CHAPTER III

*®
ON THE SUPERHARMONICITY OF u

3.1 Notation

Recall that wdenotees an arbitrary open subset of the
unit ball B in R® and Q = Q-l'&ﬂ where Q is the function as
in lemma 2.2.1.

Let Ql be an open set such that

eCc 9 C ou@aN E)

&

where 3Q is the boundary of @ in R™° and let

w' = {(glgooo,gn)e 3B/(El,...,5n,0,0) € Ql}o

Since the extension of superharmonic function to Ql is interested,

we drop the case 91 =2, DNote that 91\ Q C(QUENQ =E

and if w = B, then we have 1 = mn+2 ™~ 6Ery Ql = Rn+2 and w' = 3 B.

*
3.2 Superharmonic Extension of u

In this section we take up the problem of continuation

*
of superharmonic u across a polar set.

Since the function g defined by g(x) =/ “ 1|n do(z)
E jx=-2

2

is superharmonic in R%*° and takes the value » on E, then E is

a polar set. Hence Ef\ﬂl is a polar set by l.4.3. (3.2:1)



29

3.2.2 Theorem Let u be superharmonic in ¢ and
w(x) = £(x) u(Q(x)) (x & £2),
Then the superharmonic function ﬁ? has a unique superharmonic

extension U to£11 if and only if

fim inf u(M) > - os (Neg w')a

e e
MeN i=3h}
Before proving this theorem we need the following

remarkse.

) € €°*2 . E, the

2 % xé
n+1 n+2

34243 Remaﬁk For any x = (xl,...,xn+2

distance of x from E is dist(x,E) = J(l—r)2+ x

where r2 = x2+ see + xi .

1

Proof For y = (yl,...,yﬁ,0,0) € E, we have

“X‘Yla = u(x].'ooo,xn)-(ylgnv.,yn)u2+ xi+1+ xr21+2 *
2 ,u(xl"'°9xn)u"“(yl'°"!yl)u! 2+ xi_m-i- Xi+2

2
n+2

snhe
r =%+ x_,+x

There exists z € E such that gx-z§2= (r-1)2+ xi+1+ xi+2

2 2 2 2
Then inf || x-yj (r=2)7e x4 x_

ye B

i

+2

Hence [dist (x,E)]2

L}

2 2 oL
(r-1)"+ X 4t X 5 4
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3.2.4 Remark I % = (xl,...,xn+2)ean+2'\E, A is the

function as defined in lemma 2.2.1 and d = dist(x,E),

then A(x) 2 -——2;——2
(d + 1)
” 2 2 2 2
Proof Since d° = (r-1)°+ X1t Xn,0 1 We have
2 2 2 2 2
d 2 r-1 and 1 + Ix' =1l +r+ it Byp = d + 2r.
Then AMx) = 2
d2+ 2r + /Qd2+ 2r)2~ b
2 b
(4 +/d%+ LlLr)2
b . ! v
z sl e an o #
(eeedamela + 12 . (a+ 12
3e2.5 Remark If U is superharmonic in an open set D, then

U is locally bounded below in D.

Proof For zZ € D, there is an open ball B(zo,p) with
compact closure ﬁ(zo,p)C:D. Since U > ~=»and U is L.s.c. on
compact B(z,p), we get U is bounded below in E(zo,p).

That is, for some k, U(x) 2 k (x € B(zo,p)).

Hence U is locally bounded below in D #

Proof of theorem 3.2.2 We first prove the "if" part.

Assume 2im inf 1-1M u(M) > - (N s 0t
M-N !

Claim that u* is locally bounded below in lﬁf
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Let z, € 91. Since Q@ is open, the case 2z € Q2 follows directly
from remark 3.2.5.

If z ¥ 9, then z € ENQ,.
4
Let Zo = (Elgooo,gn'O'O)o Then NO = (El'...’gn) € W o

By assumption, 2im inf u(M) > =,

3
M-N 1-jM
o

So we have k < O and p > O such that

i

=g o Bk (M e BN ,p) W), (1)

Now B(zo,p) is a neighbourhood of z and
n/2

* X (%)
u (x) = ————— u(Q(x)) (x € B(z_,0)10).
1- ()] 2 b

e ,
By lemma 2.2.1 and let M = Q(x), IM—Noﬂ = A (x)!x—zol <P

And by (1) we get

xn/z( ) 1 B
* " X A X
W) = g - T R 2 L <
n/2
Sinee Tﬁ'ﬁ%ﬁ < &0n el B (x € Bz 0001 0).

*
That is 2im inf u (zo) - .

X>Z
(e]

*
Hence u is locally bounded below in 91.

From (3.2.1) EN 2, is a polar set and relatively
closed in Ql, then by theorem 1.4.4 the superharmonic function

w'in Q= 91\~(E(\QI) has a unique superharmonic extension U
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; *
to Ql' ises U .= Hon Q.
E 3
To prove the "only if" part, we assume that u has a
superharmonic extension U to Ql.
Then U is locally bounded below in ﬂl by remark 3.2.5.
Since U is an extension of uf, fs6s U =u on 2, we get

gim inf u(x) > =~ (z € Ql).
X+7

For any N = (El,...,gn)e wy, z = (gl,...,En.0,0)e ﬂlﬂ E.
Then there exist k < O and P > 0O such that
w(x) 2 k (x € B(zyp)IQ) (2)

Let M e B(N, b-i—l-)nm CNE L

Then M = Q(xo) for some X in . By lemma 2.,2.1 and (3.2.4)

|xo- zl 3 lxo- z|

d + : ixo- z'+1

P
p+1

> M-} = Ixo-zﬂx%(xo)z

where d = dist(xo,E), % € By

That is on- zl €.
n/
2
X kx ) y
From (2) we have == u(M) = u (xo) 2k y
1-Im|®

Zee ulM). 3 k(l+|M§)>\_n/2(x)
l-lMl z 6

1 1 1
(x, ) > 5T > e s

Since oo “xo- zH > do g A
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e Bave ool u(M) > 2k A_n/z(x ¥ & ke ad)®
1-“M! o o
: 6
Hence gim inf u(M) > == (Ne w'),
MaN l—IM'

That is the theorem is completely proved

34206 Corollary Let u be superharmonic in B and ik

2

u* (x) = £(x)u(Q(x)) (x ¢ B"TS4B).

Then the superharmonic function u has a unique superharmonic

extension U to Rn+2 if and only if u 2 O on B,

Proof We apply the theorem 3.2.2 in the case w = B,

then B oW B, B,/ 4 &%2 and w' = 3B.

If u 2 0 on By then

1
gim inf u(M) 20 > == (N € 3B),
- |
MoN 1 jMH

§ 4 4 n+2
Hence u* has a unique superharmonic extension U to R .

Conversely if u* has a superharmonic extension U to

Rn+2, we have #im inf T:%ﬁw u(M) > -« (N € 9B),

M-N

ices there exist k € Ry, p > O such that

1

T (M > k (M ¢ B(N,p)) B).
Hence gim inf u(M) 3 gim inf (1-Mf)k = 0 (R & 3B).
M-N M-N

By theorem 1l.3.3 U F a0 on B #
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3l

3.3 1Integral Representation

If u is superharmonic in an open set D, h is harmonic

in D and h € u on D, then h is called a harmonic minorant of u.

The function h is the greatest harmonic minorant of u if h is
a harmonic minorant of u and h > v whenever v is a harmonic
minorant of u.

The following theorem is drawn from I}], page 47.

3e3.1 Theorem (Riesz Decomposition) 1If U is superharmonic
pe
in ®" (m 2 3), then
1 m
Wx) = f du(y) + G(x) (x e R)
m
R |x-yl
where G - is the greatest harmonic minorant of U and the measure
: . - AU s ; ; ;
1 is given by u =5 A AU is regarded as the distribution
Zm-—ZSom

Laplacian of U,

Now return to theorems on the passage. The following
theorem has shown that a harmonic function in B can be represented

by the certain integral.

3e3+2 Theorem If h is positive and harmonic in the unit ball

B of Rn, then

5 :
h(M) = ! ——-’I-M dp(N) (M ¢ B)
: 3B !M-N

where p is a positive Radon measure on 9B,
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The measure j, understood as a measure on E = 3B, is given

.l where AU is the distribution Laplacian of

by p = -
n0n+2
the superharmonic extension U of'g-}?as in corollary 3.2.6.

To prove this we need a lemma.

3¢3.3 Lemma ILet'h be a continuous real-valued function on B »

R*(x) =  £(x)h(Q(x)) (x ¢ R%*2).
Then 2im h*(x) = 0 where y is a point of infinity of R"'
=y
i.e. for e > 0O, there exists b '> 0
such that |n"(x)| < e (b=} > v) .
5
Proof Let € > O. Choose ¢ = 1 =~ 7@ °
B(0,c) C B,

Since h is continuous on the compact closure

there exists k > O such that
(M € B(0O,c))

e

?

(1)

()| ¢ k

f NIVE -2/n1

Choose b= max d2e 2 5 o
1 e(1-c7)] :

iy n+2 ¢ 5
Let x = (xl,...,xn+2) € R with ux" be
Xy X, : n
Since N_ = (==,;¢eey —) € 9B where r" = 3 x,. and by lemma
o r r A 5 1
i=1
where w(zo) = No =

’
- 35 ]x-zoﬁx/2 = a(x) - v |

Then we have [Q(x)| = 1 - ﬂx-zouly2 5

R Ix} <1 + "x-zol,

;
By the fact that Xé(x);
l+||x[2

15ROk

(2)
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we get ﬂx-zol?\yz(x) 2 (le-l)x%(x) > __L_“x'}
Vl+|x"2

From (2), IQ(x)u €1~ le:;a P Mo

¢1+ﬂx|§ v

By (1) jblg(x)}| & k.
i o n/a
Therefore In (x)| s -i———SElE |h(Q(x))| < 3 éx)k
1-ja(x)} 1-c
3 z
Since AMx) § =————= , we obtain
1+Ixﬂ2
n/
2
|Hk(x)| < A £ € »

N/
(1-02)(1+‘x12) e

The lemma is completely proved 4

We end this chapter with the proof of theorem 3.3.2.
Suppose that h is positive and harmonic in B. By theorem

2.3.1 and corollary ' 3.2.6, the harmonic function h* = f(h o Q) in

Rn+2~\E possesses the superharmonic extension U to mn+2.

2\ By U2 O ON mn+2\ E.

Since U = h' on R™
Let’y € E. By theorem 1l.3.6,
U(Y) 2 A(U; Y 5) ((5 # 0)y

Since (n+2)-dimensional Lebesgue measure of E is zero and U > O

on B(y, §)~E, we have

1 £ U(z)dz = 1 / gi{g)dz > 0.

A(U; y,8) = g %
v, 8 B(y,6) v, 8 B(y,8)~ E

Hence: U > 0O on Rn+2.
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Since the zero function is a harmonic minmorant of U,
the greatest harmonic minorant of U, say G, must be non-negative.
From theorem l.2.5, G is constant on Rn+2. By lemma 3.3.3 and
0 £ G < h*, we have G =0 oann+2.

Recall the theorem 3.3.2 (Riesz decomposition),

gix) =7 :

du(z) + O
Rn+2 Ix—zh

where the measure p is the distribution Laplacian of U multiplied

by the constant - 3 P - A VR - °
no no
n+2 n+2
Since U is harmonic in Rn+2\LE, \=\Q an Rn+2\ E.
Then h*(x) = U(x) = / —3— du(2) .
n
B ﬂx-zl

Let M = (Xl,...,xn) € B and X = (xl,...,xn,0,0).

Then Q(x) = M, Mx) =1 and

__1__2. n(M) = £(x)h(Q(x)) = h*(x)
1-|m|
1
- J — du(Z)
E lx—znn
1
B Ju-n|" ’

the theorem is now completely proved. 5
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