

CHAPTER III

ON THE SUPERHARMONICITY OF u

3.1 Notation

Recall that ω denotes an arbitrary open subset of the unit ball B in \mathbb{R}^n and $\Omega = Q^{-1}[\omega]$ where Q is the function as in lemma 2.2.1.

Let Ω_{1} be an open set such that

 $\Omega \subset \Omega_1 \subset \Omega \cup (\partial \Omega \cap E)$

where $\partial\Omega$ is the boundary of Ω in \mathbb{R}^{n+2} and let

 $\omega' = \{(\xi_1, \dots, \xi_n) \in \partial B/(\xi_1, \dots, \xi_n, 0, 0) \in \Omega_1\}.$

Since the extension of superharmonic function to Ω_1 is interested, we drop the case $\Omega_1 = \Omega$. Note that $\Omega_1 \setminus \Omega \subset (\Omega \cup E) \setminus \Omega = E$ and if $\omega = B$, then we have $\Omega = \mathbb{R}^{n+2} \setminus E$, $\Omega_1 = \mathbb{R}^{n+2}$ and $\omega' = \partial B$.

3.2 Superharmonic Extension of u

In this section we take up the problem of continuation of superharmonic u^{*} across a polar set.

Since the function g defined by $g(x) = \int \frac{1}{||x-z|^n} d\sigma(z)$ is superharmonic in \mathbb{R}^{n+2} and takes the value ∞ on E, then E is a polar set. Hence $E \cap \Omega_1$ is a polar set by 1.4.3. (3.2.1) 3.2.2 Theorem

Let u be superharmonic in W and

$$\mathbf{x}) = \mathbf{f}(\mathbf{x}) \, \mathbf{u}(\mathbf{Q}(\mathbf{x})) \qquad (\mathbf{x} \in \mathbf{A}).$$

Then the superharmonic function u^{T} has a unique superharmonic extension U to Ω_{γ} if and only if

u* (

$$\lim_{M\to N} \inf \frac{1}{1-\lim_{M \to \infty} u(M) \ge -\infty} \qquad (N \in \omega^{*}).$$

Before proving this theorem we need the following remarks.

3.2.3 <u>Remark</u> For any $x = (x_1, \dots, x_{n+2}) \notin \mathbb{R}^{n+2} \setminus \mathbb{E}$, the distance of x from E is dist $(x, \mathbb{E}) = \sqrt{(1-r)^2 + x_{n+1}^2 + x_{n+2}^2}$ where $r^2 = x_1^2 + \dots + x_n^2$.

 $\frac{\text{Proof}}{\|\mathbf{x}-\mathbf{y}\|^2} \text{ For } \mathbf{y} = (y_1, \dots, y_n, 0, 0) \notin \mathbb{E}, \text{ we have}$ $\|\mathbf{x}-\mathbf{y}\|^2 = \|(x_1, \dots, x_n) - (y_1, \dots, y_n)\|^2 + x_{n+1}^2 + x_{n+2}^2 \cdot \frac{1}{||(x_1, \dots, x_n)|| - ||(y_1, \dots, y_1)|||} + x_{n+1}^2 + x_{n+2}^2 \cdot \frac{1}{||(x_1, \dots, x_n)|| - ||(y_1, \dots, y_1)|||} + x_{n+1}^2 + x_{n+2}^2 \cdot \frac{1}{||(x_1, \dots, x_n)|| - ||(x_n, \dots, x_n)||}{||(x_n, \dots, x_n)|| - ||(x_n, \dots, x_n)||} + \frac{1}{||(x_n, \dots, x_$

#

There exists $z \in E$ such that $||x-z||^2 = (r-1)^2 + x_{n+1}^2 + x_{n+2}^2$

Then
$$\inf_{y \in E} ||x-y||^2 = (r-1)^2 + x_{n+1}^2 + x_{n+2}^2$$

Hence $[dist (x,E)]^2 = (r-1)^2 + x_{n+1}^2 + x_{n+2}^2$

3.2.4 <u>Remark</u> If $x = (x_1, \dots, x_{n+2}) \in \mathbb{R}^{n+2} \setminus E$, λ is the function as defined in lemma 2.2.1 and d = dist(x, E),

then
$$\lambda(\mathbf{x}) \ge \frac{1}{(d+1)^2}$$

<u>Proof</u> Since $d^2 = (r-1)^2 + x_{n+1}^2 + x_{n+2}^2$, we have $d \ge r-1$ and $1 + \|x\|^2 = 1 + r^2 + x_{n+1}^2 + x_{n+2}^2 = d^2 + 2r$.

Then
$$\lambda(\mathbf{x}) = \frac{2}{d^2 + 2\mathbf{r} + \sqrt{(d^2 + 2\mathbf{r})^2 - 4\mathbf{r}^2}}$$

 $= \frac{4}{(d + \sqrt{d^2 + 4\mathbf{r}})^2}$
 $\geq \frac{4}{(d + \sqrt{d^2 + 4d + 4})^2} = \frac{1}{(d + 1)^2} \#$

3.2.5 <u>Remark</u> If U is superharmonic in an open set D, then U is locally bounded below in D.

<u>Proof</u> For $z_0 \in D$, there is an open ball $B(z_0, \rho)$ with compact closure $\overline{B}(z_0, \rho) \subset D$. Since $U > -\infty$ and U is l.s.c. on compact $\overline{B}(z, \rho)$, we get U is bounded below in $\overline{B}(z_0, \rho)$. That is, for some k, $U(x) \ge k$ ($x \in B(z_0, \rho)$). Hence U is locally bounded below in D #

Proof of theorem 3.2.2 We first prove the "if" part. Assume $\lim_{M\to N} \inf \frac{1}{1-|M|} u(M) > -\infty$ (N $\varepsilon \omega$ '). Claim that u* is locally bounded below in Ω_1 . Let $z_0 \in \Omega_1$. Since Ω is open, the case $z_0 \in \Omega$ follows directly from remark 3.2.5. If $z_0 \notin \Omega$, then $z_0 \in E \cap \Omega_1$.

Let $z_0 = (\xi_1, \dots, \xi_n, 0, 0)$. Then $N_0 = (\xi_1, \dots, \xi_n) \in \omega'$. By assumption, $\lim_{M \to N_0} \inf \frac{1}{1 - |M|} u(M) > -\infty$.

So we have k < 0 and $\rho > 0$ such that

$$\frac{1}{1-|M|} u(M) \ge k \qquad (M \in B(N_0, \rho) \cap \omega).$$
(1)

Now $B(z_0, \rho)$ is a neighbourhood of z_0 and

$$u^{*}(x) = \frac{\lambda}{1 - |Q(x)||^{2}} u(Q(x)) \qquad (x \in B(z_{0}, p)) \cap \Omega).$$

By lemma 2.2.1 and let M = Q(x), $||M-N_0|| = \lambda^{\frac{1}{2}}(x) ||x-z_0|| < \rho$. And by (1) we get

$$u^{*}(\mathbf{x}) = \frac{\lambda^{n/2}(\mathbf{x})}{1+|\mathbf{M}|} \cdot \frac{1}{1-|\mathbf{M}|} u(\mathbf{M}) \ge \frac{\lambda^{n/2}(\mathbf{x})}{1+|\mathbf{M}|} \mathbf{k} \cdot \mathbf{M}$$

Since $\frac{\lambda^2(x)}{1+|M|} < 1$, $u^*(x) \ge k$ ($x \in B(z_0, \rho) \cap \Omega$).

That is $\lim_{x \to z_0} \inf u^*(z_0) > -\infty$.

Hence u^{*} is locally bounded below in Ω_{1}^{*} .

From (3.2.1) $E \cap \Omega_1$ is a polar set and relatively closed in Ω_1 , then by theorem 1.4.4 the superharmonic function u^* in $\Omega = \Omega_1 \setminus (E \cap \Omega_1)$ has a unique superharmonic extension U to Ω_1 , i.e. U = u on Ω .

To prove the "only if" part, we assume that u has a superharmonic extension U to Ω_1 . Then U is locally bounded below in Ω_1 by remark 3.2.5.

Since U is an extension of u^* , i.e. $U = u^*$ on Ω , we get

 $\lim_{x\to z} \inf u^*(x) > -\infty \qquad (z \in \Omega_1).$

For any $N = (\xi_1, \dots, \xi_n) \in \omega'$, $z = (\xi_1, \dots, \xi_n, 0, 0) \in \Omega_1 \cap E$. Then there exist k < 0 and $\rho > 0$ such that

$$u^{*}(\mathbf{x}) \ge k$$
 $(\mathbf{x} \in B(\mathbf{z}, \rho) \cap \Omega)$ (2)

Let M ϵ B(N, $\frac{\rho}{\rho+1}$) $\cap \omega \subset \mathbb{R}^n$.

Then $M = Q(x_0)$ for some x_0 in Ω . By lemma 2.2.1 and (3.2.4)

$$\frac{\rho}{\rho+1} > \|M-N\| = \|x_0 - z\|\lambda^{\frac{1}{2}}(x_0) \ge \frac{\|x_0 - z\|}{d_0 + 1} \ge \frac{\|x_0 - z\|}{\|x_0 - z\| + 1}$$

where $d_0 = dist(x_0, E)$, $z \in E$.

S

That is $||\mathbf{x}_{0} - \mathbf{z}| < \rho$. From (2) we have $\frac{\frac{n/2}{\lambda}(\mathbf{x}_{0})}{|\mathbf{x}_{0}|^{2}} u(\mathbf{M}) = u^{*}(\mathbf{x}_{0}) \ge k$,

$$\frac{1}{1-|M|} u(M) \ge k(1+|M|)\lambda^{-n/2}(x_0).$$

ince
$$\rho > ||x_0 - z|| > d_0$$
, $\lambda^{1/2}(x_0) > \frac{1}{d_0 + 1} > \frac{1}{\rho + 1}$.

We have
$$\frac{1}{1-|M|} u(M) \ge 2k \lambda^{-n/2}(x_0) \ge 2k(\rho+1)^n$$
.
Hence $\lim_{M\to N} \inf \frac{1}{1-|M|} u(M) \ge -\infty$ (N $\varepsilon \omega$ ').
That is the theorem is completely proved #
3.2.6 Corollary Let u be superharmonic in B and

$$u^{*}(x) = f(x)u(Q(x)) \qquad (x \in \mathbb{R}^{n+2} \setminus \mathbb{E}).$$

Then the superharmonic function u has a unique superharmonic extension U to \mathbb{R}^{n+2} if and only if $u \ge 0$ on B.

Proof We apply the theorem 3.2.2 in the case $\omega = B$, then $\Omega = \mathbb{R}^{n+2} \setminus E$, $\Omega_1 = \mathbb{R}^{n+2}$ and $\omega' = \partial B$. If $u \ge 0$ on B, then

 $\lim_{M\to N} \inf \frac{1}{1-|M|} u(M) \ge 0 > -\infty \quad (N \in \partial B).$

Hence u^* has a unique superharmonic extension U to \mathbb{R}^{n+2} .

Conversely if u^* has a superharmonic extension U to \mathbb{R}^{n+2} , we have $\lim_{M \to N} \inf \frac{1}{1-|M|} u(M) > -\infty$ (N $\varepsilon \partial B$),

i.e. there exist $k \in \mathbb{R}$, $\rho > 0$ such that

$$\frac{1}{1-|M|} u(M) \ge k \qquad (M \in B(N,\rho) \cap B).$$

Hence $\lim_{M \to N} \inf u(M) \ge \lim_{M \to N} \inf (1-|M|)k = 0$ (N $\varepsilon \ni B$).

By theorem 1.3.3 $u \ge 0$ on B #

3.3 Integral Representation

If u is superharmonic in an open set D, h is harmonic in D and $h \le u$ on D, then h is called a <u>harmonic minorant</u> of u. The function h is the greatest harmonic minorant of u if h is a harmonic minorant of u and $h \ge v$ whenever v is a harmonic minorant of u.

The following theorem is drawn from [5], page 47.

3.3.1 <u>Theorem</u> (Riesz Decomposition) If U is superharmonic in $\mathbb{R}^{\mathbb{M}}$ (m \ge 3), then

$$U(\mathbf{x}) = \int_{\mathbb{R}^{m}} \frac{1}{|\mathbf{x}-\mathbf{y}|^{m-2}} d\mu(\mathbf{y}) + G(\mathbf{x}) \qquad (\mathbf{x} \in \mathbb{R}^{m})$$

where G is the greatest harmonic minorant of U and the measure μ is given by $\mu = \frac{-\Delta U}{(m-2)\sigma_m}$, ΔU is regarded as the distribution

Laplacian of U.

Now return to theorems on the passage. The following theorem has shown that a harmonic function in B can be represented by the certain integral.

3.3.2 <u>Theorem</u> If h is positive and harmonic in the unit ball B of \mathbb{R}^n , then

$$h(M) = \int \frac{1 - \|M\|^2}{\|M - N\|^N} d\mu(N) \qquad (M \in B)$$

where μ is a positive Radon measure on ∂B .

The measure μ , understood as a measure on $E = \partial B$, is given by $\mu = -\frac{\Delta U}{n\sigma_{n+2}}$ where ΔU is the distribution Laplacian of the superharmonic extension U of $\mu = h$ as in corollary 3.2.6.

To prove this we need a lemma.

3.3.3 Lemma Let'h be a continuous real-valued function on B ,

$$h^*(x) = f(x)h(Q(x)) \qquad (x \in \mathbb{R}^{n+2}).$$

Then $\lim_{x \to y} h^*(x) = 0$ where y is a point of infinity of \mathbb{R}^{n+2} , x \to y i.e. for $\varepsilon > 0$, there exists b > 0 such that $|h^*(x)| < \varepsilon$ (|x| > b).

<u>Proof</u> Let $\varepsilon > 0$. Choose $c = 1 - \frac{1}{\sqrt{5}}$.

Since h is continuous on the compact closure $\overline{B}(0,c) \subset B$, there exists k > 0 such that

 $|h(M)| \leq k$

 $(M \in \overline{B}(0,c))$ (1)

Choose $b = \max\left\{2, 2\left[\frac{k}{\epsilon(1-c^2)}\right]^{2/n}\right\}.$

Let $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_{n+2}) \in \mathbb{R}^{n+2}$ with $\|\mathbf{x}\| \ge \mathbf{b}$. Since $N_0 = (\frac{\mathbf{x}_1}{\mathbf{r}}, \dots, \frac{\mathbf{x}_n}{\mathbf{r}}) \in \partial B$ where $\mathbf{r}^2 = \sum_{i=1}^n \mathbf{x}_i^2$ and by lemma 2.2.1, $\|\mathbf{x}-\mathbf{z}_0\| \lambda^{1/2} = \|Q(\mathbf{x}) - N_0\|$ where $\psi(\mathbf{z}_0) = N_0$. Then we have $\|Q(\mathbf{x})\| = 1 - \|\mathbf{x}-\mathbf{z}_0\| \lambda^{1/2}$. (2) By the fact that $\lambda^{1/2}(\mathbf{x}) \ge \frac{1}{\sqrt{1+|\mathbf{x}-\mathbf{x}|^2}}$ and $\|\mathbf{x}\| \le 1 + \|\mathbf{x}-\mathbf{z}_0\|$,

116528086

we get
$$\|x-z_0\| \lambda^{\frac{1}{2}}(x) \ge (\|x\|-1)\lambda^{\frac{1}{2}}(x) \ge \frac{\|x\|-1}{\sqrt{1+|x||^2}}$$
.
From (2), $\|Q(x)\| \le 1 - \frac{\|x\|-1}{\sqrt{1+|x||^2}} < 1 - \frac{1}{\sqrt{5}} = c$.

By (1)
$$|h(Q(x))| \leq k$$
.

Therefore
$$|h^{*}(\mathbf{x})| \leq \frac{\lambda^{n/2}(\mathbf{x})}{1-\|Q(\mathbf{x})\|^{2}} |h(Q(\mathbf{x}))| \leq \frac{\lambda^{n/2}(\mathbf{x})k}{1-c^{2}}$$

ince
$$\lambda(\mathbf{x}) \leq \frac{2}{1+\|\mathbf{x}\|^2}$$
, we obtain
 $\|\mathbf{h}^*(\mathbf{x})\| \leq \frac{\frac{k^2}{1+\|\mathbf{x}\|^2}}{(1-c^2)(1+\|\mathbf{x}\|^2)^{n/2}} < \varepsilon$

The lemma is completely proved #

S

We end this chapter with the proof of theorem 3.3.2.

Suppose that h is positive and harmonic in B. By theorem 2.3.1 and corollary 3.2.6, the harmonic function $h^* = f(h \circ Q)$ in $\mathbb{R}^{n+2} \setminus E$ possesses the superharmonic extension U to \mathbb{R}^{n+2} . Since U = h^{*} on $\mathbb{R}^{n+2} \setminus E$, U > O on $\mathbb{R}^{n+2} \setminus E$. Let y $\in E$. By theorem 1.3.6,

 $U(y) \ge A(U; y, \delta)$ ($\delta > 0$).

Since (n+2)-dimensional Lebesgue measure of E is zero and U > 0 on B(y, δ) > E, we have

$$A(U; y, \delta) = \frac{1}{\nu_n \delta^n} \int_{B(y, \delta)} U(z) dz = \frac{1}{\nu_n \delta^n} \int_{B(y, \delta) \setminus E} U(z) dz > 0.$$

Hence U > 0 on \mathbb{R}^{n+2} .

Since the zero function is a harmonic minorant of U,

the greatest harmonic minorant of U, say G, must be non-negative. From theorem 1.2.5, G is constant on \mathbb{R}^{n+2} . By lemma 3.3.3 and $0 \leq G \leq h^*$, we have G = 0 on \mathbb{R}^{n+2} .

Recall the theorem 3.3.2 (Riesz decomposition),

$$U(\mathbf{x}) = \int \frac{1}{\|\mathbf{x}-\mathbf{z}\|^n} d\mu(\mathbf{z}) + 0$$

where the measure μ is the distribution Laplacian of U multiplied by the constant $-\frac{1}{n\sigma_{n+2}}$, i.e. $\mu = -\frac{\Delta U}{n\sigma_{n+2}}$. Since U is harmonic in $\mathbb{R}^{n+2} \setminus \mathbb{E}$, $\mu = 0$ on $\mathbb{R}^{n+2} \setminus \mathbb{E}$. Then $h^*(\mathbf{x}) = U(\mathbf{x}) = \int \frac{1}{\mathbb{E}} \frac{1}{\|\mathbf{x}-\mathbf{z}\|^n} d\mu(\mathbf{z})$. Let $M = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{B}$ and $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n, 0, 0)$. Then $Q(\mathbf{x}) = M$, $\lambda(\mathbf{x}) = 1$ and

$$\frac{1}{1-\|M\|^2} h(M) = f(x)h(Q(x)) = h^*(x)$$

$$= \int \frac{1}{\mathbf{E} |\mathbf{x}-\mathbf{z}|^n} d\mu(\mathbf{z})$$

$$= \int \frac{1}{\|M-N\|^n} d\mu(N) ,$$

the theorem is now completely proved. #