CHAPTER I

PRELIMINARIES

In this chapter we collect some definitions and theorems
used in the later chapters of this thesis., The proofs of the

theorems can be found in references [1]|, [2], [3], [&] ena [5].

1.1 Measure and Integral

Suppose X ijs alocally compact Hausdorff space. The class
8 of Borel subsets of X is the smallest family of subsets of X
such that

(1) ifBeQ,thenX-Be@

(11) if Be® (i =1,2,;3;...), ¢hen pl B,e B
i=

and (4ii) if G is an open subsets of X, then G e ® .
A non-negative extended real-valued function y defined on
8 is called a Borel measure if
(i) w(P) =0
-]
(1) w (U B,)) =
=] 1

o0
T u (Bi) for any sequence B, of disjoint

i=1 i

sets in &B.

If further u(C) < » for all compact CL X, then p is called

a Radon measuyre.



A function ¢ : X » 5 is said to be Borel measyrable or
simply measurable if for any o € R, the set {x ¢ X/¢(x) > «} ¢ .
Note that a continuous function is measurable. (see [1], page 12)

For measurable function P we define its integral with
respect to a measure y as follows :

First suppose ¢ ig non-negative on X. If s is a measurable
simple function on X of the form

n

8 <=0 %, di™
1= Ay

where Ggscers an are the distinct values of s and F is a Borel
subset of X, then we define
n

f sau. =K aiu(AiﬁF).
i=1l

The integral of § over F with respect to u is defined by

J vdu = sup Sfsdu ,
F F

the supremum being taken over all measurable simple functions s
such that 0 € s € ¥ . The left member is called the Lebesgue

integral of Y over F with respect to u . The integral may have

the value %,
If Y:iX—>R=2[00,s] . , we define P _(x) = max{p(x),0}
~
and ¥_(x) = - min {¢(x),0}. Then we have Y, end §_ are non-negative

measurable functions, so the integral of each with respect to y is



defined. If not both /[ v, dy and S/ P_ dp have the value <,

we define

SPaw = f9, dan-S 9 au .

If both are finite, we say that ¢ is integrable with respect to u.-
For any real-valued function Y continuous and having

compact support on R, the Riemann integral fn P(x) dx is well-
R

defined. The unique measure v such that S ¥(x)ax =/ @¥(x)dav(x)
R R

is called the Lebesgue measure on R® (see [1], page 50). We simply

denote the integral J f(x)d v(x) by S f(x)dx.

An extended real-valued function p on the class of all

Borel subsets of X is called a signed measure if

(i) w(p) =0

(ii) u takes at most one of the values +°, == ,

o ®
(111) » (\J Ei) = L u(EQ for any sequence E, of disjoint
i=1 i=1

Borel sets in X provided that the series in the right hand side

absolutely converges.

1.1.1 Theorem Suppose P is non-negative measurable function and

v(F) feody
F

where F is a Borel subset of X.

Then v is a measure on the class of Borel sets of X, and

Lhig v = afned. dafi
X X



for every non-negative measurable h on X.

if ~ is integrable over X with respect to a Radon
measure W and VW(F) = [ § du, then v is a signed measure of
F

bounded variation. (see the proof in [1], page 23)

1.1.2 Theorem (Lebesgue’ Dominated Convergence Theorem).
Suppose {wn} is a sequence of measurable functions on X such that
2im wn(x) exists for every x € X. If there is an integrable

n-o
function h such that

lo,(x)| < [n(x)] (D =1,2y000s x € X),
then %im J ¢ dqu = S 2im ¢ du . (see [1], page 26)
n-»c X B X no» e

1.1.3 Theorem (Tonelli). Let (X,A, u) and (Y,8,v) be two
sigma-finite measure space, and P be & non-negative measurable

function on X x Y, Then

T/ 9pdvap = [ [ pdudv ., (see [2], page 270)
D O 4 X

We now introduce a measure as defined in Helms [h], page b,
Let y = (yl,..., yn)e 8" and p > 0, then 3B(y,p) is the sphere
defined by the equation

2 2 2
(xl- yl) . BN (xn— yn) = p

Consider a Berel set M ¢ 3B(y,p) N {(xl,...,xn)/xn- Y, ? 0}

Let M denote the projection of M onto the subspace {(xl,...,xn)/xn

0};



That is M= {(xl,..., xn_l,O)/(xl,...,xn) e M.

For each x € 3B(y,p) let Y = Y(x) be the angle between the x -exis

and the outer normal to 3B(y,p) at x.

Then sec Y = coi = g
;s X2~ In
and a(M) = J ... sec y dxj....dx o
" Ly
n

represents the surface area of M.

If M © 8B(y,p) [T {(xl,...,xn)/xn-:)rn <0}, the surface
area of M is given by the same integral with sec Yy = —p/(xn—yn).
The set function o defined in this way is a measure, call it the

surface area measure on B(y.p)

1.2 Harmonic Functions

A real-valued function h is said to be harmonic in an

open set DC Rn if h has continuous partial derivatives up to

aZh 3 2h
second order and Ah = O on D where Ah = e B L + Sy is
8x1 an

the Laplacian of h.

If u is a function integrable relative to the surface

area measure 0 on the boundary B(y,p), define

g

3B(¥40)

where On is the surface area of the unit sphere 8B(0,1) in Rr".
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If u is integrable on B(y,p) relative to Lebesgue measure v,

define

A(us y4p) = ln / u dx : (l.2.2)
ve Blyse)

where % is the volume of the unit ball B(O,1) in mn, iceo

= v(B(y,pP)) .

l.2.3 Theorem If h is harmonic in the open set D Bn, then
n(y) = Lth; ys0) = AChs y40)

whenever the compact closure B(y,p)C D. (see [4], page 12)
The preceeding theorem can be improved upon by showing

that the value of a harmonic function h at an interior point

of a ball is a certain weighted average of h over the boundary

of the ball.

1.2.4 Theorem (Poisson Integral Formula). If h is harmonic in

a neighbourhood of the closure B(y,p), then for x e B(y,P)

2 2
h(x) = il . i 2—31135%— h(z)do(z). ([4] ,page 16)
nP 3B(ys) |z-x|

1.2.5 Theorem (Picard) If h is a harmonic function in R" and
either bounded above or bounded below, then h is constant.
([4] » page 18)

According to theorem l.2.3, harmonic functions are

mean-valued. A partial converse is available.



1l.2.6 Theorem Let u be continuous on the open set D. If
for all x ¢ D, u(x) = L(u; x,8) for sufficiently small §,

then u is harmonic on D. ([4], page 25)

1.3 Superharmonic Functions

Let u be an extended real-valued function with domain
DC R". The function u is lower semicontinuous (Le.s.c) on D

if for each x € D, u(x) = 2im inf u(y).
yx

If u is fe.sec and u > -« on a compact set, then u is

bounded below. ([3], page 111) (1.5.1)
1.3.2 Definition Let D be an open subset of R". An extended

real-valued function u on D is said to be superharmonic if

(i) u is not identically #« on any component of D
(ii) u > =o on D
(1ii) u is 2e.s.c. on D

and (iv) for all x € D, p > O with compact closure B(x;p)cD,

ule) 2 Llve %.0) »

The following properties are drawn from Helms [h] (pages

59, 64, 65, 66, 68).

le3.3 Theorem If u is superharmonic in a bounded open set D

and 2im inf u(z) 0 (x € 3aD), then u 2> O on D.
Z+X
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1.3.4 Theorem If {uj} is an increasing sequence of seper
harmonic functions in an open set D, then on each component

of D, ws Yim u, is either superharmonic or identically + oo,
joe

1.3.5 Theorem Let u be a function defined on an open set
D RY having continuous second partials. Then u is super-

harmonic in D if and only if Au <€ O on D,

1.3,6 Theorem Let D be an open subset of ®®, If u is an
extended resl-valued function on D satisfying (i),(ii),(iii)
in definition 1.3.2 and for each x € D, there is d; »0 such
that B(x; 6::)': D and u(x) » A(u;x,d) whenever & ¢ ch, then u
is superharmonic in D,

Moreover if u is superharmonic in D and x € D, then

u(x) > ACu3x,8) whenever B(x;d)C D.

1.3.7 Theorem If u is superharmonic in an open set D, then
u is finite almost everywhere on D relative to Lebesgue measure
and u is Lebesgue integrable on each compact set KT D, i.e.

-0 (I u(z) dz < oo,
K.

1.3.8 ThegQrem Let u be superharmonic in an open set D and
let V be an open set with compact closure vV co,
Then there is an increasing sequence {uj} of superharmonic

functions in V having continuous second partials such that

u = fim u:j on Ve #
J» ca

The following theorem can be proved by using the

theorem 1.3.6.
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l.3.9 Theorem Let u be an extended real-valued function
on an open set D c'mn. If for every x € D, there is an open
neighbourhood Nx of x such that u is superharmonic in Nx’

then u is superharmonic in De.

1.4 Superharmonic Extensions

An extended real-valued function u is said to be

locally bounded below on an open set D if for x € D

£im inf u(y) > == . (1.4.1)
y+x

i.es for x € D, there are a neighbourhood of x, k € R

such that u(y) 2 k (y € Nx).

A set F is said to be a polar set if there are an

open set W containing F and a superharmonic function u in W

such that u = + ® on Fe. (1:h4,2)
Example 1 The singleton set {xo} of a point in R"

is a polar set since the function Uy defined by

o
+ @ 1t y:xo
uxo(y) =
- - Ro0g uxo— yI if -2 4 X, (n = 2)
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2 |

if y #x (n 3 3)
I=,- ¥ .

nn—z

i R n
is superharmonic in R .

>

Example 2 A line segment in R” is a polar set.

Consider, for example, the line segment I joining (0,0,0) to
(1,0,0) and one-dimensional Lebesgue measure ¥ on this segment.

The function v defined by
v(x) 2/ s a9 2) (x ¢ B)
. lx-zi

is superharmonic in RB. Yf'x = (xl,0,0) £ Iy 1.0, 0 % x; € 1,

v(x) = _ZF dz, = ® .
o Tx= 7 e
Hence I is a polar set.

l.4.3 Properties of polar sets

(i) Any subset of a polar set is a polar set.
{3) 2 ¥C R"” is a polar set, then F has n-dimensional

Lebesgue measure zero. ([4], page 127)

Now we take up the problem of continuation of a super-

harmonic function across a polar set .
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l.4.4 Theorem Let W be an open set and let F be relatively
closed polar subset of We If u is superharmonic in W ~ F and
locally bounded below on W, then it has a unique superharmonic

extension to W. ([4], page 130)
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