CHAPTER IV

EXPERIMENTAL CONSIDERATIONS

Twelve gaging stations on the Mae Klong basin are selected for this investigation, three stations are on the Kwae Yai river, three on the Kwae Noi river, one on the Lam Taphoen river, one on the Lam Pachee river, and four on the Mae Klong river as shown in Fig 2. Number of years of records, catchment area, and location of each station are shown in Table 1.

Station	River	Location	Years of record	Catchmen area (sq.km.
K1	Mae Klong	Ban Tha Pha	1965-1967,	land
K2	Mae Klong	Ratchaburi	1964-1967	-
K4	Mae Klong	Tha Muang	1939-1970	27,220
K6	Kwae Yai	Kaeng Riang	1952-1973	11,789
К9	Kwae Noi	Wang Pho	1962-1973	6,902
K10	Kwae Noi	Ban Lum Sum	1965-1973	7,008
K11	Mae Klong	Wang Khanai	1965-1973	27,228
K12	Lam Taphoen		1965-1969	2,340
K13	Kwae Noi	Na Nang Rok Ban Tha Khanun	1965-1973	4,047
K17	Lam Pachee	Frontier Police Station	1966-1972	1,355
K19	Kwae Yai	Ban Qng Kha	1966-1973	9,216
K20	.Kwae Yai	Kwae Wang Masang	1966-1973	11,963

Table 1 Detail of Available Data in the Mae Klong Basin

ANALYSIS OF RECORDED DATA

4.1 Relationship between Runoff (flow) and Catchment area.

Eight gaging stations, K6, K9, K10, K12, K13, K17, K19 and K20 are used in the analysis. Stations K1, K2, K4 and K11 are not included in the investigation because these stations ions are located on the main stream (Mae Klong river), but the other eight's are located on the tributaries.

From Table 1, the length of concurrent records available for investigation from these gaging stations is six years (1966-1972) but station Kl2 has 3 years record (1966-1969) only.

 $= \sum_{i=1}^{6} Q_{a}$

 $= \sum_{i=1}^{n} Q_{m}$

and

From equation (1) $Q = K_1 A^{n_1}$

-

0

where

Average maximum and minimum monthly flow, average maximum and minimum annual flow and average annual and monthly flow in cms. as shown in Appendix IV,

etc.

 K_{1} , n_{1}^{2} are constants obtained by fitting a least square regression line to the available data on a log-log paper.

From
$$Q = K_1 A^{n_1}$$

 $\log Q = \log K_1 + n_1 \log A$

which is an equation of a straight line.

By the least square method

$$\log K_{1} = \frac{\sum_{i=1}^{N} \log Q_{i} \sum_{i=1}^{N} (\log A_{i})^{2} - \sum_{i=1}^{N} \log A_{i} \sum_{i=1}^{N} \log A_{i} \log Q_{i}}{N \sum_{i=1}^{N} (\log A_{i})^{2} - (\sum_{i=1}^{N} \log A_{i})^{2}} \dots (34)$$

$$n_{1} = \underbrace{\sum_{i=1}^{N} \log A_{i} \log Q_{i}}_{i=1} - \underbrace{\sum_{i=1}^{N} \log A_{i} \sum_{i=1}^{N} \log Q_{i}}_{i=1} - \underbrace{\sum_{i=1}^{N} \log A_{i}}_{i=1} - \underbrace{\sum_{i=1}^{N} \log A_{i}}_{$$

where $\,\,N\,$ is number of stations which are used in the analysis.

The values of K_1 and n_1 are obtained from equations (34) and (35) and a computer programming can be used to calculate K_1 and n_1 . The Fortran IV program is shown in the Appendix III, the results are shown in Table 2, 3 and 4 and graph of results are shown in Appendix II.

The runoff - catchment area relation of maximum annual flow, minimum annual flow and minimum monthly flow of return period 2.33-yr, 10-yr, 20-yr, 50-yr, and 100-yr are also found and the results are shown in Table 5 and 6.

. 1		1		1	a de ser se	ny nahari na mananana naharina kana kanana nakarina nakarina na n	
		Set	(1)*	Set	(2)*	Set (3)***
		K ₁	n ₁	K ₁	n ₁	K ₁	n ₁
	April	.21595 x 10 ⁻⁶	2.0131		2.1225	.19540 x 10 ⁻⁸	2.5171
	May	$.67007 \times 10^{-5}$	1.6859	-6	1.9192	-7 .60462 x 10	2.1969
	June	$.99936 \times 10^{-7}$	2.2508	$.81937 \times 10^{-8}$	2.5287	-11 .51813 x 10	3.3170
	July	$.85949 \times 10^{-8}$	2.6176	-9 .73847 x 10	2.8904	-12. .12107 x 10	3.8224
	August	-8 .39465 x 10	2.7698	-9 .13840 x 10	3.1422	-13 .14187 x 10	4.1257
	Sept.	.13924 x 10 ⁻⁶	2.3797		2.6692	-11 .60158 x 10	3.4682
	Oct.	$.14888 \times 10^{-3}$	1.5600	-5 .52145 x 10	1.9325	-7 .61041 x 10	2.4077
	Nov.	.61754 x 10	1.8173	-7 .55903 x 10	2.3402	-9 .47220 x 10	2.8468
-	Dec.	.10671 x 10 ⁻⁴	1.6875	.25951 x 10 ⁻⁸	2.6124	-10 .14142 x 10	3.1645
	Jan.	.17165 x 10 ⁻⁶	2.0991	-8 .13367 x 10	2.6388	-11 .74930 x 10	3.1883
	Feb.	$.44079 \times 10^{-7}$	2.2153	$.20439 \times 10^{-8}$	2.5567	-10 .16188 x 10	3.0695
	March	.24969 x 10 ⁻⁶	2.0020	$.21353 \times 10^{-6}$	2.0194	.62312 x 10 ⁻⁸	2.3941
	Annual	-5 .24294 x 10	1.9526	-7 .61804 x 10	2.3605	-9 .10241x 10	3.0457

Table 2. <u>The values of K₁ and n₁ of Average</u> <u>Annual and Monthly Flows</u>

- <u>Set (1</u>) All 8 gaging stations (K6, K9, K10, K12, K13, K17, K19, K20) are used.
- ** <u>Set (2)</u> 7 gaging stations (K6, K9, K10, K12, K13, K19, K20) are used.

Set (3) 5 gaging stations (K6, K9, K10, K12, K20) are used.

-46-

Table 3. <u>The values of K₁ and n₁ of Average Maximum</u> <u>Annual and Monthly Flows</u>

	Set	= (1)	Set	(2)	Set	(3)
	K ₁	n ₁	Кl	nı	K ₁	n ₁
April	$.28500 \times 10^{-4}$	1.5247	.11831 x 10 ⁻³	1.3665	.16184 x 10 ⁻⁴	1.5796
May		1.3185	$.95714 \times 10^{-3}$	1.2387	.18731 x 10 ⁻⁴	1.6622
June	-4 .14868 x 10	1.7808	-5 .14155 x 10	2.0421	-8 .17391 x 10	2.7619
July	-7 .94434 x 10	2.4729	-9 .50780 x 10	3.0537	-13 .43154 x 10	4.0569
Aug.	-7 .68364 x 10	2.5325	-9 .3510 x 10	3.1184	-13 .37736 x 10	4.0964
Sept.	$.17366 \times 10^{-5}$	2.1712	$.36180 \times 10^{-7}$	2.6014	.10137 x 10 ⁻¹⁰	3.4767
Oct.	$.28770 \times 10^{-1}$		$.12905 \times 10^{-3}$	1.6569		2.0807
Nov.		1.3595	-6 .12088 x 10	2.3220	-8 .21093 x 10	2.7486
Dec.	-3 .88405 x 10	1.2298	-8 .41054 x 10	2.5947	-10 .29675 x 10	3.1152
Jan.	.45817 x 10 ⁻⁶	2.0107	-8 .15819 x 10	2.6407	-11 .87248 x 10	3.1911
Feb.	.12221 x 10 ⁻⁶	2.1198		2.5776	-10 .13268 x 10	3.1096
Mar.	.95493 x 10	1.3765	$.37078 \times 10^{-3}$	1.2258	$.44059 \times 10^{-4}$	1.4527
	-					
Annual	.11472 x 10 ⁻¹	1.2385	-3 .20196 x 10	1.6875	-6 .35101 x 10	2.3769

Table 4.The values of K1 and n1 of Average MinimumAnnual and Monthly Flows

1	Set (1)	Set (2)	Set (3	3)
	K ₁	n1	K ₁	nl	K _l	n1
Apr.	.21235 x 10 ⁻⁸	2.4942	-9 .54947 x 10	2.6444	-11 .48171 x 10 9	3.145
May	-7 .95654 x 10			2.3824	.12563 x 10	
Jun.	-8 .38568 x 10	2.5282	-9 .66526 x 10		-11 .13040 x 10	3.387
Jul.	.80969 x 10 ⁻⁹	2.7823	-9 .97070 x 10	2.7621	-12 .46658 x 10	3.576
Aug.	-9 .52236 x 10		-9 .11240 x 10	3.1055	-13 .20137 x 10	4.026
Sept.	.43434 x 10 ⁻⁹	2.9612	$.31619 \times 10^{-10}$	3.2524	.88472 x 10 ⁻¹⁴	4.125
Oct.	.29304 x 16		-8 .38953 x 10	2.6651	-11 .99432 x 10	3.300
Nov.	-6 .41815 x 10	2.0695		2.4635	-10 .70870 x 10	3.008
Dec.	.44213 x 10		.14414 x 10 ⁻⁸	2.6502	-11 .69840 x 10	3.215
Jan.	-7 .73246 x 10	2.1744	-8	2.6091	-11 .96998 x 10	
Feb.	$.13578 \times 10^{-7}$	2.3305	$.11955 \times 10^{-8}$	2.6005	.92519 x 10 ⁻¹¹	3.115
Mar.	$.54553 \times 10^{-8}$	2.4013	-8 .11088 x 10	2.5784	-10 .10842 x 10	3.068
	>	1.				
Annual	.15515 x 10 ⁻¹	0	-9 .20658 x 10	2.7436	-11 .14566 x 10	3.267

-							6
	Return Periods,	Set	(1)	Set	(2)	Set	(3)
	T years	K ₁	n ₁	K ₁	n 1	K 1	ⁿ 1
	2.33	$.73660 \times 10^{-2}$	1.3108	.22043 x 10	1.7009	.69270 x 10	2.3225
	10	.22245 x 10	1.2381	-3.69241 x 10	1.6238	-5 .24864 x 10	2.2300
	20	$.29669 \times 10^{-1}$	1.2222	$.92627 \times 10^{-3}$	1.6075	-5 .34154 x 10	2.2106
	50	.39799 x 10	1.2073	$.12440 \times 10^{-2}$	1.5925	-5 .46949 x 10 -5	2.1929
	100	.47668 x 10	1.1990	.14902 x 10	1.5841	.56930 x 10	2.1830
		6					

Table 5. <u>The Values of K₁ and n₁ of Maximum Annual</u> <u>Flow at Any Return Period</u>

Table 6.The Values of K1 and n1 of Minimum Annual and
Monthly Flows of Return Period of 2.33-Year

	Set	(1)	Set	(2)	Set	(3)
	к ₁	n1	K ₁	ⁿ 1 ·	K ₁	nl
Apr. Dec.	$.83805 \times 10^{-12}$ $.11554 \times 10^{-8}$	3.3407 2.6516	$.25050 \times 10^{-11}$.14527 x 10^{-10}	3.2190 3.1380	-14 .49808 x 10 -13 .17514 x 10	3.8757 3.8517
Annual	-		.35813 x 10 ⁻¹⁶	4.4326	.55223 x 10 ⁻²⁰	5.3590

<u>N.B.</u> April and December only

-49-

4.2 Flood and Drought Magnitudes at Any Return Period

Flood Magnitude

Maximum annual flow data of station K4, K6, K9, K11, K12, K13, K17, K19, K10 and K20 as shown in Appendix IV are used in this investigation to find the flood magnitude at any return period range from 1 to 1000 years.

<u>Plotting Positions formulas</u>: Equation (4), (5), (6),
(8), (9), (10), and (11) are used.

2. <u>Gumbel's formula</u> ($P_X = e^{-e^{-Y}}$): Equations (12), (13), (14), (15), (16) and (18) are used. Equation (16) gives the exact value of the flood magnitude at any return period T_X but the equation (18) is a simplified formula to find the flood at any return period, T_X . For T_X more than 20 years, an error is less than 0.7 percent.

Fortran IV program used to calculate the return period and the flood magnitude is shown in Appendix III.

The results are shown in Table 7 and Appendix I.

The results from Gumbel's formula equation (16) and from Weibull formula equation (6) are plotted on Gumbel's paper as shown in Appendix II.

Drought Magnitude

Minimum annual flows and Minimum monthly flows of April, December and February of stations K4, K6, K9, K10,

K11, K12, K13, K17, K19 and K20, are used in the calculation to find the relationship between the drought magnitude and the return period ranging from 1 to 1000 years.

1. <u>Plotting Positions formulas:</u> Equation (4), (5), (6), (8), (9), (10) and (11) are used.

2. <u>Gumbel's formula</u> $(P_{X_1} = e^{-e^{Y}})$: Equation (21), (22), (23), (24) and (25) are used.

Fortran IV program for these calculations is shown in Appendix III. The results are shown in Table 8 and Appendix I.

The results obtained from the use of Gumbel's formula (equation (25)) and of Weibull formula (equation (6)) are plotted on Gumbel's paper as shown in Appendix II.

4.3 Correlation

Equation (33) is used to find the correlation between data from two gaging stations in the Mae Klong basin. To simplify the calculation, the monthly flow data as shown in Appendix IV, are used instead of the daily flow data.

Fortran IV program used in calculating the result is shown in Appendix III.

The results are shown in Table 9.

Table 7 Estimated flood maginitude at any return period

T_x by Gumbel's formula

Station K4

Tx	Estimated fl	ood magnitude (cms.)
(year)	Equation (16)	Equation (18)
2.33	2420.7970	2626.9760
5	3131.5310	3215.9970
10	3710.4130	3750.6940
20	4265.6910	4285.3900
50	4984.4400	4992.2200
100	5523.0430	5526.9170
200	6059.6810	6061.6140
500	6767.6710	6768.4440
1,000	7302.7540	7303.1410

T _x	Estimated fl	ood magnitude ((cms))
(year)	Equation (16)	Equation (18)
2.33	1159.6260	1280.9740
5	1577.9320	1627.6440
10	1918.6360	1942.3430
20	2245.4460	2257:0410
50	2668.4690	2673.0480
100	2985.4660	2987.7460
200	3301.3070	3302.4440
500	3717.9970	3718.4520
1,000	4032.9220	4033.1500

Station K₉

Equation (16) 1818.6160 2229.9490	Equation (18) 1937.9410
	1937.9410
2220 0400	
2229.9490	2278.8330
2564.9730	2588.2850
2886.3370	2897.7380
3302.3090	3306.8110
3614.0220	3616.2640
	3925.7160
	3302.3090

T _x	Estimated fl	ood magnitude (cms.))
(year)	Equation (16)	Equation (18)
500	4334.3430	4334.7900
1,000	4644.0180	4644.2420

Station K₁₀

T _x	Estimated flood magnitude (cms.)				
(year)	Equation (16)	Equation (18)			
2.33	1897.4350	2030.3100			
5	2355.4750	2409.9100			
10	2728.5410	2754.5010			
20	3086.3950	3099.0910			
50	3549.6010	3554.6140			
100	3896.7090	3899.2050			
200	4242.5500	4243.7950			
500	4698.8210	4699.3190			
1,000	5043.6600	5043.9100			

Station K₁₁

T _x	Estimated flo	od magnitude (cms)
(year)	Equation (16)	Equation (18)
2.33	2119.0060	2241.1420
5	2540.0300	2590.0660
10	2882.9480	2906.8090
20	3211.8830	3223.5520
50	3637.6550	3642.2640
100	3956.7130	3959.0070
200	4274.6050	4275.7510
500	4694.0050	4694.4620
1,000	5010.9760	5011.2060

Station K12

Tx	Estimated flood magnitude (cms.).						
(year)	Equation (16)	Equation (18)					
2.33	21.5156	24.5331					
5	32.31.9175	33.1537					
10	40.3898	40.9793					
20	48.5165	48.8048					
50	59.0358	59.1496					
100	66.9185	66.9752					
200	74.7725	74.8008					

-55-

.....

T _x	Estimated flood magnitude (cms.						
(year)	Equation (16)	Equation (18)					
500	85.1343	85.1456					
1,000	92.9655	92.9711					

Station K13

T _x	Estimated f	lood magmitude (cms.)
(year)	Equation (16)	Equation (18)
2.33	1800.6570	1976.4970
5	2406.8060	2478.8430
10	2900.5060	2934.8590
20	3374.0740	3390.8740
50	3987.0590	3993.6940
100	4446.4060	4449.7100
200	4904.0770	4905.7250
500	5507.8860	5508.5450
1,000	5964.2310	5964.5610

Station K 17

T _x	Estimated f	lood magnitude (cms.).)
(year)	Equation (16)	Equation (18)
2.33	157.7677	177.3705
5	225.3418	233.3725
10	280.3798	284.2095
20	333.1736	335.0466
50	401.5097	402.2494
100	452.7182	453.0865
200	503.7397	503.9235
500	571.0529	571.1263
1,000	621.9266	621.9634

<u>Station K</u>19

Tx	Estimated f	Elood magnitude ((cms.))
(year)	Equation (16)	Equation (18)
2.33	767.8229	844.2653
5	1031.3320	1062.6480
10	1245.9560	1260.8900
20	1451.8290	1459.1330
50	1718.3100	1721.1940
100	1918.0000	1919.4370
200	2116.9620	2117.6790

-57-

Tx	Estimated flood magnitude (cms.)						
(year)	Equation (16)	Equation (18)					
500	2379.4540	2379.7410					
1,000	2577.8400	2577.9830					

Station K20

Tx	Estimated	flood magnitude (cms).)
(year)	Equation (16)	Equation (18)
2.33	739.6403	808.3762
5	976.5840	1004.7430
10	1169.5710	1182.9990
20	1354.6890	1361.2560
50	1594.3040	1596.8980
100	1773.8630	1775.1540
200	1952.7660	1953.4110
500	2188.7960	2189.0530
1,000	2367.1810	2367.3100

-58-

T _X 1 year	К4	К6	К9	K10	K11	K12	K13	K17	K19	K20
Annual	×									
2.33	29.6186	13.1742	9.7322	10.0399	29.7553	0.0023	6.9848	0	12.5245	14.1065
5	19.7211	9.9727	7.5403	7.3813	19.3966	. 0	5.4781		10.7788	11.0028
10	11.6599	7.3651	5,7551	5.2159	10.9595		4.2509		9.3571	8.4748
20	3.9273	4.8638	4.0426	3.1388	2.8665		3.0737		7.9932	6.0500
30	0	3.4248	3.0574	1.9438	0		2.3965		7.2087	4.6550
40		2.4104	2.3629	1.1014			1.9190		6,6555	3.6715
50 _k	e ¹	1.6261	1.8260	0.4502			1.5499		6.2279	2.9112
100	0	0	0.1650	0			0.4081		4.9051	0,5592

Table 8 Estimated Drought Magnitude at any return period, T_X by Gumbel's formula

*Drought in cms.

-59-

T X ₁ year	K4	K6	К9	K10	K11	K12	K13	K17	K19	K20
<u>April</u>										
2.33	38.8125	14.9182	11.1724	11.4081	30.7757	0.0282	8.5211	0.0207	13.6693	15.2945
5	27.4305	10.8671	9.5003	9.0430	18.0418	0	7.7863	0	11.9442	11.6764
10	18.1599	7.5676	8.1384	7.1166	7,6701		7.1879		10.5391	8.7295
20	9.2674	4.4027	6.8320	5.2688	0		6.6138		9.1913	5.9028
30	4.1517	2.5819	6.0805	4.2058	-de		6.2835		8.4160	4.2766
40	0.5451	1.2983	5.5506	3.4564			6.0507		7.8694	3.1301
50	.0	0.3060	5.1410	2.8770			5.8707		7.4468	2.2439
100		<u></u> 0	3.8739	1.0847			5.3139		6.1395	0

-60-

T X ₁	K4 .	K6	К9	K10	K11	K12	K13	K17	K19	K20
"1 year					. 21	이 제 책 명이				
<u>Decembe</u> r										
2.33	111.8241	41.3331	31.0464	36.9742	91.7554	0.0794	28.3470	0.4449	33.2156	40,3539
5	873880	29.0720	23.6917	29.8789	64.7560	Õ	26.2322	Ô	23.8217	32,5317
10	67.4851	19.0854	17.7013	24.0998	42.7655		24.5097		16.1704	26.1606
20	48.3939	9.5061	11.9552	18.5564	21.6716		22.8574		8.8312	20.0493
30	37.4109	3.9952	8.6496	15.3674	9.5365		.21.9069		4.6090	16.5335
40	29.6679	0,1101	6.3191	13.1191	0.9814		21.2368		1.6324	14.0549
50	23.6822	0	4.5175	11.3811	0		20.7187		0	12.1388
100	5.1643		. 0	6.0042		×	19.1161			6.2110

-61-

.

1

1

T X ₁ year	K4	K6	К9	K10	K11	K12	К13	K17	K19	K20
February										
2.33	57.1781	21.3442	17.5469	17.7501	49.3965	0	12.5192	0.1534	18.7759	21.7171
5	42.1048	15.8392	14.5551	14.0206	35,9332		10.4277	0	16.2057	17.3732
10	29.8278	11.3555	12.1184	10.9830	24.9676		8.7243		14.1124	13.8351
20	18.0515	7.0545	9.7810	8.0692	14.4491		7.0902		12.1044	10.4412
30	11.2767	4.5803	8.4363	6.3930	8.3978		6.1502		10.9493	8.4887
40	6.5005	2.8359	7.4883	5.2112	4.1318		5.4875		10.1349	7.1122
50	2.8082	1.4875	6.7554	4.2977	0.8339		4.9752		9.5053	6.0482
100	. 0	0	4,4882	1.4714	0		3.3903		7.5576	2.7562
,				5			n 1			

N. 1

-62-

Stati X	ons Y	Period of Correlation	Correlation Coefficient (r)		
K4	K1 K2 K6 K9 K11 K12	1965-1967 1964-1967 1952-1957, 1963-1969 1963-1969 1965-1969 1965-1969	.9967 .9836 .9605 .9542 .9985 .3596		
K6	K9 K12 K17 K19 K20	1962-1972 1965-1969 1966-1972 1966-1972 1966-1972	.8344 .3978 .2638 .9767 .9805		
 K9	K10 K11 K12 K13 K17	1965-1972 1965-1972 1965-1969 1965-1972 1966-1972	.9962 .9604 .2336 .9896 .1173		
K12	K17	1966-1969	.6415		
K13	K19	1966-1972	.8525		

Table 9. Correlation coefficient of Monthly flow for