

SEMIFIELDS

Definition 3.1. A nonempty set K is said to be a semifield if there are two binary operations, + (addition) and . (multiplication) defined on it such that :
(i) ($\mathrm{K}, \cdot)$ is an abelian group with zero;
(ii) $(\mathrm{K},+)$ is a commutative semigroup;
(iii) $x(y+z)=x y+x z \quad \forall x, y, z \in K$.

We will denote the multiplicative identity and multiplicative zero of a semifield by 1 and 0 respectively.

It is clear that any field is a semifield.

Example 3.2. Let ($G,{ }^{-}$) be an abelian group with zero (0). . Then we can define a binary operation + on G so that G is a semifield, by defining $x+y=0 \quad \forall x, y \in G$. We call this semifield the trivial semifield.

Example 3.3. Let ($G,,^{*}$) be an abelian group with zero. We can define a binary operation + on G so that G is a non-trivial semifield by defining $\mathrm{x}+\mathrm{y}=0$ if $\mathrm{x} \neq \mathrm{y}$ and $\mathrm{x}+\mathrm{x}=\mathrm{x} \quad \forall \mathrm{x}, \mathrm{y} \in \mathrm{G}$.

Proof : We need to show that $(G,+)$ satisfies the associative law and ($G,+, \cdot$) satisfies distributive law.

Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{G}$.
Case $x=y=z$. Then $(x+x)+x=x+x=x$ and $x+(x+x)=x+x=x$;

$$
x(x+x)=x^{2} \text { and } x x+x x=x^{2}
$$

Case $x=y \neq z$. Then $(x+x)+z=x+z=0$ and $x+(x+z)=x+0=0$;

$$
x(x+z)=x 0=0 \text { and } x x+x z=0
$$

Case $x=z \neq y$. Then $(x+y)+x=0+x=0$ and $x+(y+x)=x+0=0$;

$$
x(y+x)=x 0=0 \text { and } x y+x x=0
$$

Case $x \neq y=z$. Then $(x+y)+y=0+y=0$ and $x+(y+y)=x+y=0$;

$$
x(y+y)=x y \text { and } x y+x y=x y .
$$

Case $x \neq y \neq z$. Then $(x+y)+z=0+z=0$ and $x+(y+z)=x+0=0$;

$$
x(y+z)=x 0=0 \text { and } x y+x z=0
$$

Therefore G is a non-trivial semifield. We call this the almost trivial semifield.

Example 3.4. Let D be a P.R.D. Let 0 be a symbol not representing any element of D. Then $D \cup\{0\}$ is clearly a semifield by extending the operations of D to $D \cup\{0\}$ by $x 0=0 x=0$ and $x+0=0+x=x$ $\forall x \in \operatorname{D} \cup\{0\}$.

Example 3.5. There is another way extending the operation of D to $\operatorname{DU\{ 0\} }$ where D is a P.R.D. and $0 \notin D$ so that $D \cup\{0\}$ is a semifield. Just define $x 0=0 x=0$ and $x+0=0+x=0 \quad \forall x \in D \cup\{0\}$.

Example 3.6. $\mathbb{Q}^{+} \cup\{0\}$ and $\mathbb{R}^{+} \cup\{0\}$ with the usual addition and multiplication are semifields.

Remark 3.7. (i) Since \mathbb{Q}^{+}with the usual addition and multiplication is a P.R.D., follows from Example 3.5, we have $\mathbb{Q}^{+} U\{0\}$ by extending + and - by $\mathrm{x}+0=0+\mathrm{x}=0$ and $\mathrm{x} 0=0 \mathrm{x}=0 \quad \forall \mathrm{x} \in \mathbb{Q}^{+} \cup\{0\}$, is a semifield having 0 as its additive zero.
(ii) $\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, c \in \mathbb{Q}^{+} \cup\{0\}, b \in \mathbb{Q}\right\}$ satisfies all the axioms of a semifield except that - is not commutative.
(iii) If K is a semifield then $K \times K$ is not a semifield
since $(0,1)(1,0)=(0,0)$.

Definition 3.8. Let K be a semifield. Then define $A=\{x \in K \mid x+y=0 \quad \forall y \in K\}$ and $B_{0}=\{x \in K \mid x+0=0\}$.

Follow from previous examples we have that :
(1) $A=K$ and $B_{0}=K$ if K is as in Example 3.2 ;
(2) $A=\{0\}$ and $B_{0}=K$ if K is as in Example 3.3 ;
(3) $\mathrm{A}=\phi$ and $\mathrm{B}_{0}=\{0\}$ if K is as in Example 3.4 ;
(4) $\mathrm{A}=\{0\}$ and $\mathrm{B}_{0}=\mathrm{K}$ if K is as in Example 3.5 ;

If K is a field, then we have $A=\phi$ and $B_{0}=\{0\}$.

Theorem 3.9. Let K be a semifield. Then the following hold :
(1) $0+0=0$
(2) Either $A=\phi$ or $A=\{0\}$ or $A=K$;
(3) Either $B_{0}=\{0\}$ or $B_{0}=K$.

Proof : (1) Suppose $0+0=x$. Since $0(0+0)=0 x, 0+0=0$.
(2) Suppose $A \neq \phi$. To show either $A=\{0\}$ or $A=K$, we first
assume that $A \neq\{0\}$, so $\exists x \in A$ such that $x \neq 0$. Let $y \in K-\{0\}$. Since $x+z=0 \quad \forall z \in K, y x^{-1}(x+z)=0 \quad \forall z \in K$. Hence $y+y x^{-1} z=0 \quad \forall z \in K$.

Since $\left\{y x^{-1} z \mid z \in K\right\}=K, y+w=0 \quad \forall w \in K$. Thus $y \in A$. From (1), $0+0=0$. If $\exists u \in K-\{0\}$ such that $0+u=w$ for some $w \in K-\{0\}$, then $u \notin A$, a contradiction. Hence $\forall u \in K-\{0\}, 0+u=0$. Therefore $A=K$.
(3) From (1), we have that $0 \in B_{0}$, so $B_{0} \neq \phi$. Assume that $B_{0} \neq\{0\}$. Let $x \in B_{0}-\{0\}$. Let $y \in K$. Since $x+0=0,1+0=0$. Hence $\mathrm{y}+0=\mathrm{yl}+\mathrm{y} 0=\mathrm{y}(1+0)=\mathrm{y} 0=0$ and so we have $\mathrm{y} \in \mathrm{B}_{0}$. Therefore $B_{0}=K$.

Theorem 3.10. If K is a semiffeld then either 0 is the additive identity or 0 is the additive zero.

Proof : From Theorem 3.9 (3), we have that either $B_{0}=\{0\}$ or $B_{0}=K$. Case $B_{0}=K$. Then $\forall x \in K, 0+x=0$ and $s Q 0$ is the additive zero. Case $B_{0}=\{0\}$. Then $0+x \neq 0 \quad \forall x \in K-\{0\}$. Let $x \in K-\{0\}$. Hence $\exists y \in K-\{0\}$ such that $0+x=y$ and so $0+x y^{-1}=1$. Since $0+1=z$ for some $z \in K-\{0\}, 0+0+x y^{-1}=0+1=z$. Hence $0+x y^{-1}=z$, so $z=1$ and we get that $0+1=1$.

Let $y \in K$. Then we have $y(0+1)=y$ and so $0+y=y$. Therefore 0 is the additive identity.

Theorem 3.10 indicates that there are two types of semifields when considering the multiplicative zero. We call a semifield with 0 as its additive identity a semifield of zero type and a semifield with 0 as its additive zero a semifield of infinity type. The reason for this terminology. is as follows :

If 0 is the additive identity, then $x+0=x \quad \forall$. Hence 0 behaves
like zero in $\mathbb{Q}^{+} \cup\{0\}$ with the usual addition and multiplication, so we call it of zero type.

If 0 is. the additive zero, then 0 behaves like ∞ in $\mathbb{Q}^{+} \cup\{\infty\}$, i.e. $x \infty=\infty$ and $x+\infty=\infty \forall x \in \mathbb{Q}^{+} \cup\{\infty\}$, so we call it of infinity type.

Therefore we have $\mathbb{Q}^{+} \cup\{0\}$ with the usual addition and multiplication is a semifield of zero type and $\mathbb{Q}^{+} \cup\{0\}$ as in Remark 3.7 (i) is a semifield of infinity type.

Proposition 3.11. Let K be a semifield of zero type. If $\exists a_{0} \in K-\{0\}$ such that $\forall x, y \in K\left(x+a_{0}=y+a_{0} \Rightarrow x=y\right)$, then $\forall a \in K$ we get that $\forall x, y \in K(x+a=y+a \Rightarrow x=y)$.

Proof : Let $a \in K$. Let $x, y \in K$ be such that $x+a=y+a$. If $a=0$, then we have $x=y$. So we may assume that $a \neq 0$. Then $a_{0} a^{-1}(x+a)=a_{0} a^{-1}(y+a)$. Hence $a_{0} a^{-1} x+a_{0}=a_{0} a^{-1} y+a_{0}$. Therefore $a_{0} a^{-1} x=a_{0} a^{-1} y$ and so $x=y$.

Proposition 3.12. Let K be a semifield of zero type. If $\exists x \in K-\{0\}$ such that x has an additive inverse, then every element in K has an additive inverse and K is a field.

Proof : Let $y \in K$. We want to show that y has an additive inverse. If $\mathrm{y}=0$, then we are done because $0+0=0$. We assume that $\mathrm{y} \neq 0$. Let z be an additive inverse of x. Hence $x+z=0$, so $y x^{-1}(x+z)=0$. Thus $y+y x^{-1} z=0$ and $y x^{-1} z$ is an additive inverse of y.

Theorem 3.13. A finite semifield of zero type of order >2 is a field.

Proof : Let K be a finite semifield of zero type such that K has order > 2 .
Case 1. If $\exists x \in K-\{0\}$ such that x has an additive inverse then by Proposition 3.12, every element in K has an additive inverse and so K is a field.
Case 2. Assume that every element in $K-\{0\}$ has no additive inverse. Let $x, y \in K-\{0\}$. Then $x+y \neq 0$, so $x+y \in K-\{0\}$. Hence $(K-\{0\}$, +) is a commutative semigroup and so $K-\{0\}$ is a finite P.R.D. of order >1 which contradicts Theorem 2,5. Therefore this case cannot occur.

Remark 3.14. (i) Theorem 3.13 is not true when K is an infinite semifield since $\mathbb{Q}^{+} \cup\{0\}$ of zero type is not a field.
(ii) Theorem 3.13 is not true when K is a semifield of zero
type of order 2. For example, let $K=\{0,1\}$ and let + and . be the following:

.	0	1
0	0	0
1	0	1

+	0	1
0	0	1
1	1	1

Then we have that :

$$
\begin{aligned}
& 0+(0+1)=0+1=1 \text { and }(0+0)+1=0+1=1 \\
& 0+(1+0)=0+1=1 \text { and }(0+1)+0=1+0=1 ; \\
& 0+(1+1)=0+1=1 \text { and }(0+1)+1=1+1=1 ; \\
& 1+(0+0)=1+0=1 \text { and }(1+0)+0=1+0=1 ; \\
& 1+(0+1)=1+1=1 \text { and }(1+0)+1=1+1=1 ; \\
& 1+(1+0)=1+1=1 \text { and }(1+1)+0=1+0=1
\end{aligned}
$$

$$
\begin{aligned}
& 0(0+1)=01=0 \quad \text { and } 00+01=0+0=0 ; \\
& 0(1+0)=01=0 \quad \text { and } 01+00=0+0=0 ; \\
& 0(1+1)=01=0 \text { and } 01+01=0+0=0 ; \\
& 1(0+0)=10=0 \text { and } 10+10=0+0=0 ; \\
& 1(0+1)=1^{2}=1 \text { and } 10+11=0+1=1 ; \\
& 1(1+0)=1^{2}=1 \text { and } 11+10=1+0=1 ; \\
& 1(1+1)=1^{2}=1 \text { and } 11+11=1+1=1 ;
\end{aligned}
$$

Therefore $(\mathrm{K},+$) is a commutative semigroup, (K, \cdot) is an abelian group with zero and distributive law holds in K, so K is a semifield of zero type but it is not a field.

Corollary 3.15. Any proper extension semifield of semifield in Remark 3.14 (ii) is infinite.

Proof : Suppose $\exists \mathrm{k}$ a finite proper extension semifield of semifield in Remark 3.14 (ii). Then K has order >2. Since $0+1=1$, by Theorem 3.10 K is of zero type. By Theorem 3.13 K is a field. Since $0+1=1+1$ but $1 \neq 0, K$ is not additively cancellative which is a contradiction.

As a consequence of Remark 3.14 (ii), we see that a semifield of order 2 is an interesting special case of semifields. We wish to study more about semifields of this order and to do this we first find all the possible commutative semigroup operations on $\left\{\begin{array}{ll}0,1\end{array}\right\}$ that make		0	1
0	0	0	
1	0	1	

into a semifield.

Since $0+0=0$, there are four possible commutative binary operations + on $\{0,1\}$ such that $\{0,1\}$ is a semifield :

+	0	1
0	0	1
1	1	0

Table 1.

+	0	1
0	0	0
1	0	0

Table 2.

+	0	1
0	0	1
1	1	1

Table 3.

+	0	1
0	0	0
1	0	1

Table 4.

Note that Table 1 makes $\{0,1\}$ into a field, Table 2 makes $\{0,1\}$ into the trivial semifield and Table 4 makes $\{0,1\}$ into the almost trivial semifield. And we have that the only finite semifield of zero type which is not a field is the semifield of table 3.

Table 3 shows that it is possible that a semifield has an additive zero which is not 0 .

Proposition 3.16. If K is a semifield of order >2 such that K has the additive zero e then $e=0$.

Proof : Suppose $e \neq 0$. Then $x+e=e \quad \forall x \in K$, so $e^{-1} x+1=1$ $\forall x \in K$. Since $\left\{e^{-1} x\right\}_{x \in K}=K, 1$ is also an additive zero. Hence $e=1$. Let $x \in K-\{0,1\}$. Then $x+1=1$, so $1+x^{-1}=x^{-1}$. Since $x^{-1}+1=1$, $x^{-1}=1$. Thus $x=1$, a contradiction.

Table 4 shows that it is possible that a semifield has an additive identity which is not 0 .

Proposition 3.17. If K is a semifield of order >2 such that K has an additive identity e then $e=0$.

Proof : Suppose $e \neq 0$. Then $x+e=x \quad \forall x \in K$, so $e^{-1} x+1=e^{-1} x$ $\forall x \in K$. Since $\left\{e^{-1} x\right\}_{x \in K}=K$, we see that 1 is also an additive identity and so $1=e$. Let $x \in K-\{0,1\}$. Then $x+1=x$, so $1+x^{-1}=1$. Since $x^{-1}+1=x^{-1}, x^{-1}=1$. Thus $x=1$, a contradiction. \#

Table 4 also shows that + and - are equal.

Proposition 3.18. If K is a semifield such that + and - are equal then K has order 2.

Proof : Suppose K has order >2. Let $x \in K-\{0,1\}$. Since $x(1+1)=x+x, x\left(1^{2}\right)=x^{2}$. Hence $x=x^{2}$ and x is an idenpotent in ($\left.K, 0\right)$. We have that 0 and 1 are the only idenpotents in ($K,{ }^{\circ}$) since (K, \cdot) is a group with zero, so $x \neq x^{2}$ which is a contradiction.

In Chapter II we proved a theorem concerning the smallest sub-P.R.D. of a given P.R.D. Since the intersection of subsemifields of a semifield is a subsemifield, we have that the smallest subsemifield of a semifield exists and is the intersection of all of its subsemifields which will be called the prime semifield. In this chapter we shall also determine the prime semifield of a semifield up to isomorphism. Before studying this we first prove some theorems concerning semirings.

Definition 3.19. If S is a semiring with multiplicative zero (0) and satisfies property that $\forall x, y, z \in S(x y=x z \Rightarrow x=0 \vee y=z)$, then we say that S is 0 -multiplicatively cancellative.

Example 3.20. N $\cup\{0\}$ with the usual addition and multiplication is an example of a semiring with 0 as multiplicative zero having 0 -multiplicative cancellation.

Theorem 3.21. If S is a semiring with multiplicative zero (0), then S can be embedded into a semifield ff S is 0 -multiplicatively cancellative.

Proof : Assume that S is 0 -multiplicatively cancellative. Case 1. If $S=\{0\}$, then we can embed S into any semifield K by a homomorphism $\phi: S \rightarrow K$ defined by $\phi(0)=0$.
Case 2. Assume that $S \neq\{0\}$. Define a relation \sim on $S x(S-\{0\}$) by $(x, y) \sim\left(x^{\prime}, y\right) \Leftrightarrow x y^{\prime}=x y \quad \forall(x, y),\left(x^{\prime}, y^{\prime}\right) \in S x(S-\{0\})$. Clearly \sim is reflexive and symmetric. Let $(a, b),(c, d),(e, f) \in S \times(S-\{0\})$ be such that $(a, b) \sim(c, d)$ and $(c, d) \sim(e, f)$. Then ad $=c b$ and $\dot{f}=e d$, so $a d f=c b f$ and $c f b=e d b$. Hence $a d f=e d b$. Since $d \neq 0$, $a f=e b$. Therefore $(a, b) \sim(e, f)$, so \sim is transitive and hence \sim is an equivalence relation.

Let $\alpha, \beta \in \frac{S x(S-\{0\})}{\sim}$. Define + and . on $\frac{s \times(S-\{0\})}{\sim}$ in the following way : Choose $(a, b) \in \alpha$ and $(c, d) \in \beta$, and let $\alpha+\beta=[(a d+b c, b d)]$ and $\alpha \beta=[(a c, b d)]$. Since $b \neq 0$ and $d \neq 0$, and S is 0 -multiplicatively cancellative, bd $\neq 0$ and so $\alpha+\beta$, $\alpha \beta \in \underset{\sim}{S x(S-\{0\})}$. As in the proof of Theorem 2.11, we have that + and - are well-defined.

Claim that $\underbrace{S x(S-\{0\})}_{\sim},+, \cdot)$ is a semifield.
Let $a \in S-\{0\}$ and let $\alpha \in \frac{S x(S-\{0\})}{\sim}$. Choose ($\left.c, d\right) \in \alpha$, then $[(a, a)] \alpha=[(a c, a d)]=[(c, d)]=\alpha$ and $[(0, a)] \alpha=$ $[(0, a d)]=[(0, a)]$, so $[(a, a)]$ is the multiplicative identity and
($(0, a)]$ is the multiplicative zero, $\forall \mathrm{a} \in \mathrm{s}-\{0\}$. Let $\beta \in \frac{S x(S-\{0\})}{\sim}-\{((0, a)\} \mid a \in S-\{0\}\}$. Choose (c, d) $\in \mathcal{R}$, then $[(d, c)]$ is the multiplicative inverse of β. Clearly the associative law, commutative law and distributive law all hold in $\frac{\mathrm{S} x(\mathrm{~S}-\{0\})}{\sim}$, so we have that $S \times(S-\{0\})$ is a semifield.

Fix a $\in S-\{0\}$. Define $\theta: S \rightarrow \frac{S x(S-\{0\})}{\sim}$ by $\theta(s)=[(s a, a)]$ $\forall s \in s$. Let $s_{1}, s_{2} \in s$. Then $\theta\left(s_{1}+s_{2}\right)=\left[\left(\left(s_{1}+s_{2}\right) a, a\right)\right]=$ $\left[\left(s_{1} a+s_{2} a, a\right)\right][(a, a)]=\left[\left(s_{1} a^{2}+s_{2} a^{2}, a^{2}\right)\right]=\left\{\left(s_{1} a, a\right)\right]+\left[\left(s_{2} a, a\right)\right]=$ $\theta\left(s_{1}\right)+\theta\left(s_{2}\right)$ and $\theta\left(s_{1} s_{2}\right)=\left[\left(s_{1} s_{2} a, a\right)\right]=\left[\left(s_{1} s_{2} a^{2}, a^{2}\right)\right]=$ $\left[\left(s_{1} a, a\right)\right]\left[\left(s_{2} a, a\right)\right]=\theta\left(s_{1}\right) \theta\left(s_{2}\right)$. Let $s_{1}, s_{2} \in S$ be such that $\theta\left(s_{1}\right)=\theta\left(s_{2}\right)$. Then $\left[\left(s_{1} a, a\right)\right\}=\left\{\left(s_{2} a, a\right)\right\}$ and so $s_{1} a^{2}=s_{2} a^{2}$. Since $a \neq 0, s_{1}=s_{2}$. Hence θ is a monomorphism, so we can embed S into a semifield.

Conversly, assume that S can be embedded into a semifield K. Let $x, y, z \in S$ be such that $x y=x z$. If $x=0$, then we are done. Suppose that $x \neq 0$, then $x^{-1} x y=x^{-1} x z$. Hence $y=2$.

Remark 3.22. If S has a multiplicative identity 1 , then \exists a canonical monomorphism from S into $\left.\frac{X(S-\{0\}}{\sim}\right)$ defined by $\theta(s)=\{(s, 1)] \forall s \in s$.

Proposition 3.23. If S is a semiring with multiplicative zero (0) having 0 -multiplicative cancellation of order >1, then $\underline{S(S-\{0\})}$ is the smallest semifield containing S up to isomorphism.

Proof : Let K be a semifield containing S. Define $\left.\theta: \frac{\mathrm{Kx}(\mathrm{K}-\{0\}}{\sim}\right) \longrightarrow \mathrm{K}$ in the following way : Let $\alpha \in \frac{K \times(K-\{0\})}{\sim}$. Choose $(a, b) \in \alpha$ and let $\theta(\alpha)=a b^{-1}$. As we
already showed in the proof of Proposition 2.13, we have that θ is well-defined and θ is an isomorphism.

Define $\phi: \frac{\mathrm{Sx}(\mathrm{S}-\{0\})}{\sim} \rightarrow \frac{\mathrm{Kx}(\mathrm{K}-\{0\})}{\sim}$ in the following way : Let $\alpha \in \underset{\sim}{S x(S-\{0\}})$. Choose $(a, b) \in \alpha$ and let $\phi(\alpha)=$ $[(a, b)]^{\prime}$ where $[(a, b)]^{\prime}$ is the equivalence class of (a, b) in $K \times(K-\{0\})$. Clearly ϕ is a monomorphism. Hence $\underline{S \times(S-\{0\})}$ is isomorphic to a subsemifield of $\frac{K x(K-\{0\})}{\sim}$. Since $\left.K \cong \underset{\sim}{K} \underset{\sim}{K}-\{0\}\right)$, we get that $\frac{\mathrm{S} x(\mathrm{~S}-\{0\})}{\sim}$ is isomorphic to a subsemifield of K and $\underbrace{S X(S-\{0\})}_{\sim}$ is the smallest semiffeld containing S up to isomorphism. \#
$\mathbb{N} \cup\{0\}$ with the usual addition and multiplication is an example of a semiring with 0 as multiplicative zero having 0 -multiplicative cancellation. We also see that 0 is also the additive identity for this semiring.

If we extend + on \mathbb{N} with the usual addition and multiplication to $\mathbb{N} \cup\{0\}$ by $\mathrm{n}+0=0+\mathrm{n}=0$ and $0 \mathrm{n}=\mathrm{n} 0=0 \quad \forall \mathrm{n} \in \mathbb{N} \cup\{0\}$, then $\mathbb{N} \cup\{0\}$ is also a semiring with 0 as multiplicative and additive zero having 0 -multiplicative cancellation.

Corollary 3.24. Let S be a semiring of order >1 with multiplicative zero (0) having 0 -multiplicative cancellation. Then the following hold :
(1) If 0 is the additive identity, then the smallest semifield containing S also has 0 as the additive identity.
(2) If 0 is the additive zero then the smallest semifield containing S also has 0 as the additive zero.

Proof : From Proposition 3.23, we have that $\frac{\mathrm{S} \times(\mathrm{S}-\{0\})}{\sim}$ up to isomorphism is the smallest semifield containing S and 0 corresponds with $[(0, a)\} \forall a \in S-\{0\}$ in $\underset{\sim}{s \times(S-\{0\})}$.

Let $a \in S-\left\{0 \hat{\}}\right.$ and $\alpha \in \frac{S x(S-\{0\})}{\sim}$. Choose $(c, d) \in \alpha$.
If 0 is the additive identity for S, then $[(0, a)]+\alpha=$ $[(\mathrm{ac}, \mathrm{ad})]=[(\mathrm{c}, \mathrm{d})]=\alpha$. Hence $[(0, \mathrm{a})]$ is the additive identity for $\frac{S \times(S-\{0\})}{\sim}$ and we have (1).

If 0 is the additive zero for S, then $[(0, a)]+\alpha=[(0$, ad $)]$ $=\{(0, a)]$. Hence $(0, a)\}$ is the additive zero for $\frac{S(S-\{0\})}{\sim}$ and we have (2).

Now we shall determine the prime semifield of a semifield up to isomorphism.

Theorem 3.25. If K is a semifield of zero type, then the prime semifield of K is either isomorphic to $\mathbb{Q}^{+} \cup\{0\}$ with the usual addition and multiplication or \mathbb{Z}_{p} where p is a prime number or the semifield in Table 3 , page 25 . Furthermore if the prime semifield of K is isomorphic to \mathbb{Z}_{p} for some prime p, then K is a field by Proposition 3.12 .

Proof : Let K^{\prime} be the prime semifield of K. Let $n \in \mathbb{N} \cup\{0\}$. Then define $\mathrm{nl}=1+1+\ldots+1$ (n times) if $\mathrm{n} \neq 0$ and $\mathrm{nl}=0$ if $\mathrm{n}=0$, so we have $\{n 1\}_{n} \in \mathbb{N} \cup\{0\}^{\subseteq}$. Case $\forall m, n \in \mathbb{N} \cup\{0\}$ if $m \neq n$, then $m 1 \neq n l$.

By Proposition 3.23, (N, U\{0\})x|N is the smallest semifield containing $\mathbb{N} \cup\{0\}$ with the usual addition and multiplication.

And we have that $(\mathbb{N} \cup\{0\}) \times \mathbb{N} \cong \mathbb{Q}^{+} \cup\{0\}$ with the usual addition and multiplication.

Define $\phi: \mathbb{N} \cup\{0\} \rightarrow \mathrm{K}$ by $\phi(\mathrm{n})=\mathrm{n} 1 \quad \forall \mathrm{n} \in \mathbb{N} \cup\{0\}$. Then clearly we have that ϕ is a monomorphism. Hence $\phi(\mathbb{N} \cup\{0\}) \cong \mathbb{N} \cup\{0\}$, so up to isomorphism $\underline{(\mathbb{N} \cup\{0\}) \times \phi(\mathbb{N})}$ is the smallest subsemifield of K containing $\phi(\mathbb{N} \cup\{0\})$. Since $0,1 \in K^{\prime}, n l \in K^{\prime} \forall n \in \mathbb{N} \cup\{0\}$. Hence $\phi(\mathbb{N} \cup\{0\}) \subseteq K^{\prime}$, so we have that up to isomorphism $\frac{\phi(\mathbb{N} \cup\{0\})}{\sim} \times \phi(\mathbb{N}) \subseteq K^{\prime}$. Since $\frac{\phi(\mathbb{N} \cup\{0\}) \times \phi(\mathbb{N})}{\sim}$ is a subsemifield
 $K^{\prime} \cong \phi(\mathbb{N} \cup\{0\}) \times \phi(\mathbb{N})$.

Let $\theta^{\sim}: \frac{(\mathbb{N} \cup\{0\}) \times \mathbb{N}}{\sim} \rightarrow \frac{\phi(\mathbb{N} \cup\{0\}) \times \phi(\mathbb{N})}{\sim}$ be defined in the following way : Let $\alpha \in \frac{(\mathbb{N} \cup\{0\}) \times \mathbb{N}}{\sim}$. Choose $(m, n) \in \alpha$ and let $\theta(\alpha)=[(\phi(m), \phi(n))]$. It is clear that θ is well-defined and is an isomorphism. Thus $K^{\prime} \cong \frac{\phi(\mathbb{N} \cup\{0\}) \times \phi(\mathbb{N}) \cong \frac{(\mathbb{N} \cup\{0\}) \times \mathbb{N}}{\sim} \cong}{\sim}$ $\mathbb{Q}^{+} \cup\{0\}$ with the usual addition and multiplication.
Case $\exists m, n \in \mathbb{N} \cup\{0\}, m<n$ and $m 1=n 1$.
Let $m_{0}=\min \cdot\{m \in \mathbb{N} \cup\{0\} \forall \exists n \in \mathbb{N} \quad n>m$ such that $m l=n l\}$ and let $n_{0}=\min .\left\{n \in \mathbb{N} \mid n>m_{0}\right.$ and $\left.m_{0} 1=n 1\right\}$.
(1) Suppose that $m_{0}=1$ and $n_{0}=2$. Then $1=1+1$. Since $0+1=1$, we have that $\{0,1\}$ as in Table 3 , page 25 is a subsemifield of K. Hence $K^{\prime} \cong\{0,1\}$ as in Table 3, page 2.5 .
(2) Assume that $m_{0} \neq 1$ or $n_{0} \neq 2$.
(2.1) Suppose that $m_{0} \neq 1$. Then there are two cases to consider either $m_{0}=0$ or $m_{0}>1$.

If $m_{0}=0$, then n_{0} can not be 1 since $0 \neq 1$, so $n_{0}>1$. Suppose
$n_{0}=2$, then $0=1+1$. Since $0+1=1$, we have that $\{0,1\} \cong \mathbb{Z}_{2}$ is a subsemifield of K. So in this case we have that $K^{\prime} \cong \mathbb{Z}_{2}$. Suppose that $n_{0}>2$, then $n_{0}-1 \geqslant 2$ and $\left.\forall m \in \mathbb{N} \cup\{0\}, m l \in\{n l\}\right\}_{0} \leqslant \overline{n_{0}-1}$ (a) If $m_{0}>1$, then $n_{0}>2$, so $n_{0}-1 \geqslant 2$ and $\forall m \in \mathbb{N} \cup\{0\}$, $m l \in\{n l\}_{0} \leqslant n \leqslant n_{0}-1$
(2.2) Suppose that $n_{0} \neq 2$. Again n_{0} can not be 0 or 1 , so $n_{0}>2$. Hence $n_{0}-1 \geqslant 2$ and $\forall m \in \mathbb{N} \cup\{0\}, m l \in\{n 1\}_{0} \leqslant n \leqslant \overline{n_{0}-1}$ (c) From (a), (b), (c), we see that in all these cases $n_{0}>2$ and $\forall m \in \mathbb{N} \cup\{0\}, m l \in\{n l\}_{0 \leqslant n \leqslant n_{0}} 1$. From now on we shall assume that the cases (a), (b), (c) hold.

Let $B=\{n 1 \mid n 1 \neq 0, n \in \mathbb{N}\}$. Then $2 \leqslant|B|<\infty$.
Let $C=\left\{(n 1)(m 1)^{-1} \mid \mathrm{nl}, \mathrm{ml} \in \mathrm{B}\right\}$. Again $2 \leqslant|C|<\infty$ and $0 \notin C$.
Claim that $C \cup\{0\}$ is a subsemifield of K.
We first show that if $m_{1} 1, m_{2} l \in B$, then $\left(m_{1} m_{2}\right) 1 \in B$. To prove this, we let $m_{1} 1, m_{2} 1 \in B$. Since $m_{1} 1 \neq 0$ and $m_{2} 1 \neq 0$, $\left(m_{1} 1\right)\left(m_{2} 1\right) \neq 0$. Hence $\left(m_{1} m_{2}\right) 1 \neq 0$.

$$
\begin{aligned}
& \text { Let }\left(n_{1} 1\right)\left(m_{1} 1\right)^{-1},\left(n_{2} 1\right)\left(m_{2} 1\right)^{-1} \in \text { c. Then } \\
&\left(n_{1} 1\right)\left(m_{1} 1\right)^{-1}+\left(n_{2} 1\right)\left(m_{2} 1\right)^{-1}=\left(n_{1} 1\right)\left(m_{1} 1\right)^{-1}\left(m_{2} 1\right)\left(m_{2} 1\right)^{-1}+\left(n_{2} 1\right)\left(m_{2} 1\right)^{-1}\left(m_{1} 1\right)\left(m_{1} 1\right)^{-1} \\
&=\left(\left(n_{1} 1\right)\left(m_{2} 1\right)+\left(n_{2} 1\right)\left(m_{1} 1\right)\right)\left(\left(m_{1} 1\right)^{-1}\left(m_{2} 1\right)^{-1}\right)^{-1} \\
&=\left(\left(n_{1} m_{2}\right) 1+\left(n_{2} m_{1}\right) 1\right)\left(\left(m_{2} 1\right)\left(m_{1} 1\right)\right)^{-1} \\
&=\left(\left(n_{1} m_{2}+m_{1} n_{2}\right) 1\right)\left(\left(m_{1} m_{2}\right) 1\right)^{-1} .
\end{aligned}
$$

If $\left(n_{1} m_{2}+m_{1} n_{2}\right) 1=0$, then $\left(n_{1} 1\right)\left(m_{1} 1\right)^{-1}+\left(n_{2} 1\right)\left(m_{2} 1\right)^{-1}=0 \in \operatorname{Cu}\{0\}$. If $\left(n_{1} m_{2}+m_{1} n_{2}\right) 1 \neq 0$, then $\left(n_{1} m_{2}+m_{1} n_{2}\right) 1 \in B$ and so we have that $\left(n_{1} 1\right)\left(m_{1} 1\right)^{-1}+\left(n_{2} 1\right)\left(m_{2} 1\right)^{-1} \in \quad C$. Since $0+x=x \quad \forall x \in K,(C \cup\{0\},+)$ is a subsemigroup of ($\mathrm{K},+$).

Let $\left(n_{1} 1\right)\left(m_{1} 1\right)^{-1},\left(n_{2} 1\right)\left(m_{2} 1\right)^{-1} \in \quad c$. Then $\left(\left(n_{1} 1\right)\left(m_{1} 1\right)^{-1}\right)\left(\left(n_{2} 1\right)\left(m_{2} 1\right)^{-1}\right)=\left(n_{1} 1\right)\left(n_{2} 1\right)\left(m_{1} 1\right)^{-1}\left(m_{2} 1\right)^{-1}=\left(n_{1} 1\right)\left(n_{2} 1\right)\left(\left(m_{2} 1\right)\left(m_{1} 1\right)\right)^{-1}$ $=\left(\left(n_{1} n_{2}\right) 1\right)\left(\left(m_{1} m_{2}\right) 1\right)^{-1}$. Since $n_{1} 1, n_{2} 1, m_{1} 1, m_{2} 1 \in B,\left(m_{1} m_{2}\right) 1$, $\left(n_{1} n_{2}\right) 1 \in B$ so $\left(\left(n_{1} n_{2}\right) 1\right)\left(\left(m_{1} m_{2}\right) 1\right)^{-1} \in C$. Since $\left(m_{1} 1\right)\left(n_{1} 1\right)^{-1} \in C$ and $\left(\left(m_{1} 1\right)\left(n_{1} 1\right)^{-1}\right)\left(\left(n_{1} 1\right)\left(m_{1} 1\right)^{-1}\right)=1$, we have that $\forall x \in C, x^{-1} \in C$. Thus (C, \cdot) is a subgroup of $(K-\{0\}, \circ)$. Therefore we have the claim and clearly $C \cup\{0\}$ is also of zero type.

Since $2<|C \cup\{0\}|<\infty$, by Theorem $3.13 C \cup\{0\}$ is a field. We have that $K^{\prime} \subseteq C \cup\{0\}$ since K is the prime semifield of K. Since $0,1 \in K^{\prime}, \mathrm{nl} \in \mathrm{K}^{\prime} \forall \mathrm{n} \in \mathbb{N} \cup\{0\}$. Hence $\mathrm{B} \cup\{0\} \subseteq \mathrm{K}^{\prime}$ and so $\mathrm{C} \cup\{0\} \subseteq \mathrm{K}^{\prime}$. Thus $K^{\prime}=C \cup\{0\}$ and so $K^{\prime} \cong \mathbb{Z}_{p}$ for some prime p.

Therefore if K is a semifield that has property (a) or (b) or (c), then $K^{\prime} \cong \mathbb{Z}_{\mathrm{p}}$ for some prime $\mathrm{p} \geqslant 2$ and K is a field.

Theorem 3.26. If K is a semifield of infinity type, then the prime semifield of K is either isomorphic to $\mathbb{Q}+\cup\{0\}$ in Remark 3.7 (i) or the trivial semifield of order 2 or the almost trivial semifield of order 2 .

Proof : Let K^{\prime} be the prime semifield of K. Since $0+x=0$ $\forall x \in K, 0 \in A$ where $A=\{x \in K \mid x+y=0 \quad \forall y \in K\}$. Hence $A \neq \phi$. By Theorem 3.9 (2), we have that either $A=\{0\}$ or $A=K$.
Case $A=K$. Then $1+1=0$ and we have $0+1=0$. Thus $\{0,1\}$ is the trivial semifield of order 2 and the trivial semifield on $\{0,1\} \cong K$. Case $A=\{0\}$. Let $n \in \mathbb{N} \cup\{0\}$. Then define $n 1=1+1+\ldots+1$ (n times) if $\mathrm{n} \neq 0$ and $\mathrm{nl}=0$ if $\mathrm{n}=0$. Hence we have that $\{\mathrm{nl}\}_{\mathrm{n} \in \mathbb{N} \cup\{0\}} \subseteq K$.

Subcase $\forall m, n \in \mathbb{N} \cup\{0\}$ if $m \neq n$, then $m 1 \neq n l$.

Let $B=\left\{(n 1)(m 1)^{-1}\right\}_{m, n} \in N$. Then by the isomorphism $\theta: \mathbb{Q}^{+} \longrightarrow B$ given by $\theta\left(\frac{m}{n}\right)=(m 1)(n 1)^{-1}$ we have that $B \cong \mathbb{Q}^{+}$with the usual addition and multiplication. Since $0+x=0 \quad \forall x \in B \cup\{0\}$, we have that $B \cup\{0\} \cong \mathbb{Q}^{+} \cup\{0\}$ as in Remark 3.7 (i). Therefore $B \cup\{0\}$ is a subsemifield of K and so $K^{\prime} \subseteq B \cup\{0\}$ since K^{\prime} is the prime semifield of K. Since $0,1 \in K^{\prime}, \mathrm{n} l \in K^{\prime} \forall \mathrm{n} \in \mathbb{N} \cup\{0\}$. Hence $B \cup\{0\} \subseteq K^{\prime}$. Thus $K^{\prime}=B \cup\{0\} \cong()^{+} \cup\{0\}$ as in Remark 3.7 (i).

Subcase $\exists m, n \in \mathbb{N} \cup\{0\}, m<n$ and $m 1=n l$.
Let $m_{0}=\min .\{m \in \mathbb{N} \cup\{0\} \mid \exists n \in \mathbb{N} \quad n>m$ such that $m 1=n l\}$.
and let $n_{0}=\min .\left\{n \in \mathbb{N} \mid n>m_{0}\right.$ and $\left.m_{0} 1=n 1\right\}$.
(1) If $m_{0}=1$ and $n_{0}=2$, then $1+1=1$ and we have that $K^{\prime}=\{0,1\}$ with the almost trivial structure.
(2) Assume that $m_{0} \notin 1$. There are two cases to consider, either $m_{0}=0$ or $m_{0}>1$. Suppose $m_{0}=0$, then $n_{0} \geqslant 2$ since $1 \neq 0$. If $n_{0}=2$, then $K^{\prime}=\{0,1\}$ with the trivial structure. Hence we left to consider the case $m_{0}=0$ and $n_{0}>2$

Claim that $\forall k \geqslant n_{0}, k I=0$.
We will prove this claim by using induction on $k \geqslant n_{0}$. We have that $n_{0} 1=0$. Let $k \in \mathbb{N}$ be such that $k>n_{0}$ and assume that $\forall \mathrm{j}, \mathrm{n}_{\mathrm{o}} \leqslant \mathrm{j}<\mathrm{k}, \mathrm{jl}=0$. Thus $\mathrm{kl}=(\mathrm{k}-1) 1+1=0+1=0$, Therefore by mathematical induction we have the claim.

Since $n_{0} \geqslant 3, n_{0}^{2} \geqslant 3 n_{0}$. Hence $n_{0}^{2}+1 \geqslant 3 n_{0}$ and so $n_{0}^{2}-2 n_{0}+1 \geqslant n_{0}$. By the claim we have that $\left(\left(n_{0}-1\right) 1\right)\left(\left(n_{0}-1\right) 1\right)=$
$\left(n_{0}^{2}-2 n_{0}+1\right) 1=0$ which is a contradiction since $\left(n_{0}-1\right) 1 \in K-\{0\}$ and ($K-\{0\}$,) is a group. Therefore (a) cannot occur. Hence $\mathrm{m}_{0}>1$ and so $\mathrm{n}_{0}>2$.

Let $B=\{\mathrm{ml}\}_{\mathrm{m}} \in \mathbb{N}$. Then $2 \leqslant|\mathrm{~B}|<\infty$ and $0 \notin \mathrm{~B}$. Let $C=\left\{(\mathrm{ml})(\mathrm{n} 1)^{-1}\right\}_{m, n}, \mathrm{~N}$. Then $2 \leqslant|\mathrm{C}|<\infty$ and clearly C is a P.R.D. which contradicts Theorem 2.5. Therefore the case $m_{0}>1$ also cannot occur.
(3) From (1) and (2) we then left to consider the case $m_{0}=1$ and $n_{0} \neq 2$. Hence n_{0} cannot be 1 since $n_{0} \neq m_{0}$, so $n_{0}>2$. Claim that $\exists \mathrm{n} \in \mathbb{N}$ such that nl has no multiplicative

inverse.

Suppose this claim is not true, then $\forall \mathrm{n} \in \mathbb{N}$, nl has a multiplicative inverse. Let $B=\{m l\} m \in \mathbb{N}$. Then $2 \leqslant|B|<\infty$ and $0 \notin B$. Let $C=\left\{(\mathrm{ml})(\mathrm{nl})^{-1}\right\}_{\mathrm{m}, \mathrm{n} \in \mathbb{N}} \cdot$ Again we have that $2 \leqslant|C|<\infty$ and $0 \notin C$. Clearly C is a P.R.D. which contradicts Theorem 2.5. Hence we have the claim and $\exists n^{\prime} \in \mathbb{N}$ such that nil has no multiplicative inverse. Hence nt $=0$. Then $m_{0}=0$ which is a contradiction since $m_{0}=1$, so this case cannot occur and we have the theorem.

Example 3.27. $\mathbb{Q}^{+} \cup\{0\}$ with the usual multiplication is a group with zero 0 . Let + be defined by $x+y=\max .\{x, y\} \forall x, y \in$ $\mathbb{Q}^{+} \cup\{0\}$. Then $\mathbb{Q}^{+} \cup\{0\}$ is a semifield of zero type and $0+1=1+0$, $1+1=1$, so its prime semifield is isomorphic to Table 3 , page 25.

If we define + on $Q^{+} \cup\{0\}$ by $x+y=\min .\{x, y\}$
$\forall x, y \in \mathbb{Q}^{+} \cup\{0\}$, then we have $\mathbb{Q}^{+} \cup\{0\}$ is a semifield of infinity type and $1+0=0+1=0,1+1=1$, so its prime semifield is isomorphic to the almost trivial semifield of order 2 .

Remark 3.28. From Theorem 3.13 we know that a finite semificld of zero type of order >2 is a field. If we drop the condition that + is commutative in the definition of a semifield, then we can have a finite semifield of zero type of order $\geqslant 2$ which is not a field since for any abelian group G with zero and + defined by $x+y=x$ if $x, y \neq 0$ and $x+0=0+x=x$ satisfies all the axioms of a semifield except + is not commutative.

Also, if we define $+b y x+y=x$ if $x, y \neq 0$ and $x+0=0+x$ $=0$, then we have that G is a semifield of infinity type.

In fact, even if is not commutative then the + defined above distribute over - on both sides so we could get a non-commutative semifield.

