CHAPTER III

DEGREE SEQUENCES OF PARTITE HYPERGRAPHS

~

3.1 Introduction.

let H = ("19V29V3;{,) be a (3,3)-hypergraph in which the

vertices are labelled such that

Vl - {Vl,.-.,Vn },
| 1
V od ; {V 3 9cceoy v }’
2 n1+ i n1+ nz
V = ’{V e e v }D
3 n1+ n2+ 7o 5 n1+ n2+ ng

The 3~partite finite sequence

(gvy)seens dH(vnl); dH(vnl+ Poeens dﬁ(vn1+ “z);

d(v ),""d(v : ))
H n1+ n2+ 1 ,H n1+ n2+ n,

will be called the degree sequence of H, and will be denoted by 6!1’

For example, let

-}
#

{vl.’ vz} 9

<
L

'{v.3, v}
v g {VS, Ve v7},

and

P {{vl,v3,v5};{vl,v3,v6}',{v1,v3,'v7} ,{vz ,v3,v6},{v2.v4,v7}}.
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Then &, = (3,2;4,151,2,2).
Now, let
1) =

(Rprnanolll S 4@ L Sl o 1""’dni* n,+ "

1 1 i e e 3
be a 3-partite finite sequence in # . We shall say that § is realizable

if there exists a (3,3)-hypergraph H = (VI,VZ,V3;E;) in which

V1 = {vl,,..,vn N
1
Vo ow {vn1+ 1,..‘,,vnl_'_ nz} 5
V3 " {Vn1+ ny+ A AY vn1+ n,+ n3}’
and
dH(vi) = di E -1 x 3]s n1+ n2+ Oge

Such a (3;3)~hyper~orarh is called a realization of 6,

A question arises. How can cne determine whethe; a given 3-partite
finite sequence is realizable ? To answer this question, we shall find
conditions which are necessafy or sufficient for the existence of a
realization of any given 3-partite finite sequence,

Throughout this chapter, by 6t we mean 2 finite sequence having

n terms in P .

3.2 The Mgin Theorem.

Before giving the theorem, let us make a remark.
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.91 Reﬁa;k. Let

8 f (61(1),...,Gl(nl);dz(l),i..,62(n2);63(1),...,63(n3))

be a 3-partite finite sequence in . If § is realizable, then we have

™1 . "
(3.4.1.1) i - §,(1) = I &) = I 8;(k).
i=1 j=1 k=1

.grpof : Assume that § is realizable. Let H = (VI,VZ,V3;éi)
be a reélization of 6. Assume that
V1 = {xl,...,xnl},

VZ s {yl"°"yn2}9

V - {21,-..,2n3}. ’~\\.\ : "

Then

dH(xi) = 61(1) for 1 & 37% 5,

4G = 8,0) for 1

i

e

iA
1]

dy(z) = 8,(k) for L gkgn

xie V1
we have
£ood ) w | Ex)]
H i L 5
%Y o ke
= 4w B
x,e V
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Hence
™
I s = | &
i=1 '
y
Similarly,
i | 3
28, = [E] amd s = |&]-
=1 k=1
Hence we obtain the equations (3.2.1.1). #
3.2.2 Theorem. Let
6 = (61(1),...,61('01);52(1),.-.,52(’[12);53(1),..-963(n3))

be a 3-partite finite sequence in ® that satisfies the equatioms

(3.2.1.1). Then the following statements are equivalent :

(1) & 1s Pealiznable.

(ii) There exists a n.x n,-matrix u over N such that
! Nl 12
; ,y
(3.2.2.1) 61(1) = 321 plz(i,j) for 1 < &5 s
i
e S
(3.0, 0 R min{ulz(i,j),IBl} 2 I 8,(k)

i=1l j=1 keB
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for all B¢ {1,...,n3}.

(iid) There exists a n,X n3-matrix M,4 OVer ¥ such that
"
(3.2.2.4) 62(;]) kil u23(j,k) for 1 £ j < n,
2
{3.2:2.5) 63(k) = jf]_ u23(j,k) for 1 g k g n3,
) n, n, ~
(3.2.2.6) z 2 min{u, (3,k), 18]} 2 z8,(1)
=1 k=l ieB
for all B & {1,...,n1}.
(iv) = There exists a n, x n3-matrix M, g0ver N such that
o3
£3.2.2.D 61(1) = kil u13(1,k) for 1 £ 4 ¢ n,,
|
£3.2:2.8) 63(k) = ifl u13(1,k) for 1 ¢ k < ng,
n, n, |
(3.2.2.9) z z min{u13(1,k),|3|} 2 I 8,(9)
=1 k=1 jeB
for all B g {1,...,n2}.

Proof : To show that the statement (i) implies the statement
(ii), assume that § 1s realizable. Let H = (VI,VZ,VB;Z;) be a

realization of § . Assume that



Vl = A{xlgcoogxnl}’
N ‘{yll,...,yn 3
2

\' = i{Z see 0yl }o

3 i ng
Then

dH(Xi) = 61(1) for 1« §1 % n,,

dy(v;) = 6,(3) for T3 < m,,

dH(zk) = 63(k). for 1 <k < ng.
Define a n, x nz-matrix H o over N by

PLERS ) dH({xi,yj}) for 1 <isn;, 123g n,.

To show that P satisfies the equation (3.2.2.1), 1let x, € V..

Since E(Xi) = Y

y.e V

i 1

& Uxpyyd) and & (Cxyoyy D 0&xguy,H = ¢
2

for j # 37, we have

€} RACHI

- 1 b Ellx. .0l
yje V2 §

= % ({x sy })l'
vy Vzl & =y 3

By (1), the properties of H and the definition of Hios we have

6,(1)

= dH(xi)

RZACHY

26
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E | & Uxyh
y4€ ¥, it

L dH ({x b

3
1773
yje V2

b

i > (19:,)'
et Vg

Hence we obtain the equation (3.2.2.1) Similarly, satisfies the

H12
' equation (3.2.2.2).

To show that u,, satisfies the inequality (3.2.2.3), 1let

12
¥ = ({u}, X, ¥, {v};a ) be a bipartite transportation network in

which X = V, x Vo, ¥ = {1,...,n3}, and

a((xi, yJ), k) = 1 for (xi,yj) eX, ke¥Y;

a(u,(xi,yj)) = ulz(i,j) for (xi,yj) € X 3
a(k, v) = 63(k) for k ¢ X;

nl nz
a(v,u) = z L (k3.

gul guy 12

Define a function ¥ on the set of ares in N as follows :

For each intermediate arc ((xi, yj), L), 1let
B8 {xi,yj, zk} € {;,
V()0 =

0 if '{xi,yj,zk} ¢ E;,
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¢ and for all other arcs a, 1let $(a) = a(a). By the definitions of

Y and a; we have

a(v,u)

Y(v,u)
nl n2
= % Iy (iaj)
fu1 gm1 12

A z G(u.(x 4 ))
'(xi,yj) e X S ;

7/ I P(u,(x ,§ )).
‘ (xi,yj) e X o

Hence ¥ is conservative at u. By the definitions of ¥, ® and the

equations (3.2.2.1), (3.2.1.1), we have

Yy (v,u) = a(v,u)
nl n2 (i j)
% = v p H 5

i=1 j=1 i3
55 |

= 3 61(1)
i=1
n3

= L8 (k)
k=1 3

= L a(k,v)
keY

= L Pk,v).

» keY

Hence y is conservative at v. For any vertex (xi,yj) ? X, ‘by thé

definitions of ¥, o and Migs we have

/



- . 1i.e. YV is comservative at every vertex (x

¢(u.(xi,yj)) a(u,(xizyj))

ulz(i,j)

L}

HE e &/ {xi,yj} & E}

{2 } e&}.

L]

€ V3/{x

k. i’yj’zk

Observe, from the definition of w((xi,y B k)i thak

3

Eov((xy,y,)k) = [ {ke¥/V((x,,y,) k) = 1}
‘keY A3 N

= [{zksv3/{xi,yj,zk} €£} }l.
Hence

(us(x sY5)) = I y((x 2y ),k).
! i key =3

isyj) e X.

For any vertex k € ¥, by the definitions of ¥ , o and the properties

of H, we have

R B S
E 63(1()
=0 dy(z)

- |{E ¢ &/ z) € E}|

g |{(xi’yj) € x / {xi’yj’zk} € &}'

29



Hence ¥ is conservative at every vertex k € Y.

N .
all the sink arcs in N .
(2) FN(B) >

By the equations (2.2.1)

F.(B) =

d.(®) =

From the definition of ¢ ,

MOBARS FRTCIEARERM

z ‘P((xi;}'j),k)-

(x ) e X

i*73

Therefore, by Theorem 2.2.3, we have

dN(B) for all B = Y.

and (2.2.2),- we have

N=
EAS A min {ulz(i,j),lBl}
i=1 j=1

TR Y
keB 3

Hence (2) becomes the inequality (3.2.2.3).

To show that the statement (ii) implies the statement (i),

that there exists a n,X n.-matrix u

1

equations (3.2.2.1), (3.2.2.2)

12 over [N

and the inequality (3.2.2.3).

V1 = {x1’°°°’xn1} 4
V2 = ; {Y19'°.’yn2}’
V3 rd .{1,...,n3},

Therefore ¢ is a flow in

we see that y is compatible and saturates

that satisfies the

Let
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be disjoint sets. Let N = ({u}, X, Y,{v}; @) be a bipartite

- transportation network where X = le V2, Y = V3, and

a((xi,yj).k) ¥ for (xi,yj) £EX, ke Y

0L(u,(xi,yj)) = Hip(4,3) for (xi,yj)e 4
a(k, v) - é3(k) for ke ¥

W72
o(v,u) 8 iil jil uy,(,3).

For B Y, by the equations (2.2.1) and (2.2.2), we have

n 1

R
3) F. (B) o I Zmin {u,.(1,7),|B|},
N 1o1 g=1 12
and
(4) d, (B) = Z 8,(k).
s =r=5 3

Hence, by(3) and (4), the inequality (3.2.2.3) becomes

FN(B) > dN(B) foNERS Y.

Therefore, - by Theorem 2.2.3, N has a compatible flow f that saturates
all the sink arcs. By the definition of g s the equation (3.2.2.1) and

the assumption that § satisfies the equations (3.2.1.1), we get

™ %
P oabeidniy)) o P o2 w1
(xi;y de X 13 i=1 j=1 12
i
s |
= I §(1)

i=1
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Hence; by Remark 2.2.4, f also saturates all the source arcs. Now,

let V = VluV2UV3, and

& {{xi,yj,k}/ 28 Uy, vy 8 V), ke Vy, £(Gryy),00 = 1)

Observe that for each E = {x ANARE", we have

A4
|E n ¥ 7 » “l{xi}l = . I;
lEﬂVzl = ‘[{yj}l =0 13
|E n Valon = |1kl =

Hence H = (V,£) is a (3,3)-hypergraph with 3-partition (VI’VZ’V3>°

For each Xy € Vl and yj € VZ’ we have

(5) 4Glxyy = [{Eed/ {x,y,) SEY
= l{k £ V3/ {xisyj,k} W/
- = Mkevy /eyl = B g9y
Since the capacities of all intermediate arcs m f on
these arcs are either 0 or 1. Hence f%w
: o~
(6) . : zez i f((xi,yj),k) = |{k ¢ v,/ f((xi,yj),k)= 1}].

3
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Therefore, by (5) and (6), we get

) : dllxsy, D = I £(Gxgy),00.

k € V3

Since f is conmservative at (xi,yj) and saturates all the source arcs,
we have

(8) L f((xi’y

k e V3 3

);k) = f(u, (xisyj))

a(u’(xi’yj)) L
Therefore, by (7), (8) and the definition of ®, we have
(9) dy (e, y31Y Jhom Tlgh (1,9)

Hence, by the properties of H and the equation (3.2.2.1), we get

l f;(xi) |

dy (=)

= | v EUx.y.Dl
yje V2 £

o Edx, .y B
A e
yje V2

= g ik iy .
) At KL
yje V2
s
= L ou..(1.3)
j=1 12

= 61(1).
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A
)
A
=

This shows that dH(xi) 61(1) for it < 1
Similarly, dH(yj) = Gz(j) for 1 ¢ 3 <-n,.
To show that dH(k) & 63(k) ftor 1l 2k & ng, let k ¢ V3.

Observe, from the definition of H, that

[H{E e &/ k € E}|

(10) d, (k)

{Geg,93) € X [Uxg,y,.k} e &

MGy e X/ £0Gxg,y0,k = 13

= % f((x »Ydsk)s
(xi,yj) € X i j

Since f is conservative at k and saturates all the sink arcs, we have

)sk)

(11) LSl I E((xy5y f(k,v)

(xi,yj) 5% 3

]

a(k,v).,

Therefore, by (10), (11) and the definition of o, we have

) = 8,00

This shows that H is a realization of 6.

Similarly, we can show that the statement (iii) and (iv) are

equivalent to the statement (i). #

~ 3.3 Some Illustratioms.

In this section, we illustrate how our main theorem (Theoren

3.2.2) can be applied. First, we need the following :
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3.3.1 Remark, Let u12 be a nlx ny = matrix over N that
satisfibs
g G i3
(3:3.1.1) by 7 ulz(i,j) = ¥ 63(k),
i=1 jz’l k=1
and
n1 n2
(3.3.1.2) z I min {ulz(i,j),lsg} AR 63(k)
i=] j=1 keB

for all B E{l,...,nB},

which is the same as the inequality (3.2.2.3). Then we have

{3.%.1.3) ulz(i,j) Somg for 1 <1< ny, 1 £33 4 nz;'
(3.3.1.4) I{(i,j)/ulz(i,j) = TR min 8, (k).
1.2k %
haw

Proof : Let Mo be a X n,~ matrix over N that satisfies the
equation (3.3.1.1) and the inequality (3.3.1.2).. Then, by Remark
2.2.5, we have

n
3
(1) I uin {63(k),lB|} > Iou,,5)
k=1 (i:j) £.B

for all.BEE{l,...,nl} x {1,...,n2}. Let 1,j be given, where 1 < i < n,
I8 4% n,. For B = {(i,j)}, (1) becomes

"3

) Iomin 8,30, 13 2w, (..

Note that

1 {654 2101
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A min{ﬁs(k), 1} for 1 <k < n,.
Hence
%
(3) B, 2 T min{8.(k),1}.
3 bt 3

Therefore, by (3) and (2), we get
Hence we obtain the inequality (3.3.1.3).

To show the inequality (3.3.1.4), 1let

S = {(i,j) /ulz(isj) X n3}:

and
63(ko) = min 63(k).
I <k < n3
Suppose that
(4) 18 .» &,k ).

Consicer the bipartite transportation network N = ({u}, X, Y,{v};a),

where X = {1,...,n1} X {1,...,n2}, Ywibice., nale ‘ané

3

a((i,3),k) = Lfor 4,8 2 X, ke
a(u,(i,j)) = ulz(isj) for (i:j) e X;
o(k,v) = 63(k) for 'k e Y
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v il
i=1  j=1

For B Y, by the equations (2.2.1) and (2.2.2), we have

nl n,
¥, (B) - P2 mtaln, . (1,9),181)
» 1=1 j=1 %
and
d. (B) = T 8, (k).
¥ keB 3

Hence the inequality (3.3,1.2) becomes
FN(B) > dN(B) for all B &Y.

Therefore, by Theorem 2.2.3, N has a compatible flow ¥ that saturates
all the sink arcs. By the definition of o« and the equation (3.3.1.1),

we have

P oafu,(1,.1)) z alk,v).
(ipj) e X keY

Heﬁce, by Remark 2.2.4, ¢ also saturates all the source arcs. For

each vertex (i,j) € 8§, we have
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n

3 3
Z 9((1,3),k) = 9(u,(i,3))
k=1
= a(u,(i,3))
= n3,

Hence, since the value of ¢ at each intermediate arc in N is either

O0or I, it follows that

v((i,3) k) ¢ NN (159) ¢85, 1 <k< n,.
Therefore
(5) I, Dk) = |s]
(1,1 €S

Since § € X, we have

(6) 2O,k < I ¥((1,3),k )
(1,3) ¢ 8 : (1,3) ¢ X

Hence, by (4), (5), (6) and the conservation property of ¥ at ko, we get

840k ) < Is]
= z w((isj),ko)
(1,1) € 8
f z u’((isj)sko)
(i’J) e X

lb(ko sV)
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Therefore Y does not saturate the sink arc (ko,v), which is a contradiction.

This proves that |S| < 63(k°). Hence we obtain the inequality (3.3.1.4). #

3.3.2 Example. Let

8w BE 9. 8, Gre. 8,708 311718 0%

If § is realizable, then by Theorem 3.2.2, we must be able to find a

& X S5-matrix p = (aij) satisfying /0342.2.1), (3.2.2.2), and (3.2.2.3).
So, we shall look for such a matrix u. Note that the matrix u must also
satisfies (3.3.1.5) and (3.3.1.4). By (3.2.2.1) and (3.2.2.2), the matrix

u must have row sums and column sums as indicated in the following table :

TOwW Sum
H
811 | BN Rpgst- 81, | 845 1
Soiill. Byp—t—Rgr" Wi, | 2,4 9
(1)
91 URLKBHR, I IRIVEgOl Yag, 8
B F % Nl B B 4
column sum 8 8 7 6 3

By (3.3.1.3) and (3.3.1.4), we have
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(2) aij < 3 for 1=1,2,3,4; §=1,2,3,4,5;
and
(3 [(c4,9) Lo, = 3 c0n
3
From the table (1), the non-negative integers 811200 35 must be
such that

a R 85 = X

hence at least one of them must be larger than 2. Then, by (2), we can

conclude that such a,, must be 3. By (3), at most one of the a,,'s can be 3,

ij ij
hence exactly one of 81795005 a15 is 3. Hence all the remaining aij's must
be 2, for each term must be less than 3 and they‘must have the sum that
equals to 11-3 = 8.
Since the first row containsa 3 and, by (3), the whole table (1}

can contain at most one 3, hence we have

2% a5 & 2 for 1=2,3,4;3=1,2,3,4,5.
Since each term in the second row can be at most 2 and the row

sum must be 9, hence this row must comsist of four 2's and one 1.

Since the sum of the fifth column is 3, we are forced to have



Hence the table (1) must be as follows

41

row sum
* # % % 2 11
A 2 A Y T e 9
£l
331 | 232 | 233 Bsid O 8
8,1 180 4 %3 o ¥ i i i
column sum 8 8 7 6 3

where one of the entries indicated by *

is 3, and the others are 2.

Since the sum of the third row is 8 and each of the terms

o § ighat: Ll - Sl

(1’) becomes

must be less than 3.

Hence each must be 2. Hence

Yow sum
* 5 % 2 11
2 2 2 1 9
a’ 2 2 2 0 e
241 42 TR " 4
column sum 8 7 6 3
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Since the sum of the forth column is 6, hence a, = 2 and.

344 = 0 . There are three cases for the first row :

a =8 o al2 = 3 or 313 w3

.'s are completely determined. We have

For each case, the remaining aiJ

the following :

Case § B a11 A
ol
rg 2 2 2 2
2 2 2 2 1
o= 2 2 2 2 e
1 2 1 0 0“1
Case 2. a, = 3,
[ 5 3 2 2 5
2 3 2 2 1
u =
2 2 2 2 e
e Sl e e
Case 3. 313 R
8 2 3 2 g
2 2 2 2 1
u =
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Hence, if § is realizable, then the required u must be among those in
the three cases. In fact, a straightforward verification shows that u
in Case 1 satisfies (3.2.2.1), (3.2.2.2), and (3.2.2.3) of Theorem

3.2.2, Hence § is realizable.
3.3.3 Example. Let
6 = (11,9,8,4; 8,8,7,6,3; 18,83,1).

If 6 is realizable, then by Theorem 3.2.2, we must be able to find

a 4x5 - matrix =»(aij) that satisfies (3.2.2.1), (3.2.2.2), and
(2. 5.2. comparing the given § with the one in the previous

example (Example 3.3.2), we see that the required 1 must be among those
in the three cases of the previous example. However, by choosing

B = {1}, it turns out that none of these u's satisfies (3.2.2.3). Hence
there does not exist any 4 x 5 = matrix i that satisfies (3.2.2.1),

(3.2.2,2), and (3.2.2.3 Therefore the given § is not realizable.

3.4 Some Simple Necessary Conditions.

In this section, we provide some necessary conditions for a
given 3-partite finite sequence to be realizable. These conditioms can
be checked by inspection. In cases where any of the conditions fail, we
can conclude that the given sequence is not realizable. Thus we can avbid

*

the more complicated test given in the previous section.
3.4.1 Theorem. Let

5 o (61(1)""961(111); 62(1)9°°'952(n2) ; 63(1)9°"963(n3})
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be a 3 - partite finite sequence in PP . If § is realizable, then we

have the following :

$3.8:1:1) For all BS—.{I,...,nZ},
o9 |
z min{Gl(i), n3|B|} > I8,().
i=1 : jeB
€3.4.1.2) For all B EE{I,...,nB},
"
I min{s,(3), n,(B]} > = §,(k).
j=1 keB
(3.4.1.3) For all B {1,...,m,},
n3 ~— g j %7}
b3 min{63(k), nZIB'} > I 61(1).
k=1 ieh
(3.4.1.4) nyn, 2 Sz(j) FEE—LtiR[ ] < n, .
(3.4.0.5) mn, > 63(k) for 1 ok < n,
(3.4.1.,6) n,ng > 61(1) ot g g n,

Proof : Assume that § is realizable. Then, by Remark 3.2.1,
6 satisfies the equations (3.2.1.1). Hence, by Theorem 3.2.2, there
exists a nlx n2 - matrix u12
(3.2,2.1), (3.2.2.2) and the inequality (3.2.2.3). Consider a bipartite

over [N that satisfies the equations

transportation network N = ({u}, X, Y,{v};a) where X =‘{x1,..., X Yo
1
S 3 R nz}, and



b e
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a(x;,3) = n, for 1 <4< R, lismy
a(u,xi) = 61(1) for 1.5 1ix n, ;
a{j,v) = 62(_1) for 1< 3% n, ;
n, ‘
a(v,u) = iy el & & B
: 1
i=1

Define a function § on the set of arcs in N as follows :

Y(a) = a(a) for all other arcs a.

By the definitions of ¥ and o s we have

UI(V,U) o a(v,u)
"
= > Gl(i)
i=1
= % & Vig (g F 200
xie X >
= P2 w(u,xi).
xi e X

Hence ¢ is conservative at u. By the definitions of y , o« and the

equations (3.2.1.1), we have

y(v,u) = a(v,u)

]
™
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Yo

= L 8,(1)
J=1

= L a(j,v)
jeY

= Lo W, v) .
jey

Hence ¢ is conservative at v. For any vertex X, € X, by the definitions

of $ , a and the equation (3.2.2.1), we have

‘P(sti)

a(u,xi)

- 6, (1)

it
= LW (iaj)
P

= z ‘p(xisj)o
~ o0 s

Hence y is conservative at every vertex Xs€ X. For any vertex j ¢ Y,

by the definitions of ¢ , a and the equation (3.2.2.2),

we have

W(j,V> o Ct(j :V)

I
On
N
—~
e
~



- z w(xi,j)'

xie X

47

Hence ¥ is comservative at every vertex j € Y. Therefore ¢ is a flow

in N. By the equations (3.2.2.1) and (3.2.1.1), we get

nl nz n3
A R T R & ).
w1 qa1 227 Koy ?

Hence, since u,, satisfies the inequality (3.2.2.3),

12
Remark 3.3.1 that

ulz(l,j) < ng a1 4~ n

Hence, by the definitions of ¥ and a, we have

vix;,3) < alx;;3) for 1 < 1 < 0

it follows from

1

A

<

j<n

2c

Therefore ¢y 1is compatible. Since ¢ saturates all the sink arcs in N,

it follows from Theorem 2.2.3 that

(1) FN(B) bt dN(B) for all E &Y.

By the equations (2.2.1) and (2.2.2), we have
n

1
Fg® = 151 min{s§, (), nBIBI}
and
d (B) = 8,
jeB

Hence (1) becomes the inequality (3.4.1.1),
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Let j be given, where 1 < j < n,. For B = {3} , the inequality

(3.4.1.1) becomes

n
1
(2) z min{Gl(i), n3} > 62(j).
i=]1
Note that
n, > min{ﬁl(i), n3} for 1% 1 ¢ n,.
Hence : AT
2 Jf!/ N Ny
(3) n o, iil min{él(i),n3}°

Therefore, by (3) and (2), we get.
n;n, > 62(3).
Hence we obtain the inequality (3.4.1.4),

Similarly, we obtain the inequalities (3.4.1.2), (3.4.1.3),

(3.4.1,5) and (3.4.1%6).°'V%
3.4.2 Example. Let
0o ST, 0 7,8 7.8

Since § does not satisfy the inequality (3.4.1.6), hence it follows

from Theorem 3.4.1 that § is not realizable. #

3.4.3 Example. Let

8 =  (15,13,12,11; 14,10,8,7,6,6 3 23,21,4,3).
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It can bé verified that B ='{1,2} violates the inequality (3.4.1.2).

Hence, by Theorem 3.4.1, § 1is not realizable. #

3.4.4 Remark. In general, the necessary conditions given by
Remark 3.2.1 and Theorem 3.4.1 are not sufficient for the existence of
a realization of a 3-partite finite sequence in P . The 3 - partite
finite sequence § given in Example 3.3.3 is a counterexample. However,
for certain classes of 3 - partite finite sequences in P , the above
necessary conditions are also sufficient. We treat these in the next

section.

3.5 The Special Cases.

The following theorem is a consequence of Theorem 3.2.2.
- 3.5.1 Theorem. Let
6 = (61(1)9'":61(111);62(1)90°°s62(n2);63(1);"°963(113))'
be a 2 ~ partite finite sequence in P such that

GBdd) Gl w s el el

Then 6 is realizable if and only if

nl n2
£3.5.1. %) 8.1} e 20 68,€(3) = en., and
it 3 ju1 2 3
™
(3.5.1.3) L min{6, (1), n3|B|} e o (D
i=1 SHERH R
je

}.

for all B 5§‘[1,...,n2
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Proof : If 6§ is realizable, then by Remark 3.2.1, ¢ must
satisfy (3.2.1.1). Since ¢ satisfies (3.5.1.1), hence (3.2.1.1)
becomes (3.5.1.2). By Theorem 3.4.1, 6 must also satisfy (3.4.1.1),
which 1is the same as (3.5.1.3). Therefofe (3.5.1.2) and (3.5.1.3)

are necessary,

To show the sufficiency part, assume that § satisfies $3.5:1:2)
and (3.5.1.3). Consider the bipartite transportation network

N = ({u}, X, ¥,{v};0), where

X = '{xl,..., xnl}, Y {1,...,n2}, and
'a(xi,j) = n, ol 1 <1< n;, 1% 3% N,
ot(u,xi) o= 61(1) foi 144« n;;
a(,v) = 8,(3) for 1< j< n,:
2y
a(v,u) = z6 (i).
A 1
i=1

For B& Y, by the equations (2.2.1) and (2.2.2), we have

n
1
FN(B) = 151 min{Gl(i), n3|E|},
d.(B) = 6.0,
N JeB 2

N

Hence the inequality (3.5.1.3) becomes

FN(B) > dN(B‘) for all B &Y.
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Therefore, by Theorem 2.2.3, N has a compatible flow ¥ that saturates
all the sink arcs. By the definition of a and the equations (3.5.1.2),

we have

z a(u,xi) = Z a(j,v)f

xie X ey

Hence, by Remark 2.2.4, V¥ also saturates all the source arcs. Define a

n1 X nz - matrix “12 over I[N as follows :

My (3,3) = vix;,3) for 1< i< Byr 2T S B

Then; since ¥ saturates all the source arcs and is conservative at every

vertex x, € X, we get

5
61(1) = a(u,xi)

- plu,x,)

it z ¢(xi,j)
je¥

| sl ek b g
fmi 12

Hence Mo satisfies the equation (3.2.2.1). Since ¥ saturates all the

sink arcs and is conservative at every vertex j e Y, we get

a(j,v)

8,(3)

v(i,v)

= b4 W(xisj)

xie X
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i
L o T -

ulz(isj)'

Hence “12 satisfies the equétion (3.2.2.2). WNext, we shall show that

2 Ulz(iyj)

(N n,. min{ c,|c|} > (1,1 €

for.all C£ {1,...,n1} X'{i,.,.,nz}.

Let C & {1,,..,n1} x {1,...,n,}. Then, by the equations (3.2.2.15

2
and (3.5.1.2), we get

NN
(2) P )00 B o, (4,3)
(1.9 ¢ ¥ i=1 j=1 '2
a
= L 61(1)
i=1
= Cn3o

Since the value of ¥ at each intermediate arc (Xi’j) is at most n hence

3,

it follows from the definition of “12 that

Fegbhal) - X -y oy I g n, 123<m,.
So, we have

(3) B owiaf8,3) = el
(1,) ec 12 :

Therefore, by (2) and (3), we get
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et )
(1,3) e ¢ 12

1A

min{cn32 n3’C|}

n, . min{c,|C|}.

This shows that “12 satisfies (1). Since § satisfies the equation

(3.5.1.2) and Hio satisfies the equation (3.2.2.1), we have

Y %

n
4) cn = B
= 1

i=1 3§

Therefore, by (4) and (1) S8E follows from Remark 2.2.5 that My also
satisfies the inequality (3.2.2.3). Hence, by Theorem 3:2.2, % fa

realizable, i#
3.5.2 Corollary. / Lét

S L 8 @58, (1), 08, (1) 385(1), .48, (0y))

be a 3-partite finite sequence in ® -such that

61(1) ces = 61(n1)

= . 6
- 63,500, SERuLaToNsorN BRI,
63(1) = ce = 63(n3) el
Then 6 is realizable if and only if
£3.5.2.2) ey = c,m, = Cqhgs and

(3.5.2.3) c

[
A
=]
N
=]
w
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Proof : To show the necessity part, assume that § is realizable.
Then, by Remark 3.2.1 and Theorem 3.4.1, § satisfies the equation
(3.2.1.1) and the inequality (3.4.1.6). By (3.5.2.1), (3.2.1.1) becomes

(3.5.2.2); and (3.4.1.6) becomes £€3:502.3);

To show the sufficiency part, assume that § satisfies (3.5.2.2)
and (3.5.2.3). Since 6 also satisfies (3.5.2.1), hence (3.5.2.2) becomes

(3:3.1.2)00 %0 apply the theorem, we need to show that § satisfies

(3.5.1.3), which, for this case, 1is

(1) n; . min { s n3|B|} > clel
for all B<= {1,..., nz}.

Let BE{I,...,nz}. Then

|B] < =

(2) c2|E|

A
(2]

The last equation follows from (3.5.2.2). Observe that

c.,n

(3) c =

tA

The first equation follows from (3.5.2.2); and the second ineqaulity

follows from (3.5.2.3). From (3), it follows that



(4)

Hence,

cZIBl < nlnBIB! .

by (2) and (4), we get (l) as required.

#
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