

CHAPTER IV

HARMONIC FUNCTIONS IN $\mathbb{R}^{n-1} \times (a, \infty)$

In this chapter we further study the representations of harmonic functions in a half-space $\mathbb{R}^{n-1} \times (a, \infty)$ by using Kelvin transformation and the passage.

4.1 Kelvin Transformation

4.1.1 <u>Definition</u> Let $B(y,\rho)$ be a ball in \mathbb{R}^n . For $x \neq y$ in \mathbb{R}^n choose \hat{x} on the radial line joining y to x so that

$$\|\mathbf{\hat{x}} - \mathbf{y}\| \|\mathbf{x} - \mathbf{y}\| = \rho^2$$

We call $\hat{\mathbf{x}}$ the inverse of x relative to $\partial B(\mathbf{y}, \rho)$.

The mapping $x \mapsto x$ defined by

$$\hat{x} = y + \frac{\rho^2}{\|x - y\|^2} (x - y) \qquad (x \neq y)$$

is known as an inversion relative to $\partial B(y, \rho)$.

4.1.2 <u>Definition</u> Let G be an open subset of $\mathbb{R}^n \setminus \{y\}$, \hat{G} be the image of G under the inversion. If $\hat{\psi}$ is a function defined on \hat{G} , then the equation

$$\psi(\mathbf{x}) = \frac{\rho^{n-2}}{|\mathbf{x} - \mathbf{y}|^{n-2}} \hat{\psi}(\hat{\mathbf{x}})$$

defines a function ψ on G. The mapping $\hat{\psi} \mapsto \psi$ is called the <u>Kelvin transformation</u>.

4.1.3 <u>Theorem</u> The Kelvin transformation preserves positivity and harmonicity.

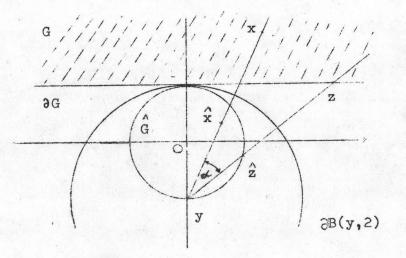
Proof That positivity is followed directly from the definition. By computing the Laplacian of \mathcal{Q} ,

then the proof that Ψ is harmonic in G whenever $\hat{\Psi}$ is harmonic in \hat{G} is accomplished. ([4], page 37)

4.2 Representation of a harmonic function in $\mathbb{R}^{n-1} \times (a, \infty)$

First consider the half-space $\mathbb{R}^{n-1} \times (1,\infty)$ and for any half-space $\mathbb{R}^{n-1} \times (a,\infty)$ will be taken at last.

Let $G = \mathbb{R}^{n-1} \times (1, \infty)$, $y = (0, \dots, 0, -1) \in \mathbb{R}^n$ and consider the inversion relative to $\partial B(y, 2)$.



4.2.1 Lemma The inversion relative to $\partial B(y,2)$ maps G onto B(0,1)and ∂G onto $\partial B \setminus \{y\}$. Moreover the inversion is 1-1.

$$\begin{array}{rcl} & \underline{\operatorname{Proof}} & \operatorname{Let} x = (x_{1}, \dots, x_{n}) \in \operatorname{G}, \mbox{ i.e. } x_{n} > 1. \\ & \text{Since} & \hat{x} = y + \frac{\rho^{2}}{\|x - y\|^{2}} (x - y) \\ & = (0, \dots, 0, -1) + \frac{4}{\|x - y\|^{2}} (x_{1}, \dots, x_{n} + 1) \\ & = (\frac{4x_{1}}{\|x - y\|^{2}}, \dots, \frac{4x_{n-1}}{\|x - y\|^{2}}, \frac{4x_{n} + 4}{\|x - y\|^{2}} - 1) \\ & \text{we get } \|\hat{x}\|^{2} = \frac{8(1 - x_{n})}{\|x - y\|^{2}} + 1 \\ & \text{i.e. } 1 - \|\hat{x}\|^{2} = \frac{8(x_{n} - 1)}{\|x - y\|^{2}} \end{array}$$
(1)
Since $x_{n} > 1, \ 1 - \|\hat{x}\|^{2} > 0.$ Hence $\hat{x} \in \operatorname{B}(0, 1)$
If $z \in \operatorname{\partial} G$, then note that $\hat{z} \in \operatorname{\partial} \operatorname{B}(0, 1).$
For $\hat{x} = (\xi_{1}, \dots, \xi_{n}) \in \operatorname{B}(0, 1), \ i.e. \ \sum_{i=1}^{n} \xi_{i}^{2} < 1 \\ & \text{,} \end{array}$
we have $\hat{x} - y = (\xi_{1}, \dots, \xi_{n} + 1)$ and

$$\|\mathbf{\hat{x}} - \mathbf{y}\|^2 = \xi_1^2 + \dots + \xi_{n-1}^2 + (\xi_n + 1)^2 < 2 + 2\xi_n .$$
 (2)

Since

x

$$= y + \frac{4}{\|\hat{x} - y\|^{2}} (\hat{x} - y)$$

$$= (\frac{4\xi_{1}}{\|\hat{x} - y\|^{2}}, \dots, \frac{4\xi_{n-1}}{\|\hat{x} - y\|^{2}}, \frac{4\xi_{n} + 4 - \|\hat{x} - y\|^{2}}{\|\hat{x} - y\|^{2}})$$

and the inequality $\frac{4\xi_n + 4 - \|\hat{\mathbf{x}} - \mathbf{y}\|^2}{\|\hat{\mathbf{x}} - \mathbf{y}\|^2} > 1$ which is deduced

from (2) we get $x \in G = \mathbb{R}^{n-1} \times (1, \infty)$. If $\hat{x} \in \partial B \setminus \{y\}$, we can show that $x \in \partial G$. This concludes that the inversion maps G onto B, ∂G onto $\partial B \setminus \{y\}$. Finally we can check that the inversion is 1-1 #

Note that if T is the inversion which maps $\mathbb{R}^{n-1} \times (1,\infty)$ onto B, then T⁻¹ maps B onto $\mathbb{R}^{n-1} \times (1,\infty)$.

4.2.2 <u>Theorem</u> Let h be positive and harmonic in $G = \mathbb{R}^{n-1} \times (1,\infty)$. Then $h(x) = c(x_n-1) + (x_n-1) \int \frac{1}{\partial G} \frac{1}{\|x-z\|^n} d\mu(z)$ (x $\in G$) where $x = (x_1, \dots, x_n)$, c is a constant and μ is a measure on ∂G .

<u>Proof</u> Assume h is positive and harmonic in $G = \mathbb{R}^{n-1} \times (1, \infty)$. The image of G under the inversion relative to $\partial B(y,2)$ is B = B(0,1). The Kelvin transformation $h \mapsto \hat{h}$ is defined by

$$\hat{h}(\hat{x}) = \frac{2^{n-2}}{\|y - \hat{x}\|} h \left(y + \frac{4}{\|\hat{x} - y\|^2} (\hat{x} - y) \right) \qquad (\hat{x} \in B).$$

By theorem 4.1.3, \hat{h} is positive and harmonic in B. Apply theorem 3.3.2 (Integral Representation), there is a positive Radon measure $\hat{\mu}$ on ∂B such that

$$\hat{\mathbf{h}}(\hat{\mathbf{x}}) = \int \frac{1 - \|\hat{\mathbf{x}}\|^2}{\|\hat{\mathbf{x}} - \hat{\mathbf{z}}\|^n} d\hat{\mu} (\hat{\mathbf{z}})$$

$$= (1 - \|\hat{\mathbf{x}}\|^2) \int \frac{1}{\|\hat{\mathbf{x}} - \hat{\mathbf{z}}\|^n} d\hat{\mu} (\hat{\mathbf{z}})$$

$$+ \int \frac{1 - \|\hat{\mathbf{x}}\|^2}{\|\hat{\mathbf{x}} - \hat{\mathbf{z}}\|^n} d\hat{\mu} (\hat{\mathbf{z}})$$
(1)

Since $\hat{\mu}$ is a Radon measure, let $\hat{\mu}(\{y\}) = k$. (2) From the proof of lemma 4.2.1, $1 - \|\hat{x}\|^2 = \frac{8(x_n-1)}{\|x - y\|^2}$. (3) Let α be the angle between the line segment joining \hat{z} to y and the line segment joining \hat{x} to y. By using cosine's law

$$\|\hat{\mathbf{z}} - \hat{\mathbf{x}}\|^2 = \|\hat{\mathbf{z}} - \mathbf{y}\|^2 + \|\hat{\mathbf{x}} - \mathbf{y}\|^2 - 2\|\hat{\mathbf{z}} - \mathbf{y}\| \|\hat{\mathbf{x}} - \mathbf{y}\| \cos \alpha,$$

and the fact that $\|\hat{\mathbf{x}} - \mathbf{y}\| \|\mathbf{x} - \mathbf{y}\| = \rho^2 = 4$ we have

$$\|\hat{z} - \hat{x}\|^{2} = \frac{16}{\|z - y\|^{2}} + \frac{16}{\|x - y\|^{2}} - 2 \cdot \frac{4}{\|z - y\|} \cdot \frac{4}{\|x - y\|} \cos \alpha$$

$$= \frac{16(\|x - y\|^{2} + \|z - y\|^{2} - 2\|x - y\| \|z - y\| \cos \alpha)}{\|z - y\|^{2} \|x - y\|^{2}}$$

$$= \frac{16\|z - x\|^{2}}{\|z - y\|^{2} \|x - y\|^{2}} \qquad (4)$$

From (2), (3), (4) and the fact $\|\hat{\mathbf{x}} - \mathbf{y}\| \|\mathbf{x} - \mathbf{y}\| = 4$, the equation (1) becomes

42

$$\hat{\mathbf{h}}(\hat{\mathbf{x}}) = \frac{8(\mathbf{x}_{n}-1)\mathbf{k}}{\|\mathbf{x}-\mathbf{y}\|^{2}\|\hat{\mathbf{x}}-\mathbf{y}\|^{n}} + \int_{\partial \mathbf{B} \setminus \{\mathbf{y}\}} \frac{8(\mathbf{x}_{n}-1)}{\|\mathbf{x}-\mathbf{y}\|^{2}} \frac{\|\mathbf{z}-\mathbf{y}\|^{n}\|\mathbf{x}-\mathbf{y}\|^{n}}{4^{n}\|\mathbf{z}-\mathbf{x}\|^{n}} d\hat{\mu}(\hat{\mathbf{z}})$$
$$= \frac{8(\mathbf{x}_{n}-1)\|\mathbf{x}-\mathbf{y}\|^{n-2}}{4^{n}} + \frac{8(\mathbf{x}_{n}-1)\|\mathbf{x}-\mathbf{y}\|^{n-2}}{4^{n}} \int_{\partial \mathbf{B} \setminus \{\mathbf{y}\}} \frac{\|\mathbf{z}-\mathbf{y}\|^{n}}{|\mathbf{z}-\mathbf{x}\|^{n}} d\hat{\mu}(\hat{\mathbf{z}}).$$

Denote the mapping $z \mapsto \hat{z}$ by T which maps ∂G onto $\partial B \setminus \{y\}$. The measure $\hat{\mu}$ induces a new measure μ_1 on ∂G defined by $\mu_1 = \hat{\mu}$ T. Then we have

$$\frac{2^{n-2}}{\|x-y\|^n} \hat{h}(\hat{x}) = \frac{(x_n-1)k}{2^{n-1}} + \frac{(x_n-1)}{2^{n-1}} \int \frac{\|z-y\|^n}{\|z-x\|^n} d\mu_1(z).$$

The left hand side of the last equation is just h(x).

- Let $c = \frac{k}{2^{n-1}}$ and define a measure μ on ∂G by
- $\mu(F) = \int_{F} \frac{\|z-y\|^{n}}{2^{n-1}} d\mu_{1}(z) \text{ for any Borel set } F \text{ of } \partial G.$

Then the last equation can be written as

$$h(x) = c(x_n-1) + (x_n-1) \int \frac{1}{\partial G} \frac{1}{\|z-x\|^n} d\mu(z)$$

which is the desired result

We end this thesis with the following theorem that comes directly from the preceeding theorem.

1

4.2.3 <u>Theorem</u> If h is positive and harmonic in $W = \mathbb{R}^{n-1} \times (a, \infty)$ where a is any real number, then there exist a constant c and a measure μ on ∂W such that

$$h(\mathbf{x}) = c(\mathbf{x}_n - \mathbf{a}) + (\mathbf{x}_n - \mathbf{a}) \int \frac{1}{\|\mathbf{x} - \mathbf{z}\|^n} d\mu(\mathbf{z}) .$$

Proof Consider the mapping ψ defined on $W = \mathbb{R}^{n-1} \times (a, \infty)$ by $\psi(x_1, \dots, x_n) = (x_1, \dots, x_{n-1}, x_n - a + 1)$.

It is clear that ψ is a 1-1 mapping from W onto G = $\mathbb{R}^{n-1} \times (1, \infty)$. Assume h is positive and harmonic in W. Define the function h_{γ} on G by

$$h_1(y_1,...,y_n) = h(y_1,...,y_{n-1},y_n + a - 1)$$
 $((y_1,...,y_n) \in G$

It follows that h_1 is positive and harmonic in G. For $x = (x_1, \dots, x_n) \in W$. $\psi(x) = (x_1, \dots, x_{n-1}, x_n - a + 1) \in G$. Hence by the preceeding theorem, there exist c > 0 and a measure μ_1 such that

$$h_{1}(x_{1}, \dots, x_{n-1}, x_{n-1}) = c(x_{n-1}) + (x_{n-1}) \int \frac{1}{\|\phi(x) - z\|^{n}} d\mu_{1}(z).$$

#

Let μ be a measure on ∂W defined by $\mu = \mu_1 \psi$. Since $\|\psi(\mathbf{x}) - \mathbf{z}\| = \|\mathbf{x} - \psi^{-1}(\mathbf{z})\|$, then the last equation becomes

$$h(\mathbf{x}) = c(\mathbf{x}_n - a) + (\mathbf{x}_n - a) \int \frac{1}{\|\mathbf{x} - \mathbf{N}\|^n} d\mu(\mathbf{N})$$

44