BLNACH'S CONTRACTION THEOREM

The purpose of this chapter is to prove Banach's contraction theorem.

The materials of this chapter are dram from reference [2].
3.1.1 Definition 。 Let (e, a he a generalized semi-metric space and $q \in[0,1)$. A map
is said to be q-contraction if

is said to be a contraction iotheregexists $q \in[0,1)$ such that T is q-contractioneKORN UNIVERSITY
3.1.2 Lemma. Let (B, d) be a centralized semi-metric space.

Any contraction map T is continuous.
Proof. Assume $\left\{x_{n}\right\}$ d-converges to $x \in \mathbb{T}$. Given any $\varepsilon>0$, there exists a positive integer N such that $c\left(x_{n}, x\right)<\varepsilon$ for all $n \geqslant N_{0}$. Since T is contraction, there exists $q \in[0,1)$ such that

$$
d\left(T\left(x_{n}\right), T(x)\right) \leqslant q d\left(x_{n}, x\right)
$$

Therefore $d\left(T\left(x_{n}\right), T(x)\right)<\varepsilon$ for all $n \geqslant \mathbb{H}$, i.c. $\left\{T\left(x_{n}\right)\right\}$ d-converges to $\mathbb{T}(x)$. Dy proposition 2.1.9, Is continuous. The proof is complete.
3.1.3 Definition. Let T be a map of a sct \mathbb{Z} into itself, then a point $x \in E$ is called a fixed point of T if

$$
T(x)=x
$$

3.1.4 Definition. Let T be a map of a set \mathbb{I} into itself. For each non-negative integer p we define a map T^{p} by
and $\quad T^{p+1}(x)=\mathrm{r}^{\mathrm{p}}(\mathrm{T}(x))$ for all $x \in \mathbb{Z}$.
3.1.5 Theorem. (Banach s contraction theorem)
(1) Let (I, d) be a complete semi-metric space. If
$T: E \longrightarrow \mathbb{E}$ is a continuous maposuch that T^{p} is a contraction map for some positive integer p. Then there exists at least one point $x \in \mathbb{E}$ satisfying ยยาลัย

$$
C_{H} \dot{d}(T(x), x) \text { ORI }=U^{\circ} \cdot \operatorname{ERSITY}
$$

Moreover, if y is any point in E satisfying

$$
a(T(y), y)=0
$$

then $d(x, y)=0$.
(2) If (\mathbb{E}, d) is a complete metric spoce and T is as in
(1) then T has exactly one fixed point.

Proof. Since in a motric space, if $d(x, y)=0$ then $x=y$. Therefore (2) follows immediately from (1), we only need to prove (I).

By the assumption T^{p} is a contraction for some positive integer p. There exists $q \in[0,1)$ such that

$$
d\left(T^{P}(x), T^{p}(y)\right) \leqslant q d(x, y)
$$

for any $x, y \in \mathbb{E}$.
First we consider the case $p=1$. In this case T is a contraction. Let x_{0} be any point in E and define recursively

$$
x_{n}=T\left(x_{n-1}\right) \text {, then } x_{n}=T^{n}\left(x_{0}\right) \text { for all positive }
$$

If m and n are positive integers then

Since

$$
d\left(x_{m+n}, x_{n}\right)
$$

$$
\begin{aligned}
d\left(x_{m}, x_{0}\right) & \leqslant d\left(x_{m}, \frac{x_{m-1}}{m}+d\left(x_{m-1}, x_{m-2}\right)+\ldots+a\left(x_{1}, x_{0}\right)\right. \\
& \leqslant q^{m-1} d\left(x_{1}, x_{0}\right)+q^{m-2} d\left(x_{1}, x_{0}\right)+\cdots+d\left(x_{1}, x_{0}\right) \\
& =\left(q^{m-1}+\mid q^{m-2}+\ldots+1\right) d\left(x_{1}, x_{0}\right) \mid T Y \\
& \leqslant\left(1+q+\ldots+q^{m-1}+q^{m}+\ldots\right) d\left(x_{1}, x_{0}\right) \\
& =\frac{1}{1-q} d\left(x_{1}, x_{0}\right)
\end{aligned}
$$

hence

$$
d\left(x_{m+n}, x_{n}\right) \leqslant \frac{q^{n}}{1-q} d\left(x_{1}, x_{0}\right)
$$

But the quantity on the right hand sidle is 0 when $q=0$ and d-converges to 0 when $0<q<1$.

Therefore $\left\{x_{n}\right\}$ is d－Cauchy in \mathbb{E}_{0} Since \mathbb{I} is complete，$\left\{x_{n}\right\}$ d－converges to a point $x \in \mathbb{E}$ ．Since the sequence $\left\{T\left(x_{n}\right)\right\}=\left\{x_{n+1}\right\}$ is a subsequence of $\left\{x_{n}\right\}$ ，hence it is d－convergent to x ．By the continuity of \mathbb{T} ，the sequence $\left\{T\left(x_{n}\right)\right\}$－convorges to $T(x)$ 。 Since

$$
d(T(x), x) \leqslant d\left(T(x), T\left(x_{n}\right)\right)+d\left(T\left(x_{n}\right), x\right)
$$

and the quantitios on the right converge to 0 ．Therefore $d(T(x), x)=0$ 。

Now we consider the enerat case．Lct $S=T^{p}$ ．Then， by the case $p=I$ ，we have for any $x \in \mathbb{E}$ ，the sequence $\left\{x_{n}\right\}=\left\{S^{n}\left(x_{0}\right)\right\}$ d－converges to a point $x \in \mathbb{E}$ and $a(s(x), x)=0$ ．

By continuity of $I T$ ，the sequance $\left\{T\left(x_{n}\right)\right\}$ d－converges to $T(x)$ so that the subsequance $\left\{I\left(x_{n}+1\right)\right\}$ of $\left\{T\left(x_{n}\right)\right\}$ d－converges to $T(x)$ ．Since S is a controction map，honco S is continuous，i．e． $\left\{S\left(T\left(x_{n}\right)\right)\right\}$－converges to to $S(T(x))$ ．Since

$$
A(T(x), S(T(x)))) \leqslant n d\left(T(x), T\left(x_{n+1}\right)\right)+d\left(T\left(x_{n+1}\right), S(T(x))\right)
$$

We have

$$
T\left(x_{n+1}\right)=T\left(S\left(x_{n}\right)\right)=T\left(T^{p}\left(x_{n}\right)\right)=S\left(T\left(x_{n}\right)\right)
$$

It follows that

$$
d(T(x), S(T(x))) \leqslant d\left(T(x), T\left(x_{n+1}\right)\right)+d\left(S\left(T\left(x_{n}\right)\right), S(T(x))\right)
$$

since quantities on the right d－converge to 0 ，hence
$d(T(x), S(T(x)))=0$ ．But
$d(T(x), x) \leqslant d(T(x), S(T(x)))+d(S(T(x)), S(x))+d(S(x), x)$
$=d(S(T(x)), S(x))$
$\leqslant \quad q d(T(x), x)$ 。

Therefore $d(T(x), x)=0$, since $q \in[0,1)$ 。
For the final state of (I), suppose that there are
$x, y \in \mathbb{E}$ such that

$$
d(T(x), x)=0 \text { and } d(T(y), y)=0 \text {. }
$$

By proposition 2.1.10, $T(x) \in\{x\}$. Since T is continuous $\left.T^{2}(x)=T(T(x)) \in T\{x\} \subset\{T(x)\} \subset\{x\}=\bar{x}\right\}$. By repetition $\mathbb{T}^{p}(x) \in\{x\}$. Similarly $\mathbb{I}^{p}(y) \in\{y\}$. By proposition 2.1.10, $d\left(T^{2}(x), x\right)=0$ and $d\left(I^{p}(y), y\right)=0$, hence

$$
\begin{aligned}
d(x, y) & \leqslant d\left(T^{p}(x), x\right)+d\left(T^{p}(x), T^{p}(y)\right)+d\left(T^{p}(y), y\right) \\
& =d\left(T^{p}(x), T^{p}(y)\right)^{4} \\
& \leqslant q d(x, y) .
\end{aligned}
$$

Therefore $d(x, y)=0$, since $q \in(0,7)$. The proof is complete 。
3.1.6 Corollary. Let $(\mathrm{L}$, d) be a complete semi-metric space. For any $x_{o} \in E$, let ชาลงกรณ์มหาวิทยาลัย

$$
x_{n}=T\left(x_{n-1}\right) \text { then } x_{n} N_{1}^{n}\left(x_{0}\right) \text { for all positive integers } n \text {. }
$$

Then $\left\{x_{n}\right\}$ d-converges to a point $x \in E$ and

$$
d(T(x), x)=0
$$

In this case if (\mathbb{E}, d) is a complete metric space, then x is a unique fixed point of T.

