CHAPTER V

FIXED POINT THEOREM FOR LOCALLY CONTRACTIVE MAPS

The materials of this chapter are drawn from reference [1].

We have seen in Banach's contraction theorem that if (E,d) is a complete metric space and $T:E \longrightarrow E$ is a contraction map, then T has the unique fixed point.

It is natural to ask whether this theorem could be medified so as to be valid when contraction map T is assumed to hold for sufficiently closed point only. To be more specific we introduce the following definitions.

5.1.1. Definition. Let (E, d) be a generalized semi-metric space. Let $T: E \longrightarrow E$ be a map.

T is called <u>locally contractive</u> map if for each $x\in E$, there exist real numbers ϵ_x , q_x with $\epsilon_x>0$ and $q_x\epsilon[0,1)$ such that

y, z \in S(x, ε_x) implies $d(T(y), T(z)) \leqslant q_x d(y, z)$

T is called an (E, q) - uniformly locally contractive map if it is locally contractive and both ξ_x and q_x do not depend on x.

5.1.2 Remark. (a) If T is q-contraction for some $q \in \{0,1\}$, then T is (ξ, q) - uniformly locally contractive for every $\xi > 0$.

(b) There are examples of uniformly locally contractive map that are not contraction.

(c) Any locally contraction map T is continuous. First, we prove (a). Let T be a q-contractive map for some $q \in [0, 1)$, then for any $x, y \in E$

$$d(T(x), T(y)) \leqslant q d(x, y).$$

Given any $\xi > 0$, for each $x \in E$ and $y, z \in S(x, \xi)$

$$d(T(y), T(z)) \leqslant q d(y, z)$$

and since ξ and q do not depend on x. Therefore T is (ξ , q)-uniformly locally contractive.

To prove (b), we need to construct a counter example.

Consider metric (X, d), where $X = \{0, 1\}$ and

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$

for any x, y \in X. Let T : X \longrightarrow X, defined by T(0) = 1 and T(1) = 0. Then T is (ξ , q)-uniformly locally contractive, but T is not q-contraction.

Proof. Given $\mathcal{E} = \frac{1}{2}$ and $q = \frac{1}{2}$, there are only $0 \in S(0, \frac{1}{2})$ and $1 \in S(1, \frac{1}{2})$ such that

$$d(T(0), T(1)) = 1 > q = q d(0, 1)$$

for all q & [0, 1).

We prove (c). Let x be any point in E and $\epsilon > 0$ be arbitrary. Since T is a locally contractive map, there exist $\epsilon_{\rm x} > 0$ and

 $q_x \in [0, 1)$ such that $y, z \in S(x, \xi_x)$ implies $d(T(y), T(z)) \leqslant q_x d(y, z)$. Choose $\delta_x = \min \left\{ \xi_x, \frac{\xi}{2q_x + 1} \right\}$. Observe that for any $y \in E$ if $d(x, y) < \delta_x$ then $x, y \in S(x, \xi_x)$. It follows that $d(T(x), T(y)) \leqslant q_x d(x, y) \leqslant q_x \frac{\xi}{(2q_x + 1)} < \xi$. Therefore T is a continuous map.

5.1.3 Definition. Let (E, d) be a semi-metric space and $\mathcal{E} > 0$ a real number. If , for any x, y \mathcal{E} E there exists a finite set of point $\left\{x_0, x_1, \ldots, x_n\right\}$ such that $x = x_0, y = x_n$ and $d(x_i, x_{i+1}) < \mathcal{E}$ for $i = 0, 1, \ldots, n - 1$. (E, d) is called a semi-metric \mathcal{E} - chainable space and the set $\left\{x_0, x_1, \ldots, x_n\right\}$ will be called an \mathcal{E} - chain.

5.1.4 Theorem. Let (E, d) be a semi-metric \mathcal{E} -chainable space such that for any x, y \mathcal{E} E, there exists an \mathcal{E} -chain $\left\{\begin{array}{c} x_0, x_1, \ldots, x_n \\ n-1 \end{array}\right\}$ such that $d(x, y) = \sum_{i=1}^n d(x_i, x_{i+1})$. If $\mathcal{T}: \mathcal{E} \longrightarrow \mathcal{E}$ is an instance of $(\mathcal{E}, \mathcal{Q})$ -uniformly locally contractive map, then \mathcal{T} is \mathcal{Q} -contraction. Proof. Let y, z be points in \mathcal{E} . Since \mathcal{T} is $(\mathcal{E}, \mathcal{Q})$ -uniformly locally contractive, we have

$$d(T(x_i), T(x_{i+1})) \leqslant q d(x_i, x_{i+1})$$
 for $i = 0, 1, ..., n - 1$, so that
$$d(T(y), T(z)) \leqslant \sum_{i=0}^{n-1} d(T(x_i), T(x_{i+1}))$$

$$\leqslant q \sum_{i=0}^{n-1} d(x_i, x_{i+1})$$

$$= q d(y, z).$$

Therefore T is q-contraction. Our proof is complete.

5.1.5 Theorem. (Edelstien) Let (E, d) be a complete semimetric \mathcal{E} -chainable space. $T: \mathbb{E} \longrightarrow \mathbb{E}$ is a map which is $(\mathfrak{E}, \mathfrak{q})$ -uniformly locally contractive. For any $x \in \mathbb{E}$, $\left\{T^n(x)\right\}$ d-converges to a point $x \in \mathbb{E}$ and d(T(x), x) = 0. Moreover, if (E, d) is a complete metric \mathcal{E} -chainable space, then x is the unique fixed point of T.

Proof. Let x be any point in E. Let $\{x_0, x_1, \dots, x_n\}$ be an ϵ -chain such that $x = x_0, T(x) = x_n$. Since

$$d(x, T(x)) \leqslant \sum_{i=0}^{n-1} d(x_i, x_{i+1})$$

and T is a (ξ , q)-uniformly locally contractive

$$d(T(x_i), T(x_{i+1})) \le q d(x_i, x_{i+1})$$
 $< q \varepsilon$

By induction

$$d(T^{m}(x_{i}), T^{m}(x_{i+1})) < q^{m} \epsilon$$
.

It follows that

$$d(T^{m}(x), T^{m+1}(x)) \leq \sum_{i=0}^{m-1} d(T^{m}(x_{i}), T^{m}(x_{i+1}))$$

$$< n q^{m} \varepsilon$$

so that for any positive integer ℓ , m and $\ell \geqslant m$

$$d(T^{m}(x), T^{l}(x)) \leq \sum_{\substack{i=m \\ l-1 \\ \leq \sum \\ i=m}}^{l-1} d(T^{i}(x), T^{i+l}(x))$$

$$= n (q^{m} + q^{m+1} + ..., + q^{-1})$$

$$< n q^{m} (1 + q + ..., q^{-(1+m)} + q^{-m} + ...)$$

$$= n \frac{q^{m}}{1-q}$$

The quantity on the right is equal to 0 when q = 0 and d-converges to 0 when 0 < q < 1, hence the sequence $\left\{T^{m}(x)\right\}$ is d-Cauchy. Since (E, d) is a complete metric space, hence $\left\{T^{m}(x)\right\}$ d-converges to a point $x^{*} \in E$. Since T is continuous, the sequence $\left\{T^{m+1}(x)\right\}$ d-converges to T(x). But $\left\{T^{m+1}(x)\right\}$ is a subsequence of $\left\{T^{m}(x)\right\}$ and hence also d-converges to x^{*} . Since

 $0 \leqslant d(T(x^*), x) \leqslant d(T(x^*), T^{m+1}(x)) + d(T^{m+1}(x), x^*)$ and the quantities on the right converges to 0, so that we have

 $d(T(x^*), x^*) = 0.$

Moreover, if d is a metric, it follows that x'' = T(x'') and if there exists $y'' \in E$ such that y'' = T(y''). Then there exists an \mathcal{E} -chain $\left\{x_0, x_1, \ldots, x_{n'}\right\}$ such that $x'' = x_0$, $y'' = x_{n'}$ and d(x'', y'') = d(T(x''), T(y''))

=
$$d(T^{m}(x^{*}), T^{m}(y^{*}))$$

 $\stackrel{n-1}{\leq} \Sigma d(T^{m}(x_{i}), T^{m}(x_{i+1}))$

= $n' q^m \varepsilon$.

Since $q \in [0, 1)$, the quantity on the right converges to 0, hence d(x, y') = 0. Therefore x' = y. The proof is complete.