)$ of (y), or equivalently these
two multiplications are isomorphic.
Next, if $\frac{k_{1}}{k_{4}}>0$ in $\operatorname{case}(10.1)$, then we may choose
a new basis $e_{1}^{\prime}=e_{1}, e_{2}^{2}=\sqrt{\frac{k_{1}}{k_{4}}} e_{2}$, (take the positive square root) $e_{3}^{\prime}=k_{1} e_{3}$ such that (10.1) becomes
(10.3) $\quad x * y=\left(a_{1}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}$,
for $x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}$,

$$
\left\{a \frac{1}{2}, b_{j}^{2}\right\} C \mathbb{R}, i, j=1,2,3
$$

This multiplication is not isomorphic to the
multiplication in case 1. Since the center C of A
under the multiplication in case 1 is $C=\left[e_{2}, e_{3}\right]$ and
dimension of C is 2 , whereas the center C of A under
the multiplication (10.3) is $C^{\prime}=\left[e_{3}\right]$ and dimension of C^{\prime} is 1. Moreover, the algebra A is not commutative under the multiplication (3.1) of case 3 page 53', but A is commutative under the multiplication (10.3). Therefore the multiplications (10.3) and (3.1) cannot be isomorphic. Next, we claim that the multiplication (10.3) is not isomorphic to the multiplication (9.1) of case 9. Recalling that the multiplication (9.1) is (9.1) \quad soy $=\left(a_{1}^{\prime b_{2}^{\prime \prime}+z^{\prime \prime}}{ }_{2}^{\prime \prime} b_{1}^{n}\right) e_{3}^{\prime \prime}, \quad k^{\prime \prime} \neq 0$ in \mathbb{k}, for $x=a_{1}^{\prime \prime} e_{1}^{\prime \prime}+a_{2}^{\prime \prime} e_{2}^{\prime \prime}+a_{3}^{\prime \prime} e_{3}^{\prime \prime}, y=b_{1}^{\prime \prime} e_{1}^{\prime \prime}+b_{2}^{\prime \prime} e_{2}^{\prime \prime}+b_{3}^{\prime \prime} e_{3}^{\prime \prime}$,

$$
\left\{a_{i}^{\prime \prime}, b_{j}^{n}\right\} c a, i, j=1,2,3 .
$$

Suppose to the contrary that these two multiplications are isomorphic, then we can find a linear, 1-1, onto map $f: \mathbb{A} \longrightarrow A$ such that
(10.4) $f(x \circ y)=f(x) * f(y)$,
and f is in the form

$$
\begin{aligned}
& f\left(e_{1}^{\prime \prime}\right)=m_{1} e_{1}^{\prime}+m_{2} e_{2}^{\prime}+m_{3} e_{3}^{\prime} \\
& f\left(e_{2}^{\prime \prime}\right)=p_{1} e_{1}^{\prime}+p_{2} e_{2}^{\prime}+p_{3} e_{3}^{\prime} \\
& f\left(e_{3}^{\prime \prime}\right)=q e_{3}^{\prime}, \quad\left\{m_{i}, p_{j}\right\} \subset \mathbb{R}, i, j=1,2,3, q \neq 0 \text { in } \mathbb{R} .
\end{aligned}
$$

Since, (10.4) holds for all x, y in A. Then, if $x=e_{1}^{n}$,
$y=e_{1}^{\prime \prime},(10.3),(9.1),(10.4)$ imply that

$$
m_{1}^{2}+m_{2}^{2}=0
$$

But m_{1}, m_{2} is in \mathbb{R}, therefore $m_{1}=0$ and $m_{2}=0$. Hence $f\left(e_{1}^{\prime \prime}\right)=m_{3} e_{3}^{\frac{1}{3}}$, where e_{1}^{i} is in A and $e_{3}^{\prime \prime}$ is in $A^{\hat{\beta}}$, and f is not an isomorphism. This is a contradiction. That is the multiplications (9.1) and (10.3) cannot be isomorphic.

Case 11. In this case we assume that $k_{2} \neq 0$,

 $k_{3} \neq 0, k_{4} \neq 0, k_{1}=0$, then the multiplication ($* *$) becomes$$
\begin{equation*}
x^{*} y=\left(k_{2} a_{1} b_{2}+k_{3} a_{2} b_{1}+k_{4} a_{2} b_{2}\right) e_{3} \tag{11.1}
\end{equation*}
$$

If we choose a new basis $e_{1}^{\prime}=\frac{k_{4}}{k_{2}} e_{1}, \theta_{2}^{\prime}=e_{2}, e_{3}^{\prime}=k_{4} e_{3}$, then it is immediate that

$$
x * y=\left(a_{1}^{\prime} b_{2}^{\prime}+\frac{k_{3}}{k_{2}} a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}
$$

for $x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}$,
$\left\{a_{1}^{\prime}, b_{j}^{\prime}\right\} \subset \mathbb{R} \quad i, j=1,2,3$. Let $k^{\prime}=\frac{k_{3}}{k_{2}}$, then (11.2)

$$
\left.x^{*} y\right)=\left(a_{1}^{\prime} b_{2}^{i}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime} \text {, for } k^{i} \neq 0 \text { in } \mathbb{R}
$$

Suppose $k^{\prime} \neq-1$, then claim that this multiplication is isomorphic to the multiplication (9.1) of case 9 page 50 whenever $k^{\prime}=k^{\prime \prime}$. To prove this, let f: $A \rightarrow A$ be the linear map defined by

$$
\begin{aligned}
& f\left(e_{1}^{\prime}\right)=e_{1}^{\prime \prime} \\
& f\left(e_{2}^{\prime}\right)=\frac{1}{\left(1+k^{\prime}\right)} e_{1}^{\prime \prime}+e_{2}^{\prime \prime} \\
& f\left(e_{3}^{\prime}\right)=e_{3}^{\prime \prime}, \quad k^{\prime} \neq 0,-1 \text { in } \mathbb{R} .
\end{aligned}
$$

In (9.1) of case 9, we have

$$
\text { xoy }=\left(a_{1}^{\| b}{ }_{2}^{\prime \prime}+k^{\prime \prime} a_{2}^{\|} b_{1}^{\prime}\right) e_{3}^{n}, \quad k " \neq 0 \text { in } \mathbb{R}
$$

for $x=a_{1}^{\prime \prime} e_{1}^{\prime \prime}+a_{2}^{\prime \prime} e_{2}^{\prime \prime}+a_{3}^{\prime \prime} e_{3}^{\prime \prime}, y=b_{1}^{\prime \prime} e_{1}^{\prime \prime}+b_{2}^{\prime \prime} e_{2}^{\prime \prime}+b_{3}^{\prime \prime} e_{3}^{\prime \prime}$,

$$
\left\{a_{i}^{\prime \prime}, b_{j}^{\prime \prime}\right\} \subset \mathbb{R}, i, j,=1,2,3 .
$$

Therefore, with $k^{*}=k^{\prime \prime}$ we have

$$
\begin{aligned}
f(x) \text { of }(y)= & f\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right) \text { of }\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right) \\
= & {\left[\left(a_{1}^{\prime}+\frac{1}{\left(1+k^{\prime}\right)} a_{2}^{\prime}\right) e_{1}^{\prime \prime}+a_{2}^{\prime} e_{2}^{\prime \prime}+a_{3}^{\prime} e_{3}^{\prime \prime}\right] o, } \\
& {\left[\left(b^{\prime}+\frac{1}{\left(1+k^{\prime}\right)} b_{2}^{\prime}\right) e_{1}^{\prime \prime}+b_{2}^{\prime} e_{2}^{\prime \prime}+b_{3}^{\prime} e_{3}^{\prime \prime}\right] } \\
= & {\left[\left(a_{1}^{\prime}+\frac{1}{\left(1+k^{\prime}\right)} a_{2}^{\prime}\right) b_{2}^{\prime}+k^{\prime \prime} a_{2}^{\prime}\left(b_{1}^{\prime}+\frac{1}{\left(1+k^{\prime}\right)} b_{2}^{\prime}\right)\right] e_{3}^{\prime \prime} } \\
= & \left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime \prime} a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime \prime},
\end{aligned}
$$

whereas, the multiplication (11.2) implies that

$$
\begin{aligned}
f\left(x^{* y}\right) & =f\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime} \\
& =\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} \varepsilon_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime \prime}
\end{aligned}
$$

That is $f\left(x^{*} y\right)=f(x)$ of (y) whenever $k^{\prime}=k^{\prime \prime}$ and $k^{\prime} \neq-1$. Consequently, the multiplication (11.2) with $\mathbf{k}^{\prime} \neq-1.1 s$ isomorphic to the multiplication in case 9 .

Suppose $\mathrm{k}^{\prime}=\mathbf{- 1}$, then (11.2) becomes
(11.3) $\quad x^{*} y=\left(a_{1}^{\prime} b_{2}^{\prime}-a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}$.

We can easily see that the algebra A is not commutative under the multiplication (11.3) while A is commutative under the multiplication in case 1 and case 10. Therefore the multipliplication (11.3) cannot be isomorphic to the multiplication in case 1 and case 10. Moreover, the left center C_{L} of A under the multiplication (11.3) is e_{3} and hence C_{L} has dimension 1. Therefore the multiplication (11.2) cannot be isomorphic to multiplication (3.1)of case 3 under which the left center C_{L} is e_{1}, e_{3} and has dimension 2. Furthermore, claim that the multiplication (11.3) is not isomorphic to the multiplication in case 9. Recalling that the multiplication in case 9 is

$$
\begin{align*}
x o y= & \left(a_{1}^{\prime \prime} b_{2}^{\prime \prime}+k " a_{2}^{\prime} b_{1}^{\prime \prime}\right) e_{3}^{\prime \prime}, k " \neq 0 \text { in } R \text {. for } \tag{9.1}\\
\mathbf{x}= & a_{1}^{\prime \prime} e_{1}^{\prime \prime}+a_{2}^{\prime \prime} e_{2}^{\prime \prime}+a_{3}^{\prime \prime} e_{3}^{\prime \prime}, y=b_{1}^{\prime \prime} e_{1}^{\prime \prime}+b_{2}^{\prime e_{2}^{\prime \prime}+b_{3}^{\prime} e_{3}^{\prime \prime},} \\
& \left\{a_{i}^{\prime \prime}, b_{j}^{\prime \prime}\right\} \subset R, i, j=1,2,3 .
\end{align*}
$$

Suppose that these two multiplications are isomorphic, then there exists a linear map $f: A \rightarrow A$ which is $1-1$, onto and

$$
\begin{equation*}
f(x \circ y)=f(x) f(y) \tag{11.4}
\end{equation*}
$$

This function f is in the form,

$$
\begin{aligned}
& f\left(e_{1}^{\prime \prime}\right)=m_{1} e_{1}^{\prime}+m_{2} e_{2}^{\prime}+m_{3} e_{3}^{\prime}, \\
& f\left(e_{2}^{\prime \prime}\right)=p_{1} e_{1}^{\prime}+p_{2} e_{2}^{\prime}+p_{3} e_{3}^{\prime}, \quad\{m i, p i\}_{i=1,2,3} C R, \\
& f\left(e_{3}^{\prime \prime}\right)=q e_{3}^{\prime}, q \neq 0 \text { in } \mathbb{R} .
\end{aligned}
$$

The formula (11.4) holds for all x, y in A. Therefore, if $x=e_{1}^{\prime \prime}, y=e_{1}^{\prime \prime}(11.3),(9.1)$ and (11.4) imply that

$$
\begin{equation*}
m_{2}^{2}=0 \tag{1}
\end{equation*}
$$

If $x=e_{2}^{\prime \prime}, y=e_{2}^{\prime \prime}$, then

$$
\begin{equation*}
\mathrm{p}_{2}^{2}=0 \tag{2}
\end{equation*}
$$

From (1) and (2) we can see that $m_{2}=0$ and $p_{2}=0$. Therefore

$$
\operatorname{det} f=\left[\begin{array}{lll}
m_{1} & 0 & m_{3} \\
p_{1} & 0 & p_{3} \\
0 & 0 & q
\end{array}\right]=0
$$

that is f is hot a $1-1$, onto mapping which is a contradiction. Hence the multiplications (11.3) and (9.1) are not isomorphic.

Case 12. Let $k_{1} \neq 0, k_{2} \neq 0, k_{3} \neq 0$ and $k_{4}=0$, then
(**) can be written as
(12.1) $\quad x$ of $=\left(k_{1} a_{1} b_{1}+k_{2} a_{1} b_{2}+k_{3} a_{2} b_{1}\right) e_{3}$.

Like the other cases. We choose a new basis $e_{1}^{\prime \prime}=e_{1}$, $e_{2}^{\prime \prime=} \frac{k_{1}}{k_{2}} e_{2}, e_{3}^{\prime \prime=k_{1}} e_{3}$ and get

$$
x a y=\left(a_{1}^{\prime \prime} b_{1}^{\prime \prime}+a_{1}^{\prime \prime} b_{2}^{\prime \prime}+\frac{k_{3}}{k_{2}} a_{2}^{\prime \prime} b_{1}^{\prime \prime}\right) e_{3}^{\prime \prime},
$$

for $x=a_{1}^{\prime \prime} e_{1}^{\prime \prime}+a_{2}^{\prime \prime} e_{2}^{\prime \prime}+a_{3}^{\prime \prime} e_{3}^{\prime \prime}, y=b_{1}^{\prime \prime} e_{1}^{\prime \prime}+b_{2}^{\prime \prime} e_{2}^{\prime \prime}+b_{3}^{\prime \prime} e_{3}^{\prime},\left\{a_{i}^{\prime \prime}, b_{j}^{\prime \prime}\right\}(\mathbb{R}, i, j=1,2,3$.
Let $k^{\prime \prime}=\frac{k_{3}}{k_{2}}$, then

$$
\begin{equation*}
x o y=\left(a_{1}^{\prime \prime} b_{1}^{\prime \prime}+a_{1}^{" b} b_{2}^{\prime \prime}+k " a_{2}^{\prime \prime} b_{1}^{\prime \prime}\right) e_{3}^{n}, k^{\prime \prime} \neq 0 \text { in } \tag{12.2}
\end{equation*}
$$

Claim that this multiplication is isomorphic to the multiplication (11.1) in case 11 whenever $k^{\prime}=\frac{1}{k^{\prime \prime}}$.

Recalling that the multiplication (11.1) is
(11.1) $\quad(x * y)=\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}, k^{\prime} \neq 0$ in \mathbb{R},
for $x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{f}+b_{3}^{\prime} e_{\frac{1}{3}}$,

$$
\left\{a_{i}, b_{j}^{\prime}\right\} \in \mathbb{R}, i, j=1,2,3
$$

Let $f: A \rightarrow A$ be the linear map defined by

$$
\begin{aligned}
& f\left(e_{1}^{\prime}\right)=e_{2}^{\prime \prime}, \\
& f\left(e_{2}^{\prime}\right)=k^{\prime} e_{1}^{\prime \prime}+\left(1-k^{\prime}\right) e_{2}^{\prime \prime}, \\
& f\left(e_{3}^{\prime}\right)=e_{3}^{\prime \prime}, \quad k \neq 0 \text { in } R_{0} .
\end{aligned}
$$

The multiplication (12.2) with $k^{\prime \prime}=\frac{1}{k^{\prime}}$ implies that

$$
\begin{aligned}
& f(x) \text { of }(y)=f\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right) \text { of }\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime \prime} e_{3}^{\prime}\right) \\
& = \\
& \quad\left[k^{\prime} a_{2}^{\prime} e_{1}^{\prime \prime}+\left(a_{1}^{\prime}+\left(1-k^{\prime}\right) a_{2}^{\prime}\right) e_{2}^{\prime \prime}+a_{3}^{\prime} e_{3}^{\prime \prime}\right] 0\left[k^{\prime} b_{2}^{\prime} e_{1}^{\prime \prime}+\left(b_{1}^{\prime}+\left(1-k^{\prime}\right)\right.\right. \\
& = \\
& \quad\left[\left(k^{\prime}\right) a_{2}^{\prime}\right)\left(k_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime \prime}\right] \\
& \\
& \left.\quad\left(k^{\prime} b_{2}^{\prime}\right)\right] e_{3}^{\prime \prime} \\
& = \\
& \left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime}\right)\left(b_{1}^{\prime}+\left(1-k_{2}^{\prime}\right) b_{2}^{\prime}\right)+k^{\prime \prime}\left(a_{1}^{\prime \prime}+\left(1-k^{\prime}\right) a_{2}^{\prime}\right)
\end{aligned}
$$

Whereas the multiplication (11.1) implies that

$$
\begin{aligned}
f\left(x^{*} y\right) & =f\left[\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}\right] \\
& =\left(a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{n} .
\end{aligned}
$$

That is $f\left(x^{*} y\right)=f(x)$ of (y) and f is $1-1$, onto from case IV page 43.

Therefore the multiplication in case 12 is isomorphic to the multiplications in case 11.

Case 13. Suppose that $k_{1} \neq 0, k_{3} \neq 0, k_{4} \neq 0, k_{2}=0$,
then the multiplication (**) can written as

$$
x * y=\left(k_{1} a_{1} b_{1}+k_{3} a_{2} b_{1}+k_{4} a_{2} b_{2}\right) e_{3}
$$

By choosing a new basis $e_{1}^{\prime \prime \prime}=e_{1}, e_{2}^{\prime \prime \prime}=\frac{k_{1}}{k_{3}} e_{2}, e_{3}^{\prime \prime \prime}=k_{1} e_{3}$, we may thus write

$$
x * y=\left(a_{1}^{\prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{n \prime} b_{1}^{w \prime}+\frac{k_{1} k_{4}}{k_{3}^{2}} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime}\right) e_{3}^{\prime \prime \prime}
$$

for $x=a_{1}^{\prime \prime \prime} e_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} e_{2}^{\prime \prime \prime}+a_{3}^{\prime \prime \prime} e_{3}^{n \prime}, y=b_{1}^{\prime \prime \prime} e_{1}^{\prime \prime \prime}+b_{2}^{\prime \prime \prime} e_{2}^{\prime \prime \prime}+b_{3}^{\prime \prime \prime} e_{3}^{\prime \prime \prime}$,
$\left\{a_{i}^{\prime \prime \prime}, b_{j}^{\prime \prime \prime}\right\} \subset \mathbb{R}, i, j=1,2,3$. Let $k^{\prime \prime \prime}=\frac{k_{1} k_{4}}{k_{3}^{2}}$, then we have
(13.1)
$x^{*} y=\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+k^{\prime \prime \prime} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime \prime}\right) e_{3}^{\prime \prime \prime}$, for $k^{\prime \prime \prime} \neq 0$ in R.
Recalling that the multiplication (9.1) in case
9 is (9.1) xoy $=\left(a_{1}^{\prime \prime} b_{2}^{\prime \prime}+k^{\prime \prime} a_{2}^{\prime \prime} b_{1}^{\prime \prime}\right) e_{3}^{\prime \prime}$, for $k " \neq 0$ in \mathbb{R} and $x=a_{1}^{\prime \prime} e_{1}^{\prime \prime}+a_{2}^{\prime \prime} e_{2}^{\prime \prime}+a_{3}^{\prime \prime} e_{3}^{\prime \prime}, y=b_{1}^{\prime \prime} e_{1}^{\prime \prime}+b_{2}^{\prime \prime} e_{2}^{\prime \prime}+b_{3}^{\prime \prime} e_{3}^{\prime \prime},\left\{a_{i}^{\prime}, b_{i}^{\prime \prime}\right\} i=1,2,3 \subset \mathbb{R}$ 。
We claim that the multiplications (13.1) and (9.1) are isomorphic iff $k^{\prime \prime \prime}=\frac{-k^{\prime \prime}}{\left(1-k^{\prime \prime}\right)^{2}}$, $k^{\prime \prime \prime} \neq \pm 1$. Toprove this, we first assume that these two multiplications are isonorphic, then there exists a linean map $f ; A \rightarrow A$ such that $f(x * y)=f(x)$ of (y) and f is in the form

$$
\begin{aligned}
& f\left(e_{1}^{\prime \prime \prime}\right)=m_{1} e_{1}^{\prime \prime}+m_{2} e_{2}^{\prime \prime}+m_{3} e_{3}^{\prime \prime}, \\
& f\left(e_{2}^{\prime \prime \prime}\right)=p_{1} e_{1}^{\prime \prime}+p_{2} e_{2}^{\prime \prime}+p_{3} e_{3}^{\prime \prime},\{m i, p i\} i=1,2,3 \subset \mathbb{R}, \\
& f\left(e_{3}^{\prime \prime \prime}\right)=q e_{3}^{\prime \prime}, \quad q \neq 0 \text { in } \mathbb{R} .
\end{aligned}
$$

Therefore (13.1), (9.1) and $f(x * y) f(x)$ of(y) imply that, for $x=e_{1}^{\prime \prime \prime}, y=e_{1}^{\prime \prime \prime}$, we have

$$
\begin{align*}
& m_{1} m_{2}+k " m_{2} m_{1}=q \tag{1}\\
& \text { For } x=e_{1}^{\prime \prime \prime}, y=e_{2}^{\prime \prime \prime}, \text { we have } \\
& m_{1} p_{2}+k " m_{2} p_{1}=0 \tag{2}\\
& \text { For } x=e_{2}^{\prime \prime \prime}, y=e_{1}^{\prime \prime \prime}, \text { we have } \\
& p_{1} m_{2}+k " p_{2} m_{1}=q \tag{3}\\
& \text { For } x=e_{2}^{\prime \prime \prime}, y=e_{2}^{\prime \prime \prime}, \text { we have } \\
& p_{1} p_{2}+k " p_{2} p_{1}=k^{\prime \prime \prime} q \tag{4}
\end{align*}
$$

Since $q \neq 0$, equation (1) implies that $k " \neq-1$.

From (2) and (3) we have

$$
\begin{equation*}
m_{1} p_{2}\left(k^{\prime \prime} \underline{-}_{1}\right)=q k^{\prime \prime} \tag{5}
\end{equation*}
$$

Since q and $k^{\prime \prime}$ are not zero, and $k^{\prime \prime} \neq \pm 1$, (5) implies
that $m_{1}=\frac{q_{k}}{p_{2}\left(k^{n}{ }^{2}-1\right)}$.
Therefore, (1) implies that

$$
m_{2}=\frac{q}{m_{1}\left(1+k^{\prime \prime}\right)}=\frac{q P_{2}\left(k^{\prime 2}-1\right)}{q k^{\prime \prime}\left(1+k^{\prime \prime}\right)}=\frac{P_{2}\left(k^{\prime \prime}-1\right)}{k^{\prime \prime}}
$$

From (2) and (3) we have,

$$
=9 \text {. }
$$

That is

$$
m_{2} p_{1}\left(1-k^{n^{2}}\right)
$$

$$
p_{1}
$$

$$
\begin{aligned}
& =\frac{q}{m_{2}\left(1-k^{\prime \prime}{ }^{2}\right)} \\
& =\frac{q k^{\prime \prime}}{\left(1-k^{\prime \prime}\right) \cdot p_{2}\left(k^{\prime \prime}-1\right)}
\end{aligned}
$$

Substituting p_{1} in (4) we have

$$
p_{2}=\frac{k^{\prime \prime \prime} q}{p_{1}\left(1+k^{\prime \prime}\right)}=\frac{k^{\prime \prime \prime} q\left(1-k^{\prime \prime}\right) p_{2}\left(k^{\prime \prime}-1\right)}{\left(1+k^{\prime \prime}\right) \cdot q^{\prime \prime \prime}}
$$

That is

$$
\begin{aligned}
& k^{\prime \prime}=-k^{\prime \prime \prime}\left(1-k^{\prime \prime}\right)^{2} \\
& k^{\prime \prime \prime}=\frac{-k^{\prime \prime}}{\left(1-k^{\prime \prime}\right)^{2}}
\end{aligned}
$$

and $k " \neq 0, \pm 1$.
Conversely, suppose that $k^{\prime \prime \prime}=\frac{-k^{\prime \prime}}{\left(1-k^{\prime \prime}\right)^{2}}$ and
$k^{\prime \prime} \neq 0, \pm 1$. Let $f: A \rightarrow A$ be the in near map defined by
$f\left(e_{1}^{\prime \prime \prime}\right)=e^{\prime \prime}+\frac{e_{2}^{\prime \prime}}{\left(1+k^{\prime \prime}\right)}$,
$f\left(e_{2}^{\prime \prime \prime}\right)=\frac{e^{\prime \prime}}{\left(1-k^{\prime \prime}\right)}-\frac{k^{\prime \prime}}{\left(1-k^{\prime 2}\right)} \cdot e_{2}$,

$$
f\left(e_{3}^{u n}\right)=e_{3}^{n} .
$$

Then (13.1) implies that

$$
\begin{aligned}
f(x * y) & =f\left[\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+k^{\prime \prime \prime} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime \prime}\right) e_{3}^{\prime \prime \prime}\right] \\
& =\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+k^{\prime \prime \prime} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime \prime}\right) e_{3}^{\prime \prime} \\
& =\left[a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}-\frac{k^{\prime \prime}}{\left(1-k{ }^{\prime \prime}\right)} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime \prime}\right] e_{3}^{\prime \prime},
\end{aligned}
$$

whereas (9.1) implies that

That is $f(x * y)=f(x)$ of (y) and since f is 1-1 and onto (see page 43) we can have that the multiplication (13.1) is isomorphic to (9.1).

Under the assumption above that $k^{\prime \prime \prime}=\frac{-k^{\prime \prime}}{\left(1-k^{\prime \prime}\right)^{2}}$ we can see that for a given numbor: $k^{\prime \prime \prime}$ we can find $k^{\prime \prime}$. to make (13.1) isomorphic to (9.1) only if $k^{\prime \prime \prime} \neq 0$ and $k^{\prime \prime \prime}<\frac{1}{4}$. Therefore we have to consider (13.1) when $k^{n t} \geqslant \frac{1}{4}$. We claim that the multiplication (13.1) is isomorphic to the case 11. iff $k^{\prime \prime}=\frac{1}{4}$. Recalling first that the multiplication in case 11 is

$$
\begin{equation*}
x o y=\left(a_{1}^{\prime} b_{2}^{\prime}-a_{2}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime} \tag{1.1.3}
\end{equation*}
$$

$$
\text { for } x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime},
$$

$$
\left\{a_{i}^{*}, b_{i}^{i}\right\} i=1,2,3 \subset \mathbb{R}_{0}
$$

Suppose that the multiplications (13.1) and (11.3)are . isomorphic then we cancfind a lincar mapping fint $\ddagger \rightarrow \mathbf{A}$ such that $f\left(x^{*} \hat{y}\right\} w f(x) f(y)$ for all, $x \rightarrow y$ in . . The mapping f is in

$$
\begin{aligned}
& f(x) \text { of }(y)=f\left(a_{1}^{\prime \prime \prime} e_{1}^{\prime \prime \prime}+a_{2}^{m \prime \prime} e_{2}^{m \prime \prime}+a_{3}^{m \prime} e_{3}^{m \prime}\right) \text { of }\left(b_{1}^{\prime \prime \prime} e_{1}^{m q}+b_{2}^{\prime \prime \prime} e_{2}^{\prime \prime \prime}+b_{3}^{\prime \prime \prime} e_{3}^{\prime \prime \prime}\right) \\
& =\left[\left(a_{1}^{\prime \prime \prime}+\frac{a_{2}^{\prime \prime}}{\left(1-k^{n}\right)}\right) e_{1}^{\prime \prime}+\left(\frac{a_{1}^{\prime \prime \prime}}{\left(1+k^{n}\right)}-\frac{a_{2}^{\prime \prime \prime} k^{\prime \prime}}{\left(1-k^{\prime \prime}\right)}\right) e_{2}^{\prime \prime}+a_{3}^{\prime \prime \prime} e_{3}^{\prime \prime}\right] o, \\
& =\left[\left(b^{\prime \prime \prime}+\frac{b^{\prime \prime \prime}}{\left(1-k^{\prime \prime}\right)}\right) e_{1}^{\prime \prime}+\left(\frac{b^{\prime \prime \prime}}{\left(1+k^{\prime \prime}\right)}-\frac{b_{2}^{\prime \prime \prime} k^{\prime \prime}}{\left(1-k^{\prime \prime}\right)^{2}}\right) e_{2}^{n_{2}}+b_{3}^{\prime \prime \prime} e_{3}^{\prime \prime}\right] \\
& =\left[\left(a_{1}^{\prime \prime \prime}+\frac{a_{2}^{\prime \prime}}{\left(1-k^{\prime \prime}\right)}\right)\left(\frac{b_{1}^{\prime \prime \prime}}{\left(1+k^{\prime \prime}\right)}-\frac{b_{2}^{\prime \prime \prime} k^{\prime \prime}}{\left(1-k^{\prime 2}\right)}\right)\right. \\
& +k^{\prime \prime}\left(b_{1}^{\prime \prime \prime}+\frac{b_{2}^{\prime \prime}}{\left(1-k^{\prime \prime}\right)}\right)\left(\frac{a_{1}^{\prime \prime}}{\left(1+k^{\prime \prime}\right)}-\frac{a_{2}^{\prime \prime \prime} k^{\prime \prime}}{\left(1-k^{n^{2}}\right)}\right) e_{3}^{\prime \prime} \\
& =\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}-\frac{k^{\prime \prime}}{\left(1-k^{\prime \prime}\right)^{2}} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime}\right) e_{3}^{\prime \prime} .
\end{aligned}
$$

the form

$$
\begin{aligned}
& f\left(e_{1}^{\prime \prime \prime}\right)=m_{1} e_{1}^{\prime}+m_{2} e_{2}^{!}+m_{3} e_{3}^{\prime}, \\
& f\left(e_{2}^{\prime \prime \prime}\right)=p_{1} e_{1}^{\prime}+p_{2} e_{2}^{\prime}+p_{3} e_{3}^{\prime}, \quad\{m i, p i\} i=1,2,3 \subset \mathbb{R}, \\
& f\left(e_{3}^{\prime \prime \prime}\right)=q e_{3}^{\prime}, \quad q \neq 0 \text { in } \mathbb{R} .
\end{aligned}
$$

Therefore, if $x=e_{1}^{\prime \prime \prime}, y=e_{1}^{\prime \prime \prime}$, the multiplication (11.3)
and (13.1) implies that

$$
\begin{equation*}
m_{2}^{2}=q \tag{1}
\end{equation*}
$$

If $x=e_{1}^{\prime \prime \prime}, y=e_{2}^{\prime \prime}$, then

$$
\begin{equation*}
m_{1} p_{2}-m_{2} \rho_{1}+m_{2} p_{2}=0 \tag{2}
\end{equation*}
$$

If $x=e_{2}^{\prime \prime \prime}, y=e_{1}^{\prime \prime \prime}$, then

$$
\begin{equation*}
m_{2} p_{1}-m_{1} p_{2}+m_{2} p_{2}=q \tag{3}
\end{equation*}
$$

If $x=e^{\prime \prime \prime}, y=e^{\prime \prime \prime}$, then

$$
\begin{equation*}
p_{2}^{2}=q^{\prime \prime \prime} \tag{4}
\end{equation*}
$$

From (2) and (3) we have that
(5)

$$
2 m_{2} p_{2}=q
$$

That is $m_{2}=\frac{q}{2 p_{2}}$.
Representing m_{2} in (1) wa have

$$
\frac{2}{\Delta p_{2}^{2}}=q
$$

and reperesenting p_{2} that is in the equation (4), we get

$$
\frac{q^{2}}{4 q^{k^{n \prime}}}=q
$$

Therefore,

$$
k^{\prime \prime \prime} \quad=\frac{1}{\Lambda_{2}}
$$

Conversely, suppose that $\mathrm{km}=\frac{1}{4}$, then let $\mathrm{f}: \operatorname{li} \rightarrow A$ be the Linear map defined joy

$$
f\left(e_{1}^{\prime \prime \prime}\right)=e_{2}^{\prime}
$$

$$
\begin{aligned}
& f\left(e_{1}^{\prime \prime \prime}\right)=\frac{1}{2}\left(e_{1}^{\prime}+e_{2}^{\prime}\right) \\
& f\left(e_{3}^{\prime \prime \prime}\right)=e_{3}^{\prime}
\end{aligned}
$$

then (13.1) implies that

$$
\begin{aligned}
f\left(x^{*} y\right) & =f\left[\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+k^{\prime \prime \prime} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime}\right) e_{3}^{\prime \prime \prime}\right] \\
& =\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+\frac{1}{4} a_{2}^{\prime \prime} b_{2}^{\prime \prime \prime}\right) e_{3}^{\prime}
\end{aligned}
$$

whereas, on the other hand (11.3) implies that

$$
\begin{aligned}
& f(x) \text { of }(y)=f\left(a_{1}^{\prime \prime \prime} e_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} e_{2}^{\prime \prime \prime}+a_{3}^{\prime \prime \prime} e_{3}^{\prime \prime \prime}\right) \text { of }\left(b_{1}^{\prime \prime \prime} e_{1}^{\prime \prime \prime}+b^{\prime \prime \prime} e_{2}^{\prime \prime \prime}+b_{3}^{\prime \prime \prime} e_{3}^{m \prime \prime}\right) \\
& =\left[\frac{1}{2} a_{2}^{\prime \prime \prime} e_{1}^{\prime}+\left(a_{1}^{\prime \prime \prime}+\frac{a_{2}^{\prime \prime}}{2}\right) e_{2}^{\prime}+a_{3}^{\prime \prime \prime} e_{3}^{\prime}\right] \circ\left[\frac{b_{2}}{2} e_{1}^{\prime}\right. \\
& \left.+\left(b_{1}^{\prime \prime \prime}+\frac{b_{2}^{\prime \prime \prime}}{2}\right) e_{2}^{\prime}+b_{3}^{\prime \prime} e_{3}^{\prime}\right] \\
& =\left[\left(\frac{a_{2}^{\prime \prime \prime}}{2}\right)\left(b_{1}^{\prime \prime \prime}+\frac{b_{2}^{\prime \prime \prime}}{2}\right)-\left(a^{\prime \prime \prime}+\frac{a_{2}^{\prime \prime \prime}}{2}\right)\left(\frac{b_{2}^{\prime \prime \prime}}{2}\right)+\left(a_{1}^{\prime \prime \prime \prime}+\frac{z_{2}^{\prime \prime \prime}}{2}\right)\left(b_{1}^{\prime \prime \prime}+\frac{b_{2}^{\prime \prime \prime}}{2}\right)\right] e_{3}^{\prime} \\
& =\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+\frac{1}{4} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime \prime}\right) e_{3}^{\prime}
\end{aligned}
$$

we thus see that (13.1) with $\mathrm{k}^{\prime \prime \prime}=\frac{1}{4}$ isomorphic to (11.3).
Therefore it is left to consider (13.1) when $k^{\prime \prime \prime}>\frac{1}{4}$
\because This case is hot isomorphic to case 9 and case 11 by the above proofs. Under the multiplication (13.1) with $k^{\prime \prime \prime}>\frac{1}{4}$ we can see that the algebra A is not commutative. But the algebra A is commutative under the multiplication in case 1 and case 10. Therefore the multiplication (13.1) with $\mathrm{k}^{\prime \prime \prime}>\frac{1}{4}$ is not isomorphic to the multiplication in case 1 and case 10. Next, we can observe that the left C_{L} of the algebra A under the multiplication in case 3 is generated by e_{1} and e_{3} and hence C_{L} has dimension 2 , whereas the left center C_{L} of A under the multiplication (13.1) is generated by e_{3} and has dimension 1. Thus. the multiplication (13.1) cannot be isomorphic to one
of the case (3).
Furthermore, suppose that $e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{1}$ is another
basis of A such that

$$
\begin{equation*}
x \circ y=\left(a_{1}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}+k^{\prime} a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}, k^{\prime} \neq 0 \text { in } \mathbb{R}, \tag{13.2}
\end{equation*}
$$

for $x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}, y=b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime},\left\{a_{i}^{\prime}, b_{i}^{i}\right\} \quad i=1,2,3 \subset \mathbb{R}$.
We claim that the multiplication (13.1) and (13.2) are isomorphic of $k^{\prime}=k^{\prime \prime \prime}$. To prove this, we first suppose that these two multiplications are isomorphic. Therefore, there exists a linear mapping $f: A \rightarrow A$ defined by

$$
\begin{aligned}
& f\left(e_{1}^{\prime}\right)=m_{1} e_{1}^{m \prime}+m_{2} e_{2}^{m}+m_{3} e_{3}^{\prime \prime \prime}, \\
& f\left(e_{2}^{\prime}\right)=p_{1} e_{1}^{\prime \prime \prime}+p_{2} e_{2}^{m}+p_{3} e_{3}^{\prime \prime \prime},\{m i, p i\} \quad i=1,2,3 \subset \mathbb{R}, \\
& f\left(e_{3}^{i}\right)=q e_{3}^{m}, \quad q \neq 0 \text { in } \mathbb{R},
\end{aligned}
$$

such that $f(x \circ y)=f(x) * f(y)$.
Hence, for $x=e_{1}^{\prime}, y=e_{1}^{1}$, we have

$$
\begin{equation*}
m_{1}^{2}+m_{2} m_{1}+k^{\prime \prime \prime} m_{2}^{2}=q \tag{1}
\end{equation*}
$$

For $x=e_{1}^{\prime}, y=e_{2}^{\prime}$, we have
(2) $m_{1} p_{1}+m_{2} p_{1}+k " m m_{2} p_{2}=0$.

For $x=e_{2}^{\prime}, y=e_{1}^{1}$, we have
(3) $m_{1} p_{1}+m_{1} p_{2}+k^{\prime \prime \prime} m_{2} p_{2}=q$.

For $x=e_{2}^{\prime}, y=e_{2}^{\prime}$, we have
(4) $p_{1}^{2}+p_{1} p_{2}+k^{\prime \prime \prime} P_{2}^{2}=q k^{\prime}$.

Take $p_{1} \times(1)-m_{1} \times(2)$, we get
(5) $\quad k^{\prime \prime \prime} m_{2}\left(m_{2} p_{1}-m_{1} p_{2}\right)=q p_{1}$.

Take (3) - (2), we get

$$
\begin{equation*}
m_{1} p_{2}-m_{2} p_{1}=q \tag{6}
\end{equation*}
$$

Therefore, from (5) and (6), we have
(7)

$$
k^{\prime \prime \prime} m_{2} \quad=-p_{1}
$$

Take $m_{1} \times(4)-p_{1} \times(3)$, we get

$$
k^{\prime \prime \prime} p_{2}\left(m_{1} p_{2}-m_{2} p_{1}\right) \quad=q\left(k^{r} m_{1}-p_{1}\right)
$$

This.. with (6) imply that
(8)

$$
k^{\prime \prime \prime} p_{2} \quad=\left(k^{t} m_{1}-p_{1}\right)
$$

Take $m_{2} \times(3)-p_{2} \times(1)$, we get

$$
m_{1}\left(m_{2} p_{1}-m \cdot p_{2}\right) \quad=q\left(m_{2}-p_{2}\right)
$$

This, together with (6), gives
(9)

$$
m_{1}=P_{2}-m_{2}
$$

Take. $m_{2} \times(4)-p_{2} \times(2)$, we get

$$
p_{1}\left(m_{2} p_{1}-m_{1} p_{2}\right) \quad=q k^{\prime} m_{2}
$$

that is

$$
\begin{equation*}
\mathrm{p}_{1} \quad=-k^{\prime} m_{2} \tag{10}
\end{equation*}
$$

If $m_{2}=0$, then $p_{1}=0$ from (7) and (10): Therefore (8)
and (9) imply that

$$
\mathrm{k}^{m} \quad=\mathrm{k}^{+}
$$

If $m_{2} \neq 0$, then (7) and (10) imply that

$$
\mathbf{k}^{\mathbf{\prime \prime}} \operatorname{LONGKOP}=\mathbf{k}^{\bullet}
$$

$$
\text { Conversely, if } \mathrm{k}^{\prime \prime \prime}=k^{\prime} \text {, let } \mathrm{f}: \mathrm{A} \rightarrow \mathbb{A} \text { be a linear }
$$

map defined by

$$
\begin{array}{ll}
f\left(e_{1}^{\prime}\right) & =e_{1}^{\prime \prime \prime}, \\
f\left(e_{2}^{\prime}\right) & =e_{2}^{\prime \prime \prime}, \\
f\left(e_{3}^{\prime}\right) & =e_{3}^{\mathrm{m} \mathrm{\prime}},
\end{array}
$$

Then (13.1) implied that

$$
\begin{aligned}
f(x) * f(y) & =\hat{i}\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right) * f\left(b_{1}^{\prime} e_{1}^{\prime}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}\right) \\
& =\left[a_{1}^{\prime} e_{1}^{\prime \prime \prime}+a_{2}^{\prime} e_{2}^{\prime \prime \prime}+a_{3}^{\prime} e_{3}^{\prime \prime \prime}\right] *\left[b_{1}^{\prime} e_{1}^{\prime \prime \prime}+b_{2}^{\prime} e_{2}^{\prime \prime \prime}+b_{3}^{\prime} e_{3}^{\prime \prime \prime}\right] \\
& =\left(a_{1}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}+k^{\prime \prime \prime} a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime \prime \prime}
\end{aligned}
$$

$$
=\left(a_{1}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}+k^{\prime} a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime \prime}
$$

whereas, (13.2) implies that

$$
\begin{aligned}
f(x \circ y) & =f\left[\left(a_{1}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}+k^{\prime} a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}\right] \\
& =\left(a_{1}^{\prime} b_{1}^{\prime}+a_{2}^{\prime} b_{1}^{\prime}+k^{\prime} a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime \prime \prime}
\end{aligned}
$$

These, together with the property of f in case page 43 , we have that (13.1) and (13.2) ere isomorphic.

Case 12. Suppose that $k_{1} \neq 0, k_{2} \neq 0, k_{4} \neq 0$, and $k_{3}=0$, then the multiplication (**) becomes

$$
\text { soy }=\left(k_{1} a_{1} b_{1}+k_{2} a_{1} b_{2}+k_{4} a_{2} b_{2}\right) e_{3}
$$

using the same procedure as before, we may choose a new basic $e_{1}^{\prime}=e_{1}, e_{2}^{\prime}=\frac{k_{1}}{k_{2}} e_{2}, e_{3}^{\prime}=k_{1} e_{3}$ and obtain

$$
x o y=\left(a_{1}^{\prime} b_{1}^{\prime}+a_{1}^{\prime} b_{2}^{\prime}+\frac{k_{1} k_{4}}{k_{2}^{2}} a_{2}^{\prime} b_{2}^{\prime}\right) e_{3}^{\prime}
$$

for $x=\left(a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{\prime}+a_{3}^{\prime} e_{3}^{\prime}\right), y=b_{1}^{\prime} e_{1}^{2}+b_{2}^{\prime} e_{2}^{\prime}+b_{3}^{\prime} e_{3}^{\prime}$,

(14.1) x) $=\left(a_{1}^{\prime} b_{1}^{\prime}+a_{1}^{\prime} b_{2}^{\prime}+k^{\prime} a_{2}^{\prime} b_{2}^{\prime}\right) * \frac{1}{3}$.

We claim that (14.1) is isomorphic to (13.1) in page
74 , whenever $k^{\prime}=k^{\prime \prime \prime}$ for all k^{\prime} in \mathbb{R}. To show this,
let $f: A \rightarrow A$ be the linear map defined by

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{e}_{1}^{\prime \prime \prime}\right)=e_{1}^{\prime}, \\
& \mathrm{f}\left(e_{2}^{\prime \prime \prime}\right)=e_{1}^{\prime}-e_{2}^{1}, \\
& \mathrm{f}\left(\mathrm{e}_{3}^{\prime \prime \prime}\right)=e_{3}^{\prime},
\end{aligned}
$$

Then (12.1) of case 13 page 74 implies that

$$
\begin{aligned}
f(x * y) & =f\left[\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+k^{\prime \prime \prime} a_{2}^{n \prime \prime} b_{2}^{\prime \prime \prime}\right) e_{3}^{\prime \prime \prime}\right] \\
& =\left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+k^{\prime \prime \prime} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime \prime}\right) e_{3}^{\prime},
\end{aligned}
$$

whereas, (14.1) with $\mathrm{k}^{\prime}=\mathrm{k}^{\mathrm{m} \mathrm{\prime} \mathrm{\prime}}$ implies that

$$
\begin{aligned}
f(x) \text { of }(y)= & f\left(a_{1}^{\prime \prime \prime} e_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} e_{2}^{\prime \prime}+a_{3}^{\prime \prime} e_{3}^{\prime \prime}\right) \text { of }\left(b_{1}^{\prime \prime \prime} e_{1}^{\prime \prime \prime}+b_{2}^{\prime \prime \prime} e_{2}^{\prime \prime \prime}+b_{3}^{\prime \prime \prime} e_{3}^{\prime \prime \prime}\right) \\
= & {\left[\left(a_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime}\right) e_{1}^{\prime}-a_{2}^{\prime \prime \prime} e_{2}^{\prime}+a_{3}^{\prime \prime \prime} e_{3}^{\prime}\right] \circ\left[\left(b_{1}^{\prime \prime \prime}+b_{2}^{\prime \prime \prime}\right) e_{1}^{\prime}\right.} \\
& \left.-b_{2}^{\prime \prime \prime} e_{2}^{\prime}+b_{3}^{\prime \prime \prime} e_{2}^{\prime}\right] \\
= & {\left[\left(a_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime}\right)\left(b_{1}^{\prime \prime \prime}+b_{2}^{\prime \prime \prime}\right)+\left(a_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime}\right)\left(-b_{2}^{\prime \prime \prime}\right)+k^{\prime \prime \prime}\right.} \\
& \left.\left(-a_{2}^{\prime \prime \prime}\right)\left(-b_{2}^{\prime \prime \prime}\right)\right] e_{3}^{\prime} \\
= & \left(a_{1}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+a_{2}^{\prime \prime \prime} b_{1}^{\prime \prime \prime}+k^{\prime \prime \prime} a_{2}^{\prime \prime \prime} b_{2}^{\prime \prime \prime}\right) e_{3}^{\prime} .
\end{aligned}
$$

Therefore we are done since f is $1-1$ and onto (seepage 43) imply that the cases 13 and 14 are isomorphic.

Case 15. Finally we turn to the case where all $k_{1}, k_{2}, k_{3}, k_{4}$ are not zero. With this assumption and (**) we obtain.

$$
x * y=\left(k_{1} a_{1} b_{1}+k_{2} a_{1} b_{2}+k_{3} a_{2}^{b_{1}}+k_{4} a_{2} b_{2}\right) e_{3}
$$

We choose a new basis $e_{1}^{1}, e_{2}^{\prime}, e_{3}^{\prime}$ such that $e_{1}^{\prime}=e_{1}, e_{2}^{\prime}$
$=\left(k_{2} e_{1}-k_{1} e_{2}\right), e_{3}^{\prime}=e_{3}$. Then we can see that

$$
\left(e^{\prime}\right)^{2}=e_{1}^{2}=k_{1} e_{3}=k_{1} e_{3}^{\prime}
$$

$$
e_{1}^{\prime} e_{2}^{\prime}=e_{1}\left(k_{2} e_{1}-k_{1} e_{2}\right)=k_{2} e_{1}^{2}-k_{1} e_{1} e_{2}=k_{2} k_{1} e_{3}-k_{1} k_{2} e_{3}=0
$$

$$
e_{2}^{\prime} e_{1}^{\prime}-\left(k_{2} e_{1}-k_{1} e_{2}\right){ }_{1}=k_{2} e_{1}^{2}-k_{1} e_{2} e_{1}=k_{2} k_{1} e_{3}-k_{1} k_{3} e_{3}
$$

$$
=k_{1}\left(k_{2}-k_{3}\right) e_{3}^{1},
$$

$$
\left(e^{\prime}\right)^{2}=\left(k_{2} e_{1}-k_{1} e_{2}\right)^{2}=k_{2}^{2} e_{1}^{2}-k_{2} k_{1} e_{1} e_{2}-k_{1} k_{2} e_{2} e_{1}+k_{1}^{2} e_{2}^{2}
$$

$$
=k_{2}^{2} k_{1} e_{3}-k_{2} k_{1} k_{2} e_{3}-k_{1} k_{2} k_{3} e_{3}+k_{1}^{2} k_{4} e_{3}
$$

$$
=k_{1}\left(k_{1} k_{4}-k_{2} k_{3}\right) e_{3}^{\prime}
$$

and hence
$(15.1) x * y=\left[k_{1} \varepsilon_{1}^{\prime} b_{1}^{i}+k_{1}\left(k_{2}-k_{3}\right) a_{2}^{\prime} b_{1}^{i}+k_{1}\left(k_{1} k_{4}-k_{2} k_{3}\right) a_{2}^{\prime} b_{2}^{\prime}\right] e_{3}^{\prime}$,
for $x=a_{1}^{\prime} e_{1}^{\prime}+a_{2}^{\prime} e_{2}^{i}+a_{3}^{\prime} e_{3}^{\prime}, y=b_{1}^{i} e_{1}^{i}+b_{2}^{\prime} e_{2}^{i}+b_{3}^{\prime} e_{3}^{\prime}$,
$\left\{a_{i}^{\prime}, b_{i}^{\prime}\right\} i=1,2,3 \subset \mathbb{R}$. and ail $k_{1}, k_{2}, k_{3}, k_{4}$ are not zero.
We have at least one zero so we are back to a previots case.

As a conclusion, the nilpotent algebra A over a field \mathbb{R} with dimension $A=3$, dimension $A^{2}=1$ and $A^{3}=\{0\}$, possesses an infinite number of mon - isomorphic multiplications which can be divided into 6 classes. That is, for each $x=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, y=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}$, $\left\{a_{i}, b_{i}\right\}_{i}=1,2,3 \subset \mathbb{R}$, we have

$$
\begin{align*}
& x y=a_{1} b_{1} e_{3}, \tag{1}\\
& x y=a_{2} b_{1} e_{3}, \tag{2}\\
& x y=\left(a_{1} b_{2}+k a_{2} b_{1}\right) e_{3}, \quad|k| \geqslant 1 \text { in } \mathbb{R} \tag{3}\\
& x y=\left(a_{1} b_{1}+a_{2} b_{2}\right) e_{3} \tag{4}\\
& x y=\left(a_{1} b_{2}-a_{2} b_{1}+a_{2} b_{2}\right) e_{3} \tag{5}\\
& x y=\left(a_{1} b_{1}+a_{2} b_{1}+k a_{2} b_{2}\right) e_{3}, k>\frac{1}{4} \text { in } R_{0} . \tag{6}
\end{align*}
$$

Furthermore, we shall prove a theorem about the isomorphism between a nilpotent algebra anc a quotient algebra of a polynomial algebra by an ideal. We shall begin our discussion with a definition.

Definition 5.7 : A nilpotent algebra A over a field K is called a free nilpotent algebra iff for each x, y in A $x y=0 \Rightarrow \exists 0<k<n$ such that $x \in A^{k}$ and $y \in A^{n-k}$ The converse condition is trivially true.

Theorem 5.8 : A free nilpotent algebra A over a field K ($A^{n}=\{0\}$ for some smallest positive integer $n>1$) with dimension of $A=n-1$, is isomorphic to the quotient algebra of a polynomial algebra by an ideal ie. $A=$ $K_{0}[x] /\left(x^{n-1}\right)$ 。

Proof. First, we claim that $A \supset A^{2} \supset A^{3} \not \ldots \supset A^{n}=\{0\}$. Suppose instead that $A^{m}=A^{m+1}$ for some $m\langle n$, then we can see that

$$
\begin{aligned}
& A^{m+2}=A^{m+1} \quad A=A^{m+1}=A^{m} \\
& A^{m+3}=A^{m+2} \quad A=A^{m+1}=A^{m} \\
& A^{n}=A^{m}
\end{aligned}
$$

which implies that $A^{m}=\{0\}$. But this contradicts to that n is the smallest positive integer such that $A^{n}=\{0\}$. Therefore,

$$
A \supset A^{2} \supset A^{3} \supset \ldots, P A^{n}=\{0\}
$$

Since dimension $A=n-1$, then the above result yields that dimension of $A^{2}=n-2$, dimension of $A^{3}=n-3$, dimension of $A^{n-1}=1$.

Let $x \neq 0$ be in $A \backslash A^{2}$, then $x^{n-1} \in A^{n-1}$. Suppose that $x^{n-1}=0$, then $x \cdot x^{n-2}=0$. This contradicts the hypothesis that $x y=0 \Rightarrow f 0<k<n$ such that $x \in A^{k}$, $y \in A^{n-k}$. Hence, $x^{n-1} \neq 0$, let $e=x$, then e^{n-1} is a basis of $厶^{n-1}$. Consider e^{n-2}, wo claim that e^{n-2} is independent of e^{n-1}. Suppose instead that $e^{n-2}=a e^{n-1}$ for some a in K and $a \neq 0$. Then

$$
e^{n-3}\left(e-a e^{2}\right)=0
$$

Since $e^{n-3} \in A^{n-3}$ and $e-a e^{2} \in A * A^{2}$, then this contradicts the hypothesis; Therefore, e^{n-2} is independent of e^{n-1}. Hence, e^{n-2}, e^{n-1}, forms a basis of A^{n-2}.

> By repeating the same method as above we have that $e, e^{2}, \ldots, e^{n-1}$ is a basis of A.

Next, we look at $K_{0}[x] /\left(x^{n-1}\right)$. For $y K_{0}[x] /\left(x^{n-1}\right)$ we can write

$$
y=a_{1} x+a_{2} x^{2}+\ldots a_{n-1} x^{n-1},\left\{a_{i}\right\} \subset K, i=1,2,3, \ldots n
$$

Now, let f : $K_{0}[x] /\left(x_{k}^{n-1}\right)$ Abe a mapping such that

$$
f\left(x^{k}\right) \cdot=e^{k /(x} \text { for } k=1,2, \ldots . n-1
$$

It is obvious that f is a linear, $1-1$ and onto mapping. Next, we will show that f is a homomorphism.. Let $y, z \in K_{0}[x] /\left(x^{n-1}\right)$, then
$y=a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}, z=b_{1} x+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}$ for $\left\{a_{i}, b_{i}\right\} C K, i=1,2, \ldots . . n-1$. Then

$$
f(y z)=f\left[\left(a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}\right)\right.
$$

$$
\left.\left(b_{1} x+b_{2} x+\cdots+b_{n-1} x^{n-1}\right)\right]
$$

$$
=\mathrm{f}\left[\left(a_{1} b_{1}\right) \mathrm{x}^{2}+\left(a_{1} b_{2}+a_{a_{1}}\right) \mathrm{x}^{3}\right.
$$

$$
+\left(a_{1} b_{3}+a_{2} b_{2}+a_{3} b_{1}\right) x^{4}+\ldots
$$

$$
\left.\ldots \cdots+\left(a_{1} b_{n-2}+a_{2} b_{n-3}+\cdots+a_{n-2} b_{1}\right) x^{n-1}\right]
$$

$$
\begin{aligned}
= & a_{1} b_{1} f\left(x^{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}\right) f\left(x^{3}\right)+\ldots \\
& +\left(a_{1} b_{n-2}+a_{2} b_{n-3}+\cdots+a_{n-2} b_{1}\right) f\left(x^{n-1}\right)
\end{aligned}
$$

$$
=a_{1} b_{1} e^{2}+\left(a_{1} b_{2}+a_{2} b_{1}\right) e^{3}+\ldots+\left(a_{1} b_{n-2}+a_{2} b_{n-3}\right.
$$

$$
\left.+a_{n-2} b_{1}\right) e^{n-1}
$$

$$
=\left(a_{1} e+a_{2} e^{2}+\ldots+a_{n-1} e^{n-1}\right)\left(b_{1} e+b_{2} e^{2}+\ldots+b_{n-1} e^{n-1}\right)
$$

$$
=\left[a_{1} f(x)+a_{2} f\left(x^{2}\right)+\ldots+a_{n-1} f\left(x^{n-1}\right)\right]
$$

$$
\left[b_{1} f(x)+b_{2} f\left(x^{2}\right)+\ldots+b_{n-1} f\left(x^{n-1}\right)\right]
$$

$$
=f\left(a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}\right) f\left(b_{1} x+b_{2} x^{2}+\ldots+b_{n-1} x^{n-1}\right)
$$

$$
=f(y) f(z)
$$

Therefore, A is isomorphic to $K_{0}[x] /\left(x^{n-1}\right)^{\text {and the theorem }}$ is proved.

