CHAPTER II°

THEORY

2.1 Spin-lattice Relaxation in Liquids

Spin-lattice relaxation is a process in which energy is
exchanged between the nuclear-spin system and the lattice, tending
to bring the system to a common temperature. The approach to
equilibrium is exponential,the time comstant of the process, Tl,
being inversely proportional to the probability of transition
between the nuclear magnetic energy levels brought about by
irteraction with the lattice. The general formula for the spin-
lattice relaxation due to molecular rotation and diffusion through
the dipole-dipole intercction in the case of jdentical particles
is written
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where ¥ is the gyromagnetic ratio and J(&?) represents the

gpectral density.

The intensity J(&) of the Fourier spectra of the functions

of the position coordinates ©
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In liquids, the function F will vary in a random fasion
with time, as the particles containing the magnetic nuclei take
part in Brownian motion. . The correlation function of F(t) is

introduced as
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It is assumed that & (T) is an even function of T and
independent of t, and that it is a real function. It may be
assumed also that ¢ () approaches zero for sufficiently large
values of T . The relation between the Fourier spectrum of a
function F and the correlation function of F gives the following

relationship for the spectral density,
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The time 1:0 is a characteristic of the random motion, and
it is called the correlation time. From (2.5) and (2.6) it is
found, for each of the three J's, that
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In water, the interactions responsible for the spin-lattice
relaxation are due to intramolecular interactions inside a molecule

and interactions betwecen the spins of different moclecules.

2.1.1 Rotation

In the interior of a molecule, the variation of dipolar
coupling of a spin arises almost completely from the rotation of
the molecule. The variation of the distance between the spin due
to vibration\and also the contribution from the neighbor molecules
can be neglected because they are relatively much smaller. It
has heen supposed, that the rotation of a2 molecule can bde compared
to that of a rigid sphere of radius a in a medium of viscosity
- The orientation of the vector connecting the two protoﬁs

would vary randomly with no direction preferred. The functions

F]? and F2 would be given by
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Where b is the interproton distance. It would follow that
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Substituting (2.9) in (2.6) =and using (2.1), the spin -

lattice relaxantion time due to rotation may be given by
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The time 'fb is obtained from the Debye theory of dielectric

dispersion in liquid where  Tg = b mh 33/ 3kT

Tt is assumed that w'fc<< 1 , and that for water I = i ¢
Trom (2.9) it follows that
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2.1.2 Translation

Now the contribution to the spin-lattice relaxation process
of the intermolecular protons will be considered. The fluctuation
in the local field arising from neighboring fields is mainly
caused by their translational motion. Let us calculate T; for
the molecule in a spherical shell between r and r + dre. The
centre of the shell is located at, and moves with, the molecule

containing the proton i. A reasonable choice for ’{c is the time



it takes the molecule j to move a distance r in any direction
from its original position on the shell, for in that time the
ficld at the proton i, due to j, will have changed considerably.
The relation of motion i and j is simply diffusion,; and can be

described most directly Ly means of the diffusion coefficient D

of the liquid.

From the theory of Drownian motion, the mean square displace-

ment of a particle is

X = 2xTHy /B sensd LA E
From Stokes formula B = 61 hH a with the diffusion
constant D = kT/B, the value for the correlation time is,
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where r is the relative displacement of two particles in any
direction. The angulnr functions, < Flt) F*(t)>*av are averaged
ag before and then, treating the molecules as independent, we sum
the effects of all neighbors by inteprating over the volume fromnm
the radius of closest approach, r = 2a, to infinity. Also we
keep w . < 1

e have for the relaxation time due to the neighbors,
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For more riporous calculation, accounting for detail angular

distribution, the result i's5
L
B2
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where NO is the numher of molecule per cmj°

2.2+ The Effect of Alternating Magnetic Field

When an alternating magnetic field is applied perpendicular

. P
to the static field Ho = k Ho, we can write the equation of
motion. 5
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Dy using a coordinate system that rotates about the

z-direction at frequncy oqz, and by taking Hl along the x-axis

with resonance QJZ+&H0 = o, nand QJzz-—ag , we get
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Bquation (2.17) states that in the rotating frame, the
magnetic moment acts as though it effectively experienced a
static magnetic field Heff‘ The magnetic moment therefore
precesses in a cone of fixed angle about the direction of Heff

at an angular frequency [ Heffo
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At resonance frequency we have & = % Ho and the effective

”~
field is simply Hli. I megnetic moment which is parallel to the
static field initially will then precess in the y - z plane, If

we were to turn on H, for a short time, t the magnetic

| w .
moment would precess throush an angle 0 = g H1 tw o
A5l were choosen such that & = m, the pulse would simply

W
invert the magnetic moment. Such a pulse is refered to as a

"180° pulse¥. If © = g (90° depree pulse), the magnetic moment

is turned from the z-dircecetion to the y=-directiomn.

8,9

2.3 The Principle of Spid Fcho

The nmr spin-echo technique was introduced by Hahn in 1950,
i
and Carr and Purcell in 1954 to give more convenient ways of

measuring T. and T_.
1 2

The rf pulse is applied perpendicular to the statiec field
Ho. Hl is larger than the field inhomogeneity over the sample

(A H), The pulse time tw is short compared to the fime (ZA H =4
in which the nuclei precess out of phase due to the field inhomo-

geneitye

The 90° pulse at time t = O changes the orientation of the
resultant magnetic moment vector of each volume element of the
specimen, and a nuclear induction signal is obtained from each
as it precesses freely, decaying with different precessional
frequency the precessing magnetic moments and the nuclear induc-
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tion signals rapidly out of phase in a time (¥ & H) lo The 180



sl
pulse at time t is applied, and the volume elements are rotated by
130° in the opposite direction, so that the faster volume elements
are behind the slower volume elements. After another time t, they
find themselves again in phase and thus produce a net magnetiza-
tion. The construction magnetization induced an Mecho' signal

in the receiver coil. The phenomenon is called a 's in-echo'.
¢
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