CHAPTER II (SN N2\
PRELIMINARIES &y

2.% Basic Definitions and Notations.

Throughout this thesis we shall denote the set of all non-negative
integers and the set of all positive integers by Il and P respectively.

The cardinality of a set S is denoted by IS,.

By a finite sequence having n terms in a set S, we mean a function
defined on the set {1,..., n} into S. If £ is a finite sequence having n
terms in a set S and f(i) = CH for 1 < i < n, then it is usually written

in the form

£ = (sl,...,sn).

By a k*partitg finite sequence in a set S, we mean a finite sequence

(61"°"6k) of finite sequences St, T k,‘ in. 8, 1

5§ Y (Gt(l)"°"6t(nt)) for 1l < éteixk,
then (61’°’°’6k) will be denoted by
(61(1),...,Gl(nl);...;ék(l)s...,Gk(nk)).

By 2 m_X n-matrix over a set S, we mean a function defined on

the Cartesian preduct {1,...,m} x {l,seosn) intc 8. If u 18 a8 m % n~
matrix over a set S and u(i,j) = sij for 1 St R, 1 <3 £n, then

it is usually written in the form



2.2 Digraghs ggg Network Flows.

A digraph D is an ordered pair (V,A), where V is a finite
non-empty set, its elements are called vertices, and A is a subset of
the Cartesian product V x V, its elements are called arcs. For an arc

a = (x,y), the vertex x is called its initial endpoint, and the vertex

y is éalled its terminal endpoint, and we say that the arc a joinsg_gg

y-
A digraph can be Tepresented by a geometric diagram in which the
vertices are indicated by small circles or dots, while any two of them,
Say X and y are joined by an arrowheaded continuous curve from x to y. 1f
and only if (x,y) is an arc. As an illustration, consider the digraph

D = (V,A) where

<
fi

iV, W X, .9, 2},

A

‘{(st)s (V,W), (W’V)s (X,W), (y:}’)}4

The geometric diagram of D is shown in the following figure :



Fign2.2.}

A network N is a triple (V,A,a ), where (V,A) is a digraph, and
@ 1is a function defined on the set A into N . The function a is called

the capacigy fhncticn, and its value at an arc a is called the capacity of

a. A function Y defined on the set A into N is said to be conservative

at vertex x if
-4—-——-—\—-“&-*

I w(x,y) = L y(z,x).
(x,¥) € A (g,%) & A
Here, and ig the sequel, we denote the value of any function Y at (x,y)
simply by ¢(x,y). If ¥ is conservative at every vertex in N, then y is
called o g;gy in N. We sﬁall say that a flow ¥ saturates an arc a in N
if ¥(a) = oa(a)., If Y is a flow 4in N such that y(a) s a(a) for all arcs
a, then ¥ is said to be comEatiblg.

By a bipartite transportation network, we mean a network in which

the vertices form four disjoint sets K Y,{u},{v}; the vertex u s called

the source vertex, the vertex v is called the sink vertex: the arcs are’

of the following types:



type 1. (x,y) with x € X, y € Y; called the intermediate arcs,

type 2. (u,x) with x € X; called the source arcs,
type 3. (y,v) with y € Y; called the sink arcs,

type 4. (v,u); called the return gre,

and the capacity of the return arc is not less than the sum of the
capacities of the source arcs. We shall denote such a bipartite
transportation network in which o is the capacity function by

({ul, X, Y,{v};a). A compatible flow v in a bipartite transportation

network N is called a maximum flow if there is no compatible flow ¢~

in N such that at the return arc the value of w’is greater than the
value of ¥

A network can be represented by a diagrém of its digraph
together with the capacities written on the curves representing the
arcs. The following diagram represents a bipartite transportation

network.

tig 2.2.2



In Fig. 2.2.2, the number appearing on each curve refers to the capacity

of the arc it represents. For example, the capacity of the arc (u,xl) is 6.

Let N = ({u}l, X, Y,{v};a) be a bipartite transportation network.
Let B Y. Suppose ¥ is a compatible flow in N. Since ¥ is conservative
at every vertex y in B, we have
z Z ¥(x,y) = T W(y,v).
yeB xeX yeB

Since Y is conservative at the sink vertex v, we have

L w(y,v) = Y(v,u)
yeY
Hence the quantity z Z ¥(x,y) equals to the value of V¥
yeB xeX

at the return arc if a(y,v) = 0 for all y € ¥xB . We see that the value
of ¢ at each sink arc (yo,v) is not greater than the sum of the capacities

of the source arcs since

w(YQ,V) = z w(xsyo)

xeX

i z L P(x,y)
xeX vyeY

= L ¥lu,x)
xeX

< I au,x)
%eX

Now, let Ny = (in), X, Y,{v};aB) be a bipartite transportation networl

obtainéd from N by changing o to Op in the following way :



ag(y,v) = 0 if y € YN\B,

aE(y,v) = Latu,x) 1'% ¢ B, \ SR
3 XEX & ' //’

aB(a) = a(a) for all other arcs a.

The maximum quantity of flow that can be sent into B, denoted by F\y(B),

is defined by

FN(B) = max f(v,u),
f s'?z(B)

where ?;(B) is the set of all compatible flows in NB’

The following formula is derived from the above definition.

z minfa(u,x), I a(x,y)}.

0.1 FN(B)
xeX yeB

To show this, first we show that

(1D max f(v,u) < I min{a(u,x), a(xsf)}-
¥ 72(3) xeX veBR

Let f be any compatible flow in NB. Then, for each x e X, we

have
(2) f(u,x) = I f(x,y)
yeY
= I f(x,y)
veb
= ) a(xs}’)s

yeb



and

(3) Flux) = aflux)

Therefore, it follows from (2) and (3) that

(4) f(u,x) < min{a(u,x), I alx,y)}.
veB

By the conservation property of f at u and (4), we have

(5) £(v,u)

by = LT
xeX '

IA

I/ minfa(u,x), I oa(x,y)}.
xeX yeB '

Hence (1) holds.

Now, we show that

(6) there exists a compatible flow £7 in N, such that

B

f?u,x) = minfoa(u,x), I a(x,y)} for all x e X.
yeB

We shall prove this by induction on the cardinality of B. For IBI =0,

we have B = ¢, It can be seen that the function f: defined by

£’(a) = 0 for all arcs a in NB’

is a compatible flow in NB that has the properties as required. Assume

that (6) holds for [Bl = n < IYI « Let C be any subset of Y such

that |[C|] = n+ 1. Suppose that C = {yl""”yv+l}° By the induction

hypothesis, there exiets a compatible flow £ in NC\{y } such that
nt+l
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n
)] £ u,x) = min{a(u,x), I a(x,yj)} for all x ¢ X.
o

Also, for all x € X, we have

«8) Edusal » T ey
yeY
Vé
= s £ (x,y).
er‘\{yn+1}
Construct a function £” on the set of arecs in NC as follows :
Step 1. For any X e-X, put
7 n+l
(9) f(u,x) =  minfa(u,x), I a(x,y,)}.
Step 2. Put
(10) £ vae) m TR
xeX
Step 3. For any x € X, put
/7
(11) £ “(x, o HULALGINGKORN 2l all'yle ¥x{y .},
s "
and £ (X,Yn+1) if u(usx) = pX Q(Xs}’j),
=1
£ n
(12) 8.y ) = a(u,x) - I alx,y,) if
nt+l Sl i
n n+l
z a(xs}’j) < a(u,x) s z a(xsyj)s
j=1 i=1
n+l
a(xsyn+1) 1f -.Z. a(xsyj) < a(u’x)-

i=1



i

Step 4. For any y € Y, put

(13) £y, v = L £(x,¥).
xeX

Now, we shall show that f~ is conservative at every vertex in NC'

Let % ¢ X.

n
Case 1. Assume that a(u,x) g a(x,yj)° Then, by (9) =nd

J=i
(7), we have
(14) £7u,x) = alu,x)
= f’?u, xYia
By (8), (11) and (12), we have
" s
(15) fFuxDo s 3 £% 5
yey
= I f/(x,y).
yeY
Hence, by (14) and (15), we get
R S e
yeY
i.e. £/ is conservative at x,
n n+l
Case 2. Assume that Z alx,y.) < afu,x) £ Palx.g7.)
pots bl 41 j j=1 3

Then, by (11) and (12), we have
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(16) E f,(x,y) = % f”(X»Y)
yeY yeY N\ {yn_H}
n
¥ aluyx) = L afwv.),
gep NS

By (8) and (7), we have

: ’? 7

(17) z : (XSY) - £ (u,x)

er\{yn_H}

n
= e ulE.y ).
o
Hence, by (16), (17) and (9), we get
$ f/(x,y) = a{uysx)
yeY
= f/(u,x)n

£
Therefore f is conservative at x.

n+1 :
Case 3. Assume that )X a(x,yj) SaiBfu,x) .  Then, by (11)
Jee
and (12), we have
7’7
(18) I tUx,. ) » g £ Axa0 * afupla
yeY ve¥N {y_,,}

In this case, we also have (17). Hence, by (18), (17) and (9),

we get
4 n+l
I f (x,y) = Z a(x,yj)
yeY j=1
= fl(u,x).
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£
Therefore f  is conservative at x.

This proves that f“ is comservative at every vertex x € X. Observe,
from (10) and (13), that f” is conservative at the vertex u and every

vertex y € Y. Hence we have

£ "(v,u) = I /(u,x)
xeX
- 2 T floay
xeX yeY

I z f/(xsy)

yeY xeX
N AR R
veY

Therefore f ¢ is conservative at the vertex v.

Hence f'is a flow in NC. We can see that £’ is compatible. This

completes the proof of (6). Note that

/
I =ob ba )
xeX

£/ (v,u)

I minf{a(u,x), = alx,y)}
xeX yeB

Therefore, by (1) and the fact that £’ ¢ f(B), we get

wax f(v,u) = f/(v,u) .
£ e F(B)

i.e. FN(B) ; = f /(v,u).



-

14

fience we obtain the equation (2.2.1).

In a bipartite transportation network N = ({u}, X, Y,ivlia),

the demand of a subset B of Y, denoted by dN(B), is defined by

£2.2.2) dN(B) = Zaly,v).
yeR

As an illustraticn, consider the bipartite transportation network

N represented by the diagram in Fligsi2i2.2, Let B = {yl,yB,ya}. Then,
the equations (2.2.1) and €2,2.2)5
we have

2 min{a(u,x), I a(x,y)}

¥._(B)
X xeX yeB

= min {6,4} + min{5,4} + min {5,5}

S 4+ 4475

aﬁd

dN(B) I 0(3',V)

veB

- 34342

In [1] (see page 84), the following theorem, due to D. Gale,
provides a necessary and sufficient condition for the existence of a

compatible flow that saturates all the sink arcs in a bipartite

&
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transportation network.

2.2.3 Theorem. A bipartite transportation network
N = ({u}, X, Y,{v};0) has a compatible flow that saturates all the sink

arcs if and only if
FN(B) v dN(B) for all BE ¥,
The next remarks are useful to our study.

2:2.4 Remark. Let N be a bipartite transportation network such
that the sum of the capacities of the source arcs equals to the sum of
the capacities of the sink arcs. And let ¥ be a compatible flow in N.
Then, ¢ saturates all the sink arcs if and only if Yy saturates all the

sSource arcs.,

Proof : Let N = ({u};, X, Y,{v}:io) be a bipartite transportation

network such that

(1) Z afu,x) = L _a(y,wv) .
xeX yveY

Let y be any compatible flow in N. Hence

(2) P plux) = Y (v,u) 001706
xeX _
e z IP(Y9V)-
yeY

Suppose that y saturates all the sink arcs but does not saturate some

source arc. Hence
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Z ¥(u,x) < Z a(u,x)
xeX xeX

= Z aly,w)
yeY

i z w(y,v),
yeY

which is contrary to (2). Hence, if ¥ saturates all the sink arcs, it
must also saturate all the source arcs., The converse can be shown

gimilarly. #

2.2.5 Remark. Let 61 and 8§, be finite sequences having ny and n,

2

terms in N , respectively. Suppose that

S—

nl n2
(i) r $.() [p=riE §,(3), and
i=1 j=1
i
(i1) I ‘min{é, (1),|R|} > N 8.01) for B {1 um s
1 = 2 2
i=1 jeB

Then we have

ny
(ii1) 5

min{s (§),|cl} > 2 §,(1) for cg{l,...,nl}
j=1 5 ;

i3 ieC

Proof : Let N ({u}, X, Y,{v}:0a) be a bipartite transportation

network, where X ='jxl,..., X Yo owdbieiis nz}, and
1
a(x;53) = L%0r] §'1 ¢ Yoo -4 &1 % n,;
¢ (u, xi) = 61(1) for .} <ie nl;
a(j,v) = §,(1) “ser 1 % § & n,s
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y

z 6l(i).
i=1

a(v,u)

For B=Y, by the equations (2.2.1) and (2.2.2), we have

n
1
(1) Fo(B) = z min{$, (1),[B[},
: i=1
and 5 "i [ \\l)
(2) de(®) = 8, G

jeB

Hence, by (1) and (2), the assumption (ii) becomes

A dy(B) ' for all BC Y.

o

Therefore, by Thecrem 2.2.3,/ M=had=a compatible flow ¥ that saturates
alil the sink arcs. By the definition of o and the assumption (i), we
have

)3 a(u,xi) = L1 08 NP €

xs€ X jey

Hence, by Remark 2.2.4, ¢ also saturates all the source arcs. Now,
let N' = ({v}, v, X,{u};a”) be a bipartite transportation network, where

the capacity function a’ is given by

ar(j;xi) - 00wl €% fs 1xdx n,;

i

a’ (v,3) 8,61) for 1 c 3 < nm

a’(xi,u) 61(1) for 1 £ 1 &9 ;
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2

n
a’ (u,v) - = I §,03).

ji=1

Define a function f on the set of arcs in N"by
f(a,b) = Y(b,a) for all arcs (a,b).

Then £ is a compatible flow that saturates all the sink arcs in Nf
Let C< {1,...,n1} and X(C) = {xi EX 4 1 eC, Theh, by Theorem

2.2.3, we have
(3) Fyr (R(C)) > d (X(0)).

By the equations (2.2.1) and (2.2.2), we have

n

2
Fe(X(©) "= 3 minls,(3),]c|},
N j=1
and
d.,(X(C)) pd) L &.(1).
N’ 1eC 1
Hence (1) becomes
B
I omin {8,(,[c]} > z & @),
j=1 ieC

Therefore (iii) holds. #

2.3 Hypergraphs,
A hypergraph H is an ordered pair (V,£.), where V is a finite

non~empty set, and ¢ is a set of non~-empty subsets of V such that

v& = V. The elements in.V are called vertices, and the sets in &
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are called hyperedges or simply edges. The ra&k of a hypergraph is the
maximum cardinality of the edges in the hypergraph. A hypergraph in

which every edge has the same cardinality is called an uniform hypergraph.

An uniform hypergraph of rank r will be called an r-uniform hypergraph. A

hypergraph H = (V,&) dis called a k-partite hypergraph if V can be

partitioned into k subsets V., 1 < t <k, such that |E n Vel ¢ S 4
every edge E and for 1 < t < k. Such an ordered partition (Vl,..., Vk)
is called a k-partition of V. We shall often denote a k-partite
hypergraph  in which (Vl""’vk) is a k-partition of the set of vertices,

and & is the set of edges by (Vl,,..,Vk;Eﬁ). By a (k,r) - hypergraph, we

mean a k-partite r-uniform hypergraph.

To illustrate the above concepts, let

V. =  {1,2,3,458
531 = {3231, 91,345,12 3\M),13,4,5},1{3,5),{1}},
£y = gR3h,11,3,41, 027581 ,(3,4,5}),
En =  d{lahdhddiaah) eadh2,3,5))-

Then H, = (V,fbi) is a 3-partite hypergraph since ({1,5},{2,4},{3})
is a 3-partition of V. H2= (V,E}z) is a (3,3)~hypergraph. We can see
that H3= (V’ELB) is a 3-uniform hypergraph. But H3 is not a 3-partite

hypergraph.

Let H= (V,&) be a hypergraph. For each subset S of V, we
define

&) = {Eef /S<E).
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The degree of S in H, denoted by dH(S), is defined by

| E£.(s)].

dH(S)

We shall write & (v) and dH(v) instead of Z;({v}) and dH({v})
resPectively.. For every vertex v, since v&r = L é;(v) is a

non-empty subset of E:; hence dH(v) + 0.

As an illustration, consider the hypergraph H1 above. Then

we have
5}1(1) = {{1,2,3},{1,3,4},01}},
2;1({2,31) = 1141,2,3),{2,3,5)}};
hence
dHI(l) = 3 and dHI({Z,B}) = 2,

In the following study, we shall consider only (3,3)- hypergraphe
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