CHAPTER II

A PASSAGE FROM R INTO Rn+2

In this chapter we construct a passage from any open subset of the unit ball of \mathbb{R}^n into \mathbb{R}^{n+2} and study some interesting results on the passage.

2.1 Notation

Let B and ∂B be the open unit ball and the unit sphere in the euclidean n-dimensional space \mathbb{R}^n , $n \ge 2$. If M and N are in \mathbb{R}^n , $\|M-N\|$ denotes the euclidean distance of M from N. We also let $\|x-y\|$ denotes the distance of x from y in \mathbb{R}^{n+2} .

Let
$$E = \{(x_1, ..., x_n, 0, 0)/(x_1, ..., x_n) \in \partial B\} \subset \mathbb{R}^{n+2}$$
.

Note that E = DB in the sense of 1-1 correspondence,

$$\psi(x_1,...,x_n,0,0) = (x_1,...,x_n).$$

For any $x = (x_1, ..., x_{n+2}) \in \mathbb{R}^{n+2}$, we assign the number r > 0 by letting $r^2 = x_1^2 + ... + x_n^2$.

2.2 The passage

2.2.1 Lemma Let x be any point in \mathbb{R}^{n+2} . E. Then there exist a function Q from \mathbb{R}^{n+2} . E onto B and a real-valued function λ from \mathbb{R}^{n+2} . E onto (0,1] such that

$$\frac{\|Q(x) - \psi(z)\|}{\|x - z\|} = \lambda^{\frac{1}{2}}(x) \qquad (z \in E).$$

Proof For any $x = (x_1, ..., x_{n+2}) \in \mathbb{R}^{n+2} \setminus \mathbb{E}$, define

$$\lambda(x) = \frac{2}{1 + \|x\|^2 + \sqrt{(1 + \|x\|^2)^2 - 4r^2}}$$

where $r^2 = x_1^2 + ... + x_n^2$.

Since
$$1 + \|x\|^{2} + \sqrt{(1 + \|x\|^{2})^{2} - 4r^{2}}$$

$$= 1 + \|x\|^{2} + \sqrt{1 + 2(r^{2} + x_{n+1}^{2} + x_{n+2}^{2}) + \|x\|^{4} - 4r^{2}}$$

$$\geq 1 + \|x\|^{2} + \sqrt{1 - 2r^{2} - 2x_{n+1}^{2} - 2x_{n+2}^{2} + \|x\|^{4}}$$

$$= 1 + \|x\|^{2} + |1 - \|x\|^{2}| \geq 2.$$

It follows that $\lambda(x) \leq 1$.

Hence λ maps $\mathbb{R}^{n+2} \times \mathbb{E}$ into (0,1].

Claim that
$$\lambda r < 1$$
 and $r^2 \lambda^2 - (1+||x||^2)\lambda + 1 = 0$ (1)

To show $\lambda r < 1$, we assume $r \neq 0$. (The case r = 0 is clear)

Since
$$(1-r)^2 + x_{n+1}^2 + x_{n+2}^2 + \sqrt{(1+\|x\|^2)^2 - 4r^2} > 0$$

 $1+r^2 + x_{n+1}^2 + x_{n+2}^2 + \sqrt{(1+\|x\|^2)^2 - 4r^2} > 2r$
 $1 + \|x\|^2 + \sqrt{(1+\|x\|^2)^2 - 4r^2} > 2r$

It follows that $1 > \lambda r$. By replacing $\lambda = 2/(1+\|x\|^2+\sqrt{(1+\|x\|^2)^2-4r^2})$ we have $r^2 \lambda^2 - (1+\|x\|^2)\lambda + 1 = 0$.

Now we define the function Q in \mathbb{R}^{n+2} E by

$$Q(x) = Q(x_1,...,x_{n+2}) = (\lambda x_1,...,\lambda x_n).$$

The point Q(x) is in B since $\|Q(x)\|^2 = \sum_{i=1}^n \lambda^2 x_i^2 = \lambda^2 r^2 < 1$.

Let $z = (\xi_1, ..., \xi_n, 0, 0) \in E$. Then $\psi(z) = (\xi_1, ..., \xi_n)$,

and
$$\frac{\|Q(\mathbf{x}) - \psi(\mathbf{z})\|^{2}}{\|\mathbf{x} - \mathbf{z}\|^{2}} = \frac{\sum_{i=1}^{n} (\lambda \mathbf{x}_{i} - \xi_{i})^{2}}{\sum_{i=1}^{n} (\mathbf{x}_{i} - \xi_{i})^{2} + \mathbf{x}_{n+1}^{2} + \mathbf{x}_{n+2}^{2}}$$

$$= \frac{\lambda^{2} \sum_{i=1}^{n} (\mathbf{x}_{i} - \xi_{i})^{2} + \mathbf{x}_{n+1}^{2} + \mathbf{x}_{n+2}^{2}}{\sum_{i=1}^{n} (\mathbf{x}_{i} - \xi_{i})^{2} + \mathbf{x}_{n+1}^{2} + \sum_{i=1}^{n} (\xi_{i} - \xi_{i})^{2} + \sum_{i=1}^{n}$$

 $= \lambda$.

The rest of the proof is to show that the function Q is onto B and λ is onto (0,1]. First, let $M=(q_1,\ldots,q_n)$ ϵ B. The point $x=(q_1,\ldots,q_n,0,0)$ ϵ \mathbb{R}^{n+2} ϵ . Then we have $\lambda(x)=1$ and $Q(x)=(q_1,\ldots,q_n)$. Hence Q is onto B.

For b \in (0,1], let x = (0,...,0,a) \in \mathbb{R}^{n+2} where a satisfies the equation 1 + $a^2 = \frac{1}{b}$

Obviously $x \notin E$ and $\lambda(x) == \frac{1}{1+a^2} = b$

This shows that λ is onto (0,1]. The lemma is completely proved χ

Moreover λ and Q are continuous on $\mathbb{R}^{n+2} \sim E$, their partial derivatives exist and continuous for all order, hence we call λ and Q are infinitely differentiable.

We introduce the function f defined by

$$f(x) = \frac{1}{6_n} \int_{E} \frac{1}{\|x-z\|^n} d6(z)$$
 $(x \in \mathbb{R}^{n+2} - E)$

where 6 is the surface area measure and 6_n is the surface area of the unit sphere in \mathbb{R}^n .

2.2.2 Lemma f is harmonic in $\mathbb{R}^{n+2} \setminus \mathbb{E}$.

Proof In stead of f, we will prove that the function g defined by

$$g(x) = \int_{E} \frac{1}{\|x - z\|^n} d\sigma(z)$$

is harmonic in $\mathbb{R}^{n+2} \setminus \mathbb{E}$.

We first show that g is finite on $\mathbb{R}^{n+2} \setminus E$.

Let $r_0 = \text{dist}(x,E)$, distance of x from E $(x \in \mathbb{R}^{n+2} \setminus E)$. Since E is compact, $r_0 > 0$.

Hence for all $z \in E$, $||x - z|| \ge r_0$ and we have

$$\int_{E} \frac{1}{\|\mathbf{x}-\mathbf{z}\|^{n}} d\sigma(\mathbf{z}) \leqslant \int_{E} \frac{1}{r_{o}^{n}} d\sigma(\mathbf{z}) = \frac{\sigma_{n}}{r_{o}^{n}} < \infty.$$

That is g is finite on E.

(1)

Let $x_0 \in \mathbb{R}^{n+2} \setminus E$. There is $B(x_0, \delta)$ with $\overline{B}(x_0, \delta) \subset \mathbb{R}^{n+2} \setminus E$.

Let b = distance between E and $\overline{B}(x_0, \delta)$, then b > 0.

Choose $x_m \in B(x_0, \delta)$, m = 1, 2, ... such that $\lim_{m \to \infty} x_m = x_0$.

Then
$$\|\mathbf{x}_{m} - \mathbf{z}\| > b$$
, i.e. $\frac{1}{\|\mathbf{x}_{m} - \mathbf{z}\|^{n}} < \frac{1}{b^{n}}$ ($\mathbf{z} \in \mathbf{E}$)

Since $\int_{E}^{\infty} \frac{1}{b^n} d\sigma(z) < \infty$, by Lebesgue Dominated Convergence

Theorem (1.1.2) we have

$$\lim_{x \to x_{O}} \int \frac{1}{\|x-z\|^{n}} d\sigma(z) = \lim_{m \to \infty} \int \frac{1}{\|x_{m}-z\|^{n}} d\sigma(z)$$

$$= \int \lim_{E \to \infty} \frac{1}{\|x_{m}-z\|^{n}} d\sigma(z)$$

$$= \int \frac{1}{\|x_{N}-z\|^{n}} d\sigma(z).$$

That is
$$\lim_{x\to x} g(x) = g(x_0)$$
 $(x_0 \in \mathbb{R}^{n+2} \setminus E)$.

Hence g is continuous on $\mathbb{R}^{n+2} \setminus \mathbb{E}$.

(2)

Let $x_0 \in \mathbb{R}^{n+2} \setminus E$. For all $\rho < \delta$ where $\overline{B}(x_0; \delta) \in \mathbb{R}^{n+2} \setminus E$

we have

$$L(g; x_{o}, \rho) = \frac{1}{\sigma_{n+2}\rho^{n+1}} \int_{\partial B(x_{o}, \rho)} g(x) d\sigma(x)$$

$$= \frac{1}{\sigma_{n+2}\rho^{n+1}} \int_{\partial B(x_{o}, \rho)} \frac{1}{E \|x-z\|^{n}} d\sigma(z) d\sigma(x)$$

$$= \int_{E} \frac{1}{\sigma_{n+2}\rho^{n+1}} \int_{\partial B(x_{o}, \rho)} \frac{1}{\|x-z\|^{n}} d\sigma(x) d\sigma(z)$$

where the last equality follows from theorem 1.1.3.

Since the mapping $x \mapsto \frac{1}{\|x-z\|^n}$ is harmonic in $\mathbb{R}^{n+2} \setminus \mathbb{E}$

and $\overline{B}(x_0,\rho) \subset \mathbb{R}^{n+2} \setminus E$, by theorem 1.2.3

$$\frac{1}{\sigma_{n+2}\rho^{n+1}} \int \frac{1}{\|x-z\|^n} d\sigma(z) = \frac{1}{\|x_0-z\|^n}$$

So we obtain

$$L(g;x_{o},\rho) = \int \frac{1}{\|x_{o}-z\|^{n}} d\sigma(z) = g(x_{o})$$
 (3)

From (1),(2),(3) and theorem 1.2.6, g is harmonic in $\mathbb{R}^{n+2} \setminus E$. It follows immediately that f is harmonic in $\mathbb{R}^{n+2} \setminus E$

We call f the harmonic function associated with E.

2.2.3 Lemma If f is the harmonic function associated with E,

then
$$f(x) = \frac{\frac{n}{2}(x)}{1 - ||Q(x)||^2} \qquad (x \in \mathbb{R}^{n+2} \setminus E)$$

where λ and Q are the functions given by lemma 2.2.1.

Proof Let $x \in \mathbb{R}^{n+2} \setminus E$. According to lemma 2.2.1,

$$\|Q(x) - \psi(z)\| = \|x - z\|_{\lambda}^{\frac{1}{2}}(x) \qquad (z \in E).$$

Then
$$f(x) = \frac{1}{\sigma_n} \int_E \frac{1}{\|x-z\|^n} d\sigma(z)$$

$$= \frac{1}{\sigma_n} \int_E \frac{\frac{\lambda^n/2}(x)}{\|Q(x)-\psi(z)\|^n} d\sigma(\psi(z))$$

$$= \frac{\frac{\lambda^n/2}(x)}{1-\|Q(x)\|^2} \frac{1}{\sigma_n} \int_{\partial B} \frac{1-\|Q(x)\|^2}{\|Q(x)-N\|^n} d\sigma(N) .$$

By theorem 1.2.4 (Poisson integral formula),

$$\frac{1}{\sigma_n} \int_{\partial B} \frac{1 - \|Q(x)\|^2}{\|Q(x) - N\|^n} d\sigma(N) = 1$$

Hence the last equation becomes $f(x) = \frac{\frac{n}{2}(x)}{1 - ||Q(x)||^2}$ #

2.2.4 Lemma If λ is the function as in lemma 2.2.1, $\gamma = r^2$

then
$$4\lambda \frac{\partial \lambda}{\partial \gamma} + |\nabla \lambda|^2 = 0$$

where ∇ denotes the (n+2)-dimensional gradient vector operator.

Proof Let
$$\gamma = x_1^2 + \dots + x_n^2$$
, $\tau = x_{n+1}^2 + x_{n+2}^2$

Since $\frac{\partial \lambda}{\partial x_i}(\gamma, \tau) = \frac{\partial \lambda}{\partial \gamma} \frac{\partial \delta}{\partial x_i} + \frac{\partial \lambda}{\partial \tau} \frac{\partial \tau}{\partial x_i}$

$$= \begin{cases} 2x_i \frac{\partial \lambda}{\partial \gamma} & (1 \leq i \leq n) \\ 2x_j \frac{\partial \lambda}{\partial \tau} & (j = n+1, n+2) \end{cases}$$

$$\nabla \lambda = (2x_1 \frac{\partial \lambda}{\partial \gamma}, \dots, 2x_n \frac{\partial \lambda}{\partial \gamma}, 2x_{n+1} \frac{\partial \lambda}{\partial \tau}, 2x_{n+2} \frac{\partial \lambda}{\partial \tau})$$

Then $|\nabla \lambda|^2 = 4\gamma \left(\frac{\partial \lambda}{\partial x}\right)^2 + 4\tau \left(\frac{\partial \lambda}{\partial x}\right)^2$ (1)

Return to the proof of lemma 2.2.1, λ satisfies

$$\gamma \lambda^2 < 1$$
 and $\gamma \lambda^2 - [1 + \gamma + \tau] \lambda + 1 = 0$ (2)
$$\tau = \gamma \lambda - 1 - \gamma + \frac{1}{\lambda}.$$

By differentiating (2) with respect to γ and τ we have

$$\frac{\partial \lambda}{\partial \gamma} = \frac{\lambda^2(1-\lambda)}{\gamma \lambda^2 - 1}$$
 and $\frac{\partial \lambda}{\partial \tau} = \frac{\lambda^2}{\gamma \lambda^2 - 1}$

It is easy to compute $\lambda \frac{\partial \lambda}{\partial \gamma} + \gamma (\frac{\partial \lambda}{\partial \gamma})^2 + \tau (\frac{\partial \lambda}{\partial \tau})^2 = 0$ Then by (1), $4 \lambda \frac{\partial \lambda}{\partial \gamma} + |\nabla \lambda|^2 = 0$

2.2.5 Lemma Let $Q = (q_1, ..., q_n)$ be the function defined in lemma 2.2.1, that is $q_i(x) = x_i \lambda(x)$ (i = 1, ..., n).

Then $|\nabla q_i| = \lambda$, $|\nabla q_i| = 0$ ($1 \le i, j \le n$ and $i \ne j$)

where ∇ is the (n+2)-dimensional gradient vector.

Since
$$\nabla q_i = (\frac{\partial q_i}{\partial x_1}, \dots, \frac{\partial q_i}{\partial x_{n+2}})$$
 $(i = 1, 2, \dots, n)$.

$$= (x_i \frac{\partial \lambda}{\partial x_1}, \dots, \lambda + x_i \frac{\partial \lambda}{\partial x_i}, \dots, x_i \frac{\partial \lambda}{\partial x_{n+2}})$$
Then $|\nabla q_i|^2 = x_i^2 \left[(\frac{\partial \lambda}{\partial x_1})^2 + \dots + (\frac{\partial \lambda}{\partial x_{n+2}})^2 \right] + \lambda^2 + 2\lambda x_i \frac{\partial \lambda}{\partial x_i}$

$$= x_i^2 |\nabla \lambda|^2 + \lambda^2 + 2\lambda x_i |2x_i \frac{\partial \lambda}{\partial \gamma}$$

$$= (|\nabla \lambda|^2 + \lambda^2 + \lambda^2 + \lambda^2 + \lambda^2).$$

By lemma 2.2.4, $|\nabla q_i| = \lambda$.

The remainder of the proof is directly calculated and by lemma 2.2.4 again we have

$$\nabla \mathbf{q_{i}} \cdot \nabla \mathbf{q_{j}} = \mathbf{x_{i}} \mathbf{x_{j}} \sum_{\mathbf{k}=\mathbf{l}}^{\mathbf{n}+2} \left(\frac{\partial \lambda}{\partial \mathbf{x_{k}}}\right)^{2} + \lambda \mathbf{x_{j}} \frac{\partial \lambda}{\partial \mathbf{x_{i}}} + \lambda \mathbf{x_{i}} \frac{\partial \lambda}{\partial \mathbf{x_{j}}}$$

$$= \mathbf{x_{i}} \mathbf{x_{j}} \left| \nabla \lambda \right|^{2} + \lambda \mathbf{x_{j}} 2\mathbf{x_{i}} \frac{\partial \lambda}{\partial \gamma} + \mathbf{x_{i}} \lambda^{2} \mathbf{x_{j}} \frac{\partial \lambda}{\partial \gamma}$$

$$= \mathbf{x_{i}} \mathbf{x_{j}} \left(\left| \nabla \lambda \right|^{2} + 4\lambda \frac{\partial \lambda}{\partial \gamma} \right) = 0$$
#

2.2.6 Lemma If f is the harmonic function associated with E, $Q = (q_1, \ldots, q_n)$ is the function as in lemma 2.2.1, then the functions $q_i f$, $i = 1, 2, \ldots, n$, defined by

$$(q_if)(x) = q_i(x) f(x)$$
 $(x \in \mathbb{R}^{n+2} \setminus E)$

are harmonic in Rⁿ⁺² E and satisfy

$$f \overset{*}{\Delta} q_i + 2(\nabla f \cdot \nabla q_i) = 0$$

where $\overset{*}{\Delta}$ is the (n+2)-dimensional Laplacian operator.

Proof For i=1,...,n the real-valued function \emptyset_i defined by $\emptyset_i(\zeta_1,...,\zeta_n)=\zeta_i$ is harmonic and $Q(x)\in B$, hence by theorem 1.2.4 (Poisson Integral Formula)

equation becomes

$$q_{i}(x) f(x) = \frac{1}{\sigma_{n}} \int \frac{\frac{n}{2}(x)}{\left|Q(x)-N\right|^{n}} \emptyset_{i}(N) d\sigma(N)$$
.

By lemma 2.2.1,

$$(q_i f)(x) = \frac{1}{\sigma_n} \int \frac{1}{\|x-z\|^n} \emptyset_i(\psi(z)) d\sigma(z)$$
.

Let μ be a measure defined by $\mu(F) = \int_{F}^{f} \emptyset_{\mathbf{i}}(\psi(\mathbf{z})) d\sigma(\mathbf{z})$ for all Borel set $F \subset E$. Then μ is a signed measure of bounded variation by Theorem 1.1.1.

Then
$$(q_if)(x) = \frac{1}{\sigma_n} \int_E \frac{1}{\|x-z\|^n} d\mu(z)$$
.

Hence the functions q_if are harmonic in $\mathbb{R}^{n+2}\setminus E$ (i = 1,...,n).

We complete the proof by showing that $f^*_{\Delta}q_i + 2(\nabla f \cdot \nabla q_i) = 0$. Since f and q_i f are harmonic, $\Delta^*(q_i f) = \Delta^* f = 0$. By the fact that

$$\Delta^* (fq_i) = f \Delta^*q_i + 2(\nabla f \cdot \nabla q_i) + q_i^{\Delta^*} f$$

Therefore
$$O = f_{\Delta}^* q_{i}^+ 2(\nabla f^* \nabla q_{i}) #$$

2.3 Superharmonicity on the passage

In this section we shall study superharmonic properties on the passage from any open subset of the unit ball of \mathbb{R}^n into \mathbb{R}^{n+2} .

2.3.1 Theorem If u is superharmonic in B and let $u^*(x) = f(x)u(Q(x)) \qquad (x \in \mathbb{R}^{n+2} \setminus E)$

where f is the harmonic function associated with E and Q is the function defined as in lemma 2.2.1, then u^* is superharmonic in $\mathbb{R}^{n+2} \setminus E$.

In particular if u is harmonic in B, then u is harmonic in $\mathbb{R}^{n+2} \setminus E$.

The following theorem shows that theorem 2.3.1 has a generalization.

Let ω denote an arbitrary open subset of B, Ω denote the inverse image of ω under Q, i.e. $\Omega = Q^{-1}[\omega]$. Since Q is continuous, Ω is also open. In the case $\omega = B$, we have $\Omega = \mathbb{R}^{n+2} \setminus E$.

2.3.2 Theorem If u is superharmonic in w and

$$u^{*}(x) = f(x)u(Q(x))$$
 (x \varepsilon \Omega),

then u^* is superharmonic in Ω . In particular if u is harmonic in ω , then u^* is harmonic in Ω .

To prove theorem 2.3.2 and hence theorem 2.3.1, we need the following theorem.

2.3.3 Theorem Let u be a function having continuous second partial derivatives thereon in ω and

$$u''(x) = f(x)u(Q(x)) \qquad (x \in \Omega)$$

where f is the harmonic function associated with E and Q is the function defined as in lemma 2.2.1.

Then $\Delta^* u^*(x) = \lambda^2(x) f(x) \Delta u(Q(x))$ where Δ^* and Δ denote the (n+2)- and n-dimensional Laplacians.

Proof Since f is harmonic and $u^* = fu(Q)$ or $f(u \circ Q)$, $\Delta^* u^* = f \Delta^*(u \circ Q) + 2(\nabla f \cdot \nabla(u \circ Q)) + (u \circ Q) \Delta^* f$ $= f \Delta^*(u \circ Q) + 2(\nabla f \cdot \nabla(u \circ Q)).$

Since further
$$\nabla f \cdot \nabla (u \circ Q) = \sum_{j=1}^{n} (\nabla f \cdot \nabla q_j) \frac{\partial u}{\partial q_j}$$
 where $Q = (q_1, \dots, q_n)$,

we get
$$\Delta^* a^* = f \Delta^* (u \circ Q) + 2 \sum_{j=1}^{n} (\nabla f \cdot \nabla q_j) \frac{\partial u}{\partial q_j}$$
 (1)

Next we claim that $\Delta^*(u \circ Q) = \sum_{j=1}^{n} \frac{\partial u}{\partial q_j} \Delta^* q_j + \lambda^2 \Delta u$.

Infact, since

$$\frac{\partial^{2}}{\partial x_{i}^{2}} (u \circ Q) = \frac{\partial}{\partial x_{i}} \sum_{j=1}^{n} \frac{\partial u}{\partial q_{j}} \frac{\partial^{q} j}{\partial x_{i}} \qquad (i = 1, ..., n+2)$$

$$= \sum_{j=1}^{n} \frac{\partial u}{\partial q_{j}} \frac{\partial^{2} q_{j}}{\partial x_{i}^{2}} + \sum_{j=1}^{n} \frac{\partial^{q} j}{\partial x_{i}} \frac{\partial}{\partial x_{i}} (\frac{\partial u}{\partial q_{j}})$$

$$= \sum_{j=1}^{n} \frac{\partial u}{\partial q_{j}} \frac{\partial^{2} q}{\partial x_{i}^{2}} + \sum_{j=1}^{n} \left[\frac{\partial q_{j}}{\partial x_{i}} \sum_{k=1}^{n} \frac{\partial^{2} u}{\partial q_{k} \partial q_{j}} \frac{\partial^{q} q_{k}}{\partial x_{i}} \right],$$

we get
$$A^{\bullet}(u \circ Q) = \sum_{i=1}^{n+2} \frac{\partial^{2}}{\partial x_{i}^{2}} (u \circ Q)$$

$$= \sum_{i=1}^{n+2} \sum_{j=1}^{n} \frac{\partial u}{\partial q_{j}} \frac{\partial^{2}q_{j}^{1}}{\partial x_{i}^{2}} + \sum_{i=1}^{n+2} \sum_{j=1}^{n} \left[\frac{\partial q_{j}}{\partial x_{i}} \sum_{k=1}^{n} \frac{\partial^{2}u}{\partial q_{k}} \partial q_{j} \cdot \frac{\partial q_{k}}{\partial x_{i}} \right]$$

$$= \sum_{i=1}^{n} \frac{\partial u}{\partial q_{j}} A^{\bullet}q_{j} + \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2}u}{\partial q_{k}} \partial q_{j} \left[\sum_{i=1}^{n+2} \frac{\partial q_{j}}{\partial x_{i}} \cdot \frac{\partial q_{k}}{\partial x_{i}} \right]$$

$$= \sum_{j=1}^{n} \frac{\partial u}{\partial q_{j}} A^{\bullet}q_{j} + \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^{2}u}{\partial q_{k}} \partial q_{j} (\nabla q_{j} \cdot \nabla q_{k})$$

$$= \sum_{j=1}^{n} \frac{\partial u}{\partial q_{j}} A^{\bullet}q_{j} + \frac{\partial^{2}u}{\partial q_{1}^{2}} \lambda^{2} + \dots + \frac{\partial^{2}u}{\partial q_{k}^{2}} \lambda^{2} \quad (\text{see 2.2.5})$$

$$= \sum_{i=1}^{n} \frac{\partial u}{\partial q_{i}} A^{\bullet}q_{j} + \lambda^{2} \Delta u \cdot \dots$$

Therefore the equation (1) becomes

$$\Delta^* u^* = f \begin{bmatrix} \sum_{j=1}^n \frac{\partial u}{\partial q_j} & \Delta^* q_j + \lambda^2 \Delta u \end{bmatrix} + 2 \sum_{j=1}^n (\nabla f \cdot \nabla q_j) \frac{\partial u}{\partial q_j}$$
$$= \lambda^2 f \Delta u + \sum_{j=1}^n \left[f \Delta^* q_j + 2 (\nabla f \cdot \nabla q_j) \right] \frac{\partial u}{\partial q_j} .$$

By lemma 2.2.6, $\Delta^* u^* = \lambda^2 f \Delta u$

We end this chapter with the proof of theorem 2.3.2.

In the particular case, if u is harmonic in ω , then $\Delta u = 0$. By theorem 2.3.3, $\Delta^* u^* = 0$. Since u and f have continuous second partials thereon, u^* also has continuous second partials. Hence u^* is harmonic in Ω .

Theorem 2.3.3 also implies theorem 2.3.2 in the case where u is superharmonic and has continuous second partials on w. By theorem 1.3.5, Δ u \leq 0.

Since $\lambda^2 f > 0$, we have $\Delta^* u^* \leq 0$.

Using theorem 1.3.5 again, u^* is superharmonic in Ω .

To complete the proof of theorem 2.3.2, let a $\epsilon \Omega$. Then Q(a) $\epsilon \omega$. Since ω is open, there is an open ball $B(Q(a), \rho)$ with compact closure $\overline{B}(Q(a), \rho) \subset \omega$. Let $\mathcal{N} = Q^{-1}[B(Q(a), \rho)]$. \mathcal{N} is an open neighbourhood of a since Q is continuous. By theorem 1.3.9, it suffices to prove that u is superharmonic in \mathcal{N} .

Since u is superharmonic in ω and $\bar{B}(Q(a),\rho)$ $\subset \omega$, by theorem 1.3.8 there is an increasing sequence $\{u_j\}$ of super-

harmonic functions having continuous second partials such that

$$u = \lim_{j \to \infty} u_j$$
 on $B(Q(a), \rho)$

For each $j = 1, 2, \dots, ,$ let

$$u_{j}^{*}(x) = f(x)u_{j}(Q(x))$$
 (x \varepsilon \mathbb{N}).

By theorem 2.3.3, $\Delta^* u_j^*(x) = \lambda^2(x) f(x) u_j(Q(x))$.

Since u_j is superharmonic, $\Delta u_j \leq 0$. Hence $\Delta^* u_j^* \leq 0$.

By theorem 1.3.5, u_j^* is superharmonic in \mathcal{N} .

Since
$$\lim_{j\to\infty} u_j^*(x) = \lim_{j\to\infty} f(x)u_j(Q(x))$$

= $f(x)u(Q(x)) = u^*(x)$

and f > 0, then u is the limit of an increasing sequence $\{\mathring{u}_{j}^{*}\}$ of superharmonic functions in \mathcal{N} .

By theorem 1.3.4, u^* is either superharmonic or $u^* = \infty$ on each component of \mathcal{N} .

Suppose $u = \infty$ on a component C of \mathcal{N} .

Then $u^*(x) = f(x)u(Q(x))$ and f is finite yield

$$u = \infty$$
 on $Q[C]$ and $\int u(M)dM = \infty$.

This is impossible since u is superharmonic in ω and and $\mathbb{Q}[\mathbb{C}] \subset \overline{\mathbb{B}} (\mathbb{Q}(a), \rho) \subset \omega$,

by theorem 1.3.7
$$\frac{f}{B(Q(a), \rho)} u(M) dM < \infty .$$

Hence u^* is superharmonic in \mathcal{N} #