CHAPTER III

MINIMUM F-INVERSE CONGRUENCES

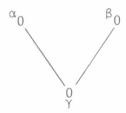
In chapter II, we show the existence of the minimum proper congruence of any inverse semigroup which has been proved by L.

O' Carroll. Since every F-inverse semigroup is a proper, it follows that every F-inverse congruence on an inverse semigroup is a proper congruence. Hence if the minimum F-inverse congruence of an inverse semigroup S exists, then it becomes a proper congruence on S.

In this chapter, we show that the minimum F-inverse congruence on an inverse semigroup need not exist. We also study some inverse semigroups which their minimum F-inverse congruences exist and they are the minimum proper congruences.

The following example shows that the minimum F-inverse congruence on an inverse semigroup need not exist:

Example. Let $S = {\alpha, \beta, \gamma}$ be a semilattice with its Hasse diagram :



Then S is an inverse semigroup and S has only following four congruences:

$$\rho_1 = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma)\},\$$

$$\rho_2 = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\alpha, \gamma), (\gamma, \alpha)\},$$

$$\rho_3 = \{(\alpha, \alpha), (\beta, \beta), (\gamma, \gamma), (\beta, \gamma), (\gamma, \beta)\},$$
and
$$\rho_4 = S \times S.$$

We can easily check that ρ_2 , ρ_3 , ρ_4 are all F-inverse congruences of S. But $\rho_2 \subseteq \rho_4$, $\rho_3 \subseteq \rho_4$, $\rho_2 \not= \rho_3$ and $\rho_3 \not= \rho_2$. Hence S does not have the minimum F-inverse congruence.

Note that ρ_1 is the minimum proper congruence of S because S is a semilattice which is then proper. #

The inverse semigroup in the above example is commutative and has a zero element. Then the conditions of being commutative and/or of having a zero element of an inverse semigroup S are not sufficient for S to have the minimum F-inverse congruence. It can be easily seen that any semilattice with identity has the identity congruence as its minimum F-inverse congruence.

Throughout this chapter, let $\eta(S)$ or η denote the minimum F-inverse congruence of the inverse semigroup S if it exists. Thus, if η on an inverse semigroup S exists, then $\tau \subseteq \eta$.

The first proposition in this chapter shows the existence of the minimum F-inverse semigroup in any inverse semigroup with zero and identity.

3.1 <u>Proposition</u>. Let S be an inverse semigroup with zero and identity. Then S has the minimum F-inverse congruence and it is the minimum proper congruence of S.

<u>Proof</u>: Let τ be the minimum proper congruence on S. Let 0 and 1 be the zero and the identity of S; respectively. Then S/τ is proper with zero 0τ and identity 1τ . Since S/τ is proper and has zero, every element of S/τ is an idempotent. Since S/τ is an inverse semigroup, it follows that S/τ is a semilattice with identity 1τ . Hence S/τ is F-inverse so that τ is an F-inverse congruence. If ρ is an F-inverse congruence on S, then ρ is a proper congruence so that $\tau \subseteq \rho$. This proves τ is the minimum F-inverse congruence on S. #

Proposition 3.1 shows that for any set X, the symmetric inverse semigroup on the set X, I_{χ} , has the minimum F inverse congruence which is also its minimum proper congruence.

Since every group is an F-inverse semigroup and every F-inverse semigroup is proper, it follows that for any inverse semigroup, if η exists, we have $\tau \subseteq \eta \subseteq \sigma$.

The following theorem shows that in any inverse semigroup S which its minimum F-inverse congruence η exists, any congruence of S which lies between η and σ is always an F-inverse congruence :

3.2 <u>Proposition</u>. Let S be an inverse semigroup. Assume that S has the minimum F-inverse congruence η . Let ρ be a congruence on S such that $\eta \subseteq \rho \subseteq \sigma$. Then ρ is an F-inverse congruence of S. Hence ρ is a proper congruence of S.

Proof: Assume that ρ is a congruence on S such that $\eta \subseteq \rho \subseteq \sigma$. To show ρ is an F-inverse congruence, let $(a\rho)\sigma(S/\rho)$ be an $\sigma(S/\rho)$ -class. Consider $(a\eta)\sigma(S/\eta)$. Since S/η is an F-inverse semigroup, $(a\eta)\sigma(S/\eta)$ has the maximum element, say by. Thus, by Proposition 2.2, $(a, b) \in \sigma$. Again, by Proposition 2.2, we have $(a\rho, b\rho) \in \sigma(S/\rho)$. Let $x\rho \in (a\rho)\sigma(S/\rho)$. By Proposition 2.2, $x \in a\sigma$ and so $x\eta \in (a\eta)\sigma(S/\eta)$. Therefore $x\eta = (e\eta)(b\eta) = (eb)\eta$ for some $e \in E(S)$, so $(x, eb) \in \eta \subseteq \rho$, hence $x\rho = (eb)\rho = (e\rho)(b\rho)$. Thus $x\rho \leq b\rho$. This proves S/ρ is F-inverse and hence ρ is an F-inverse congruence.#

Example. Let
$$N = \{1, 2, 3, 4, \dots \}$$

and $Z = \{0, \pm 1, \pm 2, \dots \}$.

Set $S = N \times Z$, and define an operation * on S by

$$(n, a)*(m, b) = (max(n, m), a+b)$$

where max (n, m) denotes the maximum of the set $\{n, m\}$. Then S is a semigroup, and

$$E(S) = \{(n, 0) | n \in \mathbb{N}\}$$

which is a commutative subsemigroup of S. For any $(n, a) \in S$, we have

and
$$(n, a)*(n, -a)*(n, a) = (n, a)$$

 $(n, -a)*(n, a)*(n, -a) = (n, -a).$

Hence S is regular. Therefore (S, *) is an inverse semigroup [[1], Theorem 1.17], and for $(n, a) \in S$, $(n, a)^{-1} = (n, -a)$.

Let (n, a), $(m, b) \in S$ such that $(n, a) \sigma(m, b)$. Then there

exists $(k, 0) \in E(S)$ such that

$$(n, a)*(k, 0) = (m, b)*(k, 0)$$

and therefore a = b. If (n, a) and $(m, a) \in S$, then $(max (n, m), 0) \in E(S)$ and

so that $(n, a)\sigma(m, a)$. This proves that for any $(n, a) \in S$,

$$(n, a)\sigma = \{(m, a) | m \in \mathbb{N}\} = (1, a)\sigma.$$

Hence

$$S/\sigma = \{(1, a)\sigma | a \in \mathbb{Z}\} \cong (\mathbb{Z}, +).$$

For $(1, a)\sigma \in S/\sigma$ and $(n, a)\in (1, a)\sigma$, we have

$$(n, a)*(n, a)^{-1}$$
 = $(n, a)*(n, -a)$
 = $(n, 0)$
 = $(n, a)*(1, -a)$
 = $(n, a)*(1, a)^{-1}$

which implies $(n, a) \leq (1, a)$

Therefore every σ -class of S has a maximum element and hence S is F-inverse. Thus η of S is the identity congruence on S. Then by Proposition 3.2, any congruence on S contained in σ is an F-inverse congruence.

For each $k\in \mathbb{N}\text{, let }\rho_k^{}$ be as follows :

$$\rho_{k} = \{((n, a), (m, a)) | n, m \in \{1, 2, ..., k\}, a \in \mathbb{Z}\} \cup \{((n, a), (m, a)) | n, m \in \{k+1, k+2, ..., \}, a \in \mathbb{Z}\}.$$

It is easily seen that for each $k\in\mathbb{N}$, ρ_k is a congruence on S and $\rho_k\subseteq\sigma. \text{ Hence all the congruences }\rho_k \text{ are }F\text{-inverse congruences}.$ Note that $\rho_k \not= \rho_e$ and $\rho_e \not= \rho_k$ if $e \neq k$. #

Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . Then, on S we have $\tau = \mathcal{R} \cap \sigma = \mathcal{L} \cap \sigma = \mathcal{H} \cap \sigma$. We will show that τ becomes the minimum F-inverse congruence η of S under a certain condition of Y.

3.3 <u>Proposition</u>. Let $S = \bigcup_{\alpha \in Y} G_{\alpha}$ be a semilattice Y of groups G_{α} . If every ideal of Y is principal, then τ is the minimum F-inverse congruence on S.

Proof: Recall that

$$\tau = \{(a, b) \in G_{\alpha} \times G_{\alpha} | \alpha \in Y, ae_{\beta} = be_{\beta} \text{ for some } \beta \in Y\}$$

$$= \{(a, b) \in G_{\alpha} \times G_{\alpha} | \alpha \in Y \text{ and } a\sigma b\}.$$
(*)

To show that S/τ is F-inverse, let $(a\tau)\sigma(S/\tau)$ be an $\sigma(S/\tau)\text{-class}$ of $S/\tau.$ Let

$$Y_a = \{\alpha \in Y \mid G_{\alpha} \cap a\sigma \neq \phi\}.$$

Claim that Y_a is an ideal of Y. Let $\alpha \in Y_a$ and $\beta \in Y$. Since $\alpha \in Y_a$, $G_{\alpha} \cap a\sigma \neq \phi$, so that there exists an element $b \in S$ such that $b \in G_{\alpha} \cap a\sigma$. Let $e \in E(G_{\beta})$. Then $be \in G_{\alpha\beta}$ and

$$(be)\sigma = b\sigma = a\sigma$$

so that be $\in G_{\alpha\beta} \cap a\sigma$. Hence $\alpha\beta \in Y_a$. Therefore Y_a is an ideal of Y. By assumption, there exists $\alpha_a \in Y_a$ such that $Y_a = \alpha_a Y$. Thus for all $\alpha \in Y_a$, $\alpha \le \alpha_a$. Let $m \in G_{\alpha} \cap a\sigma$. To show $m \tau$ is the maximum element

of $(a\tau)\sigma(S/\tau)$, let $x\tau \in (a\tau)\sigma(S/\tau)$. Then by Proposition 2.2, $x \in a\sigma = m\sigma$. Let $\alpha \in Y$ such that $x \in G_{\alpha}$. Therefore $\alpha \in Y_{\alpha}$ so that $\alpha \leq \alpha$. Thus $xx^{-1}m \in G_{\alpha}G_{\alpha} \subseteq G_{\alpha(\alpha_{\alpha})} = G_{\alpha}$ and $x\sigma = m\sigma = (xx^{-1}m)\sigma$. Because of (*), we have

$$x\tau = (xx^{-1}m)\tau = ((xx^{-1})\tau)(m\tau).$$

Hence $x\tau \leq m\tau$. Therefore $m\tau$ is the maximum element of $(a\tau)\sigma(S/\tau)$. Hence S/τ is an F-inverse semigroup.

Let ρ be any F-inverse congruence on S. Then S/ρ is F-inverse so S/ρ is proper, thus $\tau\subseteq\rho$. Hence τ is the minimum F-inverse congruence on S as required. #

Since every F-inverse congruence on an inverse semigroup S is a proper congruence on S, the following remark follows:

3.4 Remark. Let τ be the minimum proper congruence on an inverse semigroup S. If τ is an F-inverse congruence of S, then τ becomes the minimum F-inverse congruence of S.