DERIVATION OF THE FORMULAE

6.1 Maximum Power Handling by a Core

The voltage equation of a transformer for square wave input is

$$
\begin{equation*}
V=4 \mathrm{fB}_{\max } N A_{\text {core }} \times 10^{-8} \tag{6-1}
\end{equation*}
$$

The core will handle maximum power when all the window area is occupied. The window area at this condition is

from $(6-1)$ and $(6-2)$ we have
$P_{\max } \quad=V I=2 f B_{\max } J W A_{\operatorname{core}}{ }^{x 10^{-8}} \ldots \ldots-(6-3)$

The equation (6-3) is not accurate because

1. the conductor can not completely fill the window cha
2. a small space must be provided for the feedback winding
3. a stacking factor must be taken into account. Thus a factor must be put into eq. (6-3) so that it will be of practical use. The result is
$P_{\max }=2 K_{W} B_{\max } f \mathrm{JW} A_{\operatorname{core}} x 10^{-8}$

The following of K_{W} are recommended

$$
\begin{aligned}
\mathrm{K}_{\mathrm{W}} & =0.5 & & \text { for pot core } \\
& =0.4 & & \text { for } \mathbb{E} \text { core }
\end{aligned}
$$

6.2 Optimum Feedback Voltage

V_{FB} must be selected properly or too much power will be dissipated in R_{1} or R_{2}.

The power dissipated in R_{1} and R_{2} can be found from

Combine equations $(6-5),(3-13),(3-14)$ the result is

$$
P=\frac{V_{B E}(\text { sat })}{} \frac{I_{B}\left(V_{i n}+V_{F B}-V_{D E}(\text { sat })^{2}\right.}{\left(V_{F B}-V_{B E}(\text { sat })\right)\left(V_{\text {in }}-V_{B E(\text { sat })}\right)}+I_{B}\left(V_{F B}-V_{B E} \text { (sat) }\right)
$$

Differentiate eq. $(6-6)$ with respect to $V_{P B}$ and equate it to zero we will get the optimum value of $V_{F B}$ as a function of $V_{\text {in }}$ and $V_{B E}$ (sat) as follows :

$$
V_{\text {in }}\left(V_{F B}\right)^{2}-2 V_{\text {in }} V_{B E} \text { (sat) } V_{F D}-\nabla_{\text {in }}^{2} V_{B E} \text { (sat) }
$$

$$
\begin{equation*}
+V_{i n}\left(V_{\mathrm{BE}(\mathrm{sat})}\right)^{2}-\left(V_{\mathrm{BE}}(\text { sat })\right)^{3}=0 \tag{6-7}
\end{equation*}
$$

The result of eq. (6-7)is tabulated in the Feedback Voltage Table (p. 46)

$$
\text { If } I_{B} R_{\mathcal{I}} \text { is negligible in comparison with } V_{\text {in }} \text { eq. }(6-5)
$$

is reduced to

$$
\begin{equation*}
P=\frac{\nabla_{\text {in }}{ }^{2}}{R_{2}}+\frac{\left(\nabla_{F B}-\nabla_{B E} \text { (sat) }\right)^{2}}{R_{I}} \tag{6-8}
\end{equation*}
$$

Substitute eq.(3-13) and (3-14) into eq. (6-8)

$$
\begin{equation*}
P=\frac{I_{B}}{V_{F B}-V_{B E}(\text { sat })} \times\left[\frac{V_{\text {in }}{ }^{2} V_{B E} \text { (sat) }}{V_{\text {in }} V_{B E} \text { (sat) }}+\left(V_{F B}-V_{B E}(\text { sat })^{2}\right]\right. \tag{6-9}
\end{equation*}
$$

Differentiate eq. $6-9$ with respect to $V_{F B}$ and equate to zero, the result is

$$
\begin{equation*}
V_{F D}=\sqrt{V_{\text {in }} I_{B E}(\text { sat) }}+V_{D E(\text { sat })} \tag{6-10}
\end{equation*}
$$

Eq. $(6-10)$ is useful in the case where $V_{\text {in }}, V_{\text {BE (sat) }}$ are different from those in the Feedback Voltage Table and also the condition $\nabla_{\text {in }} \gg I_{B} R_{I U L}$ is attained.
6.3 Optimum Current Density

Voltage drop in a transformer coil is

$$
\mathrm{v}_{\mathrm{d}}=\mathrm{IR}
$$

$$
=I\left(p W_{W} N\right)
$$

A
where $p=$ resistivity in ohm - cm
lw $=$ mean length of one turn of the coil
$\mathrm{A}=$ cross sectional area of the coil conductor.

$$
\begin{equation*}
J=\frac{I}{A} \tag{6-12}
\end{equation*}
$$

Substitute eq. (6-12) into eq. (6-11)

$$
\begin{equation*}
\mathrm{v}_{\mathrm{d}}=\rho I_{\mathrm{W}} \mathrm{NJ} \tag{6-13}
\end{equation*}
$$

Define the fraction of allowable voltage drop in wire

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{v}_{\mathrm{d}}}{\mathrm{~V}_{\text {out }}} \tag{6-14}
\end{equation*}
$$

Combine equations $(6-1),(6-4),(6-13)$, and $(6-14)$ the result is

$$
\begin{equation*}
J=\left[\frac{2 p_{\max }}{K_{w} g 1 / n}\right]^{1 / 2} \tag{6-15}
\end{equation*}
$$

The value of $\mathrm{n}=0.005$ upto 0.01 is recommended
Power loss in the coil

$$
P_{\text {coil }}=I^{2} \mathrm{R}=I v_{d}
$$

The fraction of power in the output coil to the power output is

$$
\begin{equation*}
\frac{P_{\text {output coil }}}{P_{\text {out }}}=\frac{I_{o} V_{d}}{I_{o} V_{\text {out }}}=\frac{V_{d}}{V_{\text {out }}}=n \tag{6-16}
\end{equation*}
$$

Because the loss in the output and input coil are about the same. Therefore, total loss in percent in coils is approximately twice the allowable voltage drop, n.

6.4 The B - H curve of TDK H 5 B Ferine (Ref.6)

The circuit for determining a hysteresis loop is shown in Fig. 9. The core is excited by the $150-\mathrm{Hz}$ voltage.

Since

$$
v_{x}=i_{1} R_{1}
$$

$$
\begin{equation*}
H=\frac{N_{1} i_{1}}{I}=\frac{N_{1}}{R_{1} 1} v_{x} \tag{6-17}
\end{equation*}
$$

Similarly, since $R_{2} \gg 1 / \mathrm{W}_{2}$ at $150 \mathrm{~Hz}_{\mathrm{Z}}$

From Fig. 8 : $v_{y}=50 \mathrm{mV} / \mathrm{div}, \mathrm{v}_{\mathrm{x}}=500 \mathrm{mV} / \mathrm{div}$. x - axis $: H=\frac{(200)\left(500 \times 10^{-3}\right)}{(10)\left(3.76 \times 15^{2}\right)}=266 \mathrm{amp}-t u m / \mathrm{m} / \mathrm{div}$. $=266 \times 0.01257=3.33$ oersted/div.
$y-$ axis $: \quad B=\frac{\left(10^{5}\right)\left(1.1 \times 10^{-6}\right)\left(50 \times 10^{-3}\right)}{(300)\left(0.94 \times 10^{-4}\right)}=0.194 \mathrm{weber} / \mathrm{m}^{2} / \mathrm{div}$.
$=1940$ gauss/div.
The loop area of Fig. 8 measured by a planimeter is 2.21 div. which is : $2.21 \times 1940 \times 3.33=14.1 \times 10^{2}$ oersted - gauss

$$
\begin{aligned}
& i_{2} \quad \frac{v_{2}}{R_{2}} \\
& v_{y}=\frac{1}{C_{2}} \int \text { int }=\frac{I}{C_{2}} \int \frac{V_{2}}{R_{2}} d t \\
& =\frac{N_{2} A}{R_{2} C_{2}} \int \frac{d B}{d t} d t \\
& B=\frac{R_{2} C_{2}}{N_{2} A_{1}} \nabla_{Y} \text { 㸚ลัย }
\end{aligned}
$$

Thus the power loss of TDK, H $5 \mathrm{~B}, 2616$ ferrite core at $2.75 \times 10^{3} \mathrm{H}_{\mathbf{Z}}$ is :

$$
\begin{aligned}
P_{h} & =W_{h} V f \times 10^{-7} \\
& =\frac{\left(14.1 \times 10^{3}\right)(3.54)\left(2.75 \times 10^{3}\right) \times 10^{-7}}{4 \pi} \\
& =1.092 \mathrm{~W}
\end{aligned}
$$

จุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University.

