Chapter IV

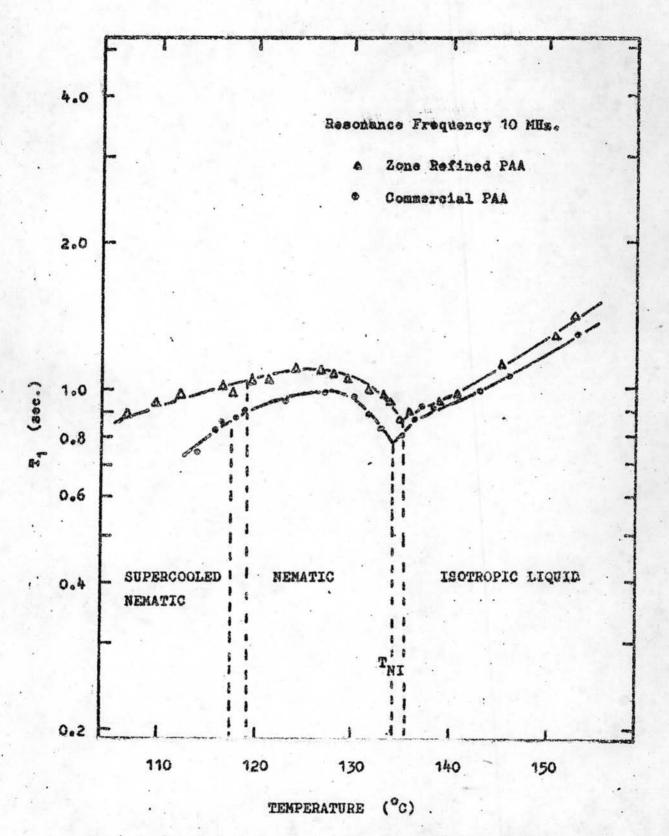
EXPERIMENTAL RESULTS AND DISCUSSION

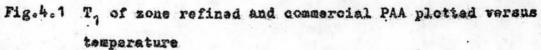
4.1 Experimental Results

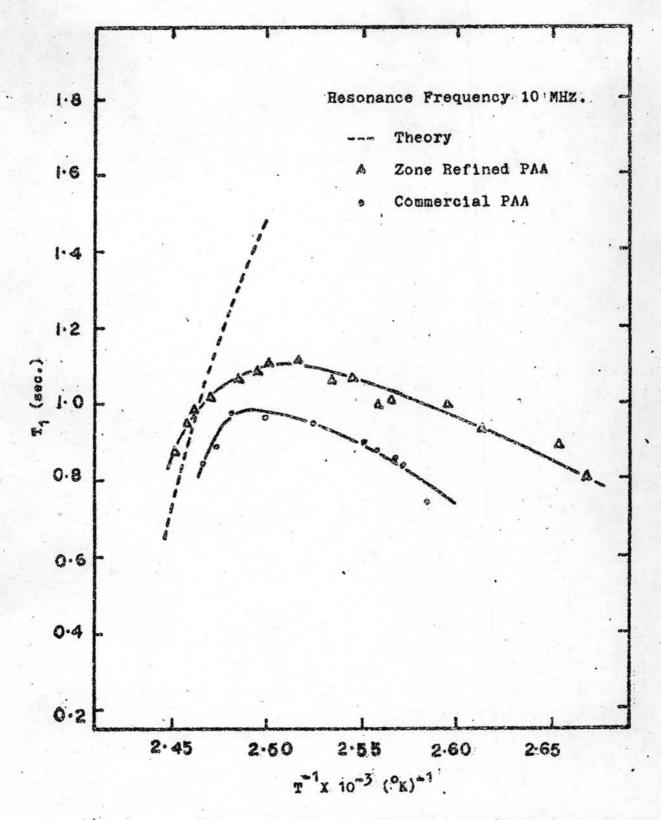
4.1.1 The Spin-Lattice Relaxation Time 61 PAA

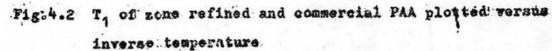
The experimental data of T_1 in pure PAA (zone refined) and impure PAA (without zone refining) are listed in Appendix II.4. The selected ones are illustrated in Table 4.1,4.2 and plotted graphically in Fig.4.1.

We have observed that the induction muclear signal does not decay smoothly after a 90° pulse is applied in the isotropic phase. This phenomenon is displayed in Fig.3.5. It may be interpreted that there are two different species of proton spin in the sample and each has a slightly different resonance frequency, to form, such induction tail. Similarly, the same phenomenon occurred in 180° pulse. We can not observe a sharp null signal, a straight line, as same as that of the liquid water. Therefore, it is difficult to distinguish an exact null on the oscilloscope. We have to estimate the experimental error for T_1 of ± 5 % in isotropic phase and ± 10 % in nematic phase. The measured T_1 in the whole temperature range are of the order magnetude of one second. The detail results and discussion will be given in section 4.3.


T(^o C)	null(msec)	T ₁ (sec)	Estimated Error(%)
169.0	1100	1.69	± 5
161.0	1060	1.63	± 5
153.0	930	1.43	± 5
151.0	850	1.30	± 5
145.5	740	1.14	± 5
141.0	640	.98	± 5
139.0	610	.34	± 5
138.5	600	.92	± 5
136.0	590	.90	± 5
135.0	575	.88	±10
134.0	625	.96	<u>+</u> 10
133.5	645	.99	<u>+</u> 10
132.0	665	1.02	<u>+</u> 10
129.5	695	1.07	<u>+</u> 10
128.0	710	1.09	<u>+</u> 10
127.0	725	1.11	<u>+</u> 10 .
124.5	730	1.12	+10
121.5	710	1.07	<u>+</u> 10
120.0	695	1.07	<u>+</u> 10
118.0	655	1.00	<u>+</u> 10
117.0	665	1.02	<u>+</u> 10
112.5	650	1.00	<u>+</u> 10
110.0	610	.94	<u>+</u> 10
107.0	580	.90	<u>+</u> 10
105.0	530	.81	<u>+</u> 10


Table 4.1 The spin-lattice relaxation time of "zone bafined PAA


T(^o C)	null(msec)	T ₁ (sec)	Estimated Error(%)
153.0	870	1.33	± 5
146.0	710	1.09	± 5
143.0	650	1.00	+ 5
138.0	600	.92	+ 5
137.0	610	.94	± 5
136.0	590	.90	<u>+</u> 5
135.0	530	.81	+10
133.0	550	.84	<u>+</u> 10
131.5	580	.89	<u>+</u> 10
130.0	640	.98	+10
127.0	635	.97	+10
123.0	620	.95	<u>+</u> 10
119.0	590	.90	+10
118.0	570	.88	+10
116.5	560	.86	+10
116.0	545	.84	+10
114.0	480	.74	+10


Table 4.2 The spin lattice relaxation time of commercial PAA

In addition, the data of spin-lattic relaxation time in the hematic range both of zone refined and commercial PAAranei plotted vs. The inversed absolute temperature $(^{O}K)^{-1}$ as shown in Fig.4.2 with a comparison. of the results from theoretical approach by Doane etcal. The data of both are presented in Table 4.3 and Table 4.4.

$T^{-1}X10^{-3}(^{\circ}K)^{-1}$	T ₁ (sec)	Estimated Error(%)
2.451	.88	· +10
2.457	.96	+10
2.460	.99	<u>+</u> 10
2.469	1.02	±10
2.484	1.07	<u>+</u> 10
2.494	1.09	<u>+</u> 10
2.500	1.11	<u>+</u> 10
2.516	1.12	<u>+</u> 10
2.535	1.07	<u>+</u> 10
2.544	1.07	<u>+</u> 10
2.558	1.00	<u>+</u> 10
2.564	1.02	<u>+</u> 10
2.594	1.00	<u>+</u> 10
2.611	.94	<u>+</u> 10
2.632	.90	<u>+</u> 10
2.646	.81	+10

Table 4.3 The spin-lattice relaxation time of zone fefined PAA

Table 4.4 Th	e spin-lattice	relexation	time	of	commercial PAA
--------------	----------------	------------	------	----	----------------

$T^{-1}X10^{-3}(^{\circ}K)^{-1}$	T ₁ (sec)	Estimated Error(%)
2.463	.84	<u>+</u> 10
2.472	.89	<u>+</u> 10
2.481	.98	<u>+</u> 10
2.500	.97	<u>+</u> 10
2.525	.95	+10
2.551	.90	<u>+</u> 10
2.558	.88	<u>+</u> 10
2.567	.86	<u>±10</u>
2.571	.84	<u>+</u> 10
2.584	.74	+10

4.1.2 The Spin-Spin Relexation Time of PAA

The experimental data of T_2 in zone refined TAA is thisted in Appendix II.B. The selected one is illustrated in Table 4.5 and plotted graphically in Fig.4.3. We have found that, the static magnetic field is not quite stable as the measurement is going on. This affects the echoes amplitude not to be formed exactly in a straight line (as shown in Fig.3.8) and then T_2 can not be calculated accurately. The experimental error is estimated to be $\pm 20\%$ in isotropic phase and ± 25 in nematic phase. In nematic phase, the order of magnitude of T_2 is 10 microsecond and in isotropic phase, T_2 is the order of 10^2 millisecond.

T(^O C)	T ₂ (msec)	Estimated Error(%)
155.0	492	+20
148.0	460	+20
140.0	410	+20
137.5	328	+20
134.5	.052	+25
132.5	.045	+25
129.5	.036	+25
127.5	.035	+25
123.5	.032	+25
117.0	.030	+25
113.0	.030	+25
109.5	.026	+25
107.0	.024	+25
105.0	.024	+25
104.0	.022	+25

Table 4.5 The spin-spin relaxation of zone refined PAA

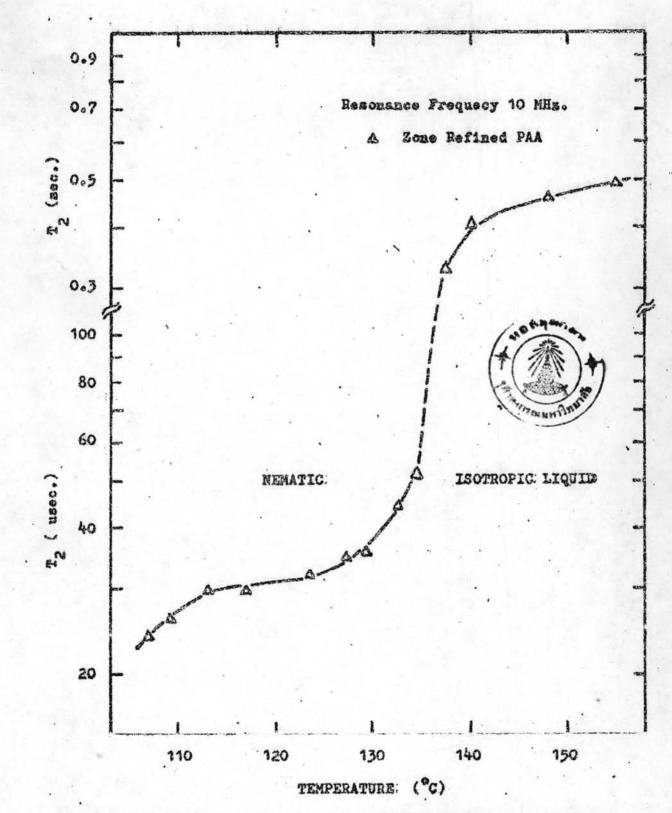


Fig. 4.3 T2 of zons refined PAA plotted versus temperature

4.2 The Reviewed Theory of Spin Relaxation in Liquid Crystal

Consider a special case, the liquid. The conventional theory of spin relaxation for a spin $\frac{1}{2}$ pair, brought about by a fluctuation of the magnetic dipolar interaction, gives the following relaxation rate²² in the laboratory frame :

$$\frac{1}{T_{1}} = (3/2) \sqrt[3]{4} h^{2} I(I + 1) \left[J^{(1)}(w_{L}) + J^{(2)}(2w_{L}) \right]$$
$$= (9 \sqrt[3]{4} h^{2}/8a^{6}) \left[J^{(1)}(w_{L}) + J^{(2)}(2w_{L}) \right] (4.1)$$

where $J^{(1)}(w_L)$ and $J^{(2)}(2w_L)$ are the spectral density functions. For liquid crystal approximated as perfect order limit, $J^{(1)}(w_L)$ can be written in form^{7,13}: (a = intermolecular distance, $\omega_L = \lambda H_0$) $J^{(1)}(w) = \int_0^{\infty} dt \exp(-iwt) \left(\int_{-9}^{9} + \int_{\frac{dq}{2}}^{9} \frac{w_R}{(2q)} 3 \sqrt{[n(q)]} \frac{2}{2} \exp(-t/\tau_q) \exp(-Dq^2t) S^2 \right] (4.2)$ where $\overline{n}(q)$ is the Fourier amplitude of the long-range order

director
$$n(r)$$
,

$$\overline{n}(q,t) = \frac{1}{\overline{V}} \int \overline{n}(\overline{r},t) \exp(i\overline{q},\overline{r}) d\overline{r} ,$$

V is the volume, q is wave vector, \mathcal{T}_q is the time constant of the exponential decay of the autocorrelation function of q^{th} Fourier amplitude of the order director, i.e.

$$\langle n(q,t)n(q,o) \rangle = \langle |n(q)|^2 \rangle \exp(-t/\tau_q),$$

K is the Frank elastic deformation constant²³ and S is order parameter (i.e. $S = \frac{1}{2} \langle 3\cos^2 0 - 1 \rangle$). Using the hydrodynamic

²²ABRAGAM A., <u>The Principles of Nuclear Magnetism</u>, Chapter VII O.U.P (1961).

²³Frank F.C., <u>Discuss. Faraday. Soc</u>. 25(1958)19,

range i.e. $q \leq q_h$, where $\frac{1}{q_h}$ molecular dimension, $\langle |\bar{n}(q)|^2 \rangle_{av}$ and \mathcal{T}_q can be derived⁵

$$\langle |\bar{n}(q)|^2 \rangle = kT/V(Kq^2 + \Delta X H_0^2) ,$$

$$\tau_q^{-1} = \gamma_q^{-1} (Kq^2 + \Delta X H_0^2) ,$$

and

where γ'_{i} is the viscosity, $\Delta \chi$ is the anisotropic part of the diamagnetic susceptibility and H_o is the resonance static magnetic field. The first integral in Eq.(4.2) is correspondent to the hydrodynamic approximation and does not decay exponentially and has $w_{L}^{-\frac{1}{2}}$ dependence. The second integral is sum over high-frequency range $q_{h} < q < q_{max}$ and does not have $w_{L}^{\frac{1}{2}}$ dependence. Then we can write Eq.(4.1) for liquid crystal PAA in the form of

$$(T_1)^{-1} = A(T) w_L^{-\frac{1}{2}} + B(T)$$
 (4.3)

where the first term, $\Lambda(T)w_{L}^{-\frac{1}{2}}$ is obtained from the hydrodynamic range of Eq.(4.2) with

$$\Lambda(\mathbf{T}) = w_{\mathrm{D}}^{2} \frac{\mathrm{s}^{2}}{\mathrm{K}} \frac{\mathrm{k}\mathrm{T}}{\left[(\mathrm{K}/\mathrm{v}) + \mathrm{D}\right]^{\frac{1}{2}}}, ,$$

where w_D is the dipolar frequency. The second term, B(T), is obtained by adding $J^{(2)}(2w_L)$ with the high-frequency part of $J^{(1)}(w_L)$. Approximately, we can consider just the first term in Eq.(4.3). Hence we obtain⁹

$$\frac{1}{T_{1}} = w_{L}^{2} \mathbf{s}^{2} (\mathbf{k} \mathbf{T} / \mathbf{K}) \left[w_{L} (D + K / \gamma) \right]^{-\frac{1}{2}} . (4.4)$$

24A. Saupe, Z. Naturforsch., 15A(1960) 815

4.3 Discussion

There is a clear break in the temperature dependence of the relaxation time at the nemetic-isotropic liquid transition point (T_{NI}). For zone refined PAA, T_{NI} is 35.0 °C and commercial PAA, T_{NI} is 34.0 °C, and there are supercooled nematic at the temperature range below 119 °C and 117.5 °C respectively.

Comparing the magnitude of T_1 in the whole temperature range of zone refined and commercial PAA, obviously, T_1 of the zone refined PAA is larger than the one of the commercial PAA. It is confirmed that T_1 varies inversely as the impurity concentration, which agrees with the published results by Dong et al. Since the impurity such as some paramagnetic substance will cause the spin to relax more quickly than usual. Also we have noted that when the sample was heated and cooled by several cycles, we observed that T_1 of the last cycle is smaller than the initial cycle. That is the evidence that the oxygen gas in the sample capsule will disolve in the liquid, i.e. the para-magnetic substance effect as we have discussed previously.

In the isotropic phase, T_1 rises smoothly, though not linearly with temperature. As in this phase the relaxation is due mainly to the translational diffusive motion, and the diffusion constant D has a linear temperature dependence⁸ in the isotropic liquid phase, the nonlinearity of $T_1(T)$ just above $T_{\rm NT}$ may be due to the presence of nematic cluster²⁵in

²⁵James D. Lee and A. Cemal Eringen, "Wave Propagation in Nematic Liquid Crystals", Journal of Chemical Physics, 54(1971)5027, the isotropic liquid.

We do not observe the sharp jump in T_1 in going from the isotropic liquid phase to the mematic phase as reported by Dong et al? Our observation of the temperature dependence of T_1 in the mematic region thus agrees more closely with that reported by Blinc et al.¹⁰

The contribution of the cooperative fluctuation of the order director to the spin-lattice relaxation has been obtained by Pincus¹³ to be⁹

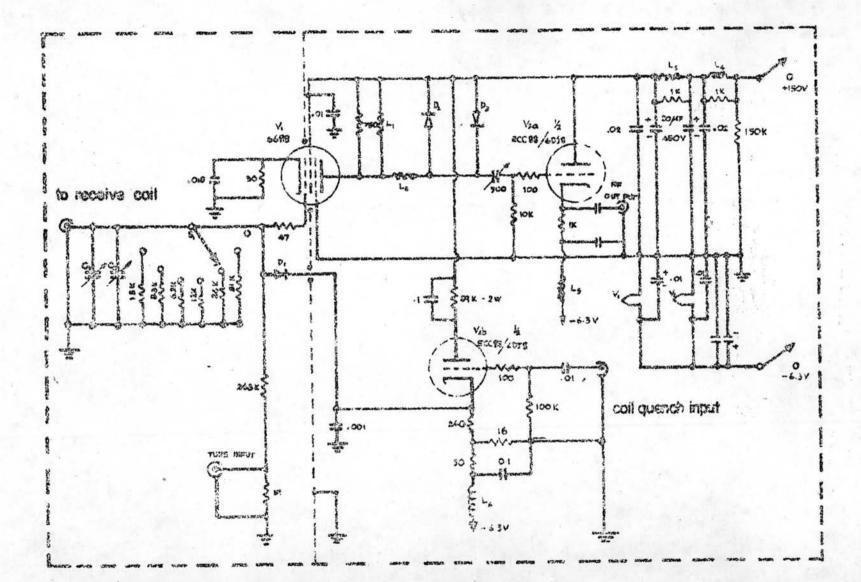
$$T_{1}^{-1} = \omega_{D}^{2} \left(\frac{kT}{k}\right) \frac{1}{\left(D + \frac{K}{N}\right)^{\frac{1}{2}}} \omega_{L}^{-\frac{1}{2}} \qquad (4.2.1)$$

Recalling the elastic deformation constant K varies as s^2 , published by Saupe (1960), where S is the order parameter. In the limit of weak diffusion $(D \ll \frac{K}{\gamma})$, it has been estimated that T_1 varies as $\frac{s^3}{T \cdot r^2}$. Using the published temperature dependence of S and γ for PAA, Doan and Visintainer⁹ has displayed the expected temperature dependence of T_1 in this limit (by using Q = 24 MHz). This is shown as the dashed line in Fig.4.2, which also displays our results for the nematic phase both fypes endof comPAA. Our data seem to indicate that as $T_{\rm NI}$ is approached from below. Our sample actually attains the weak diffusion limit just from 128° C to 135° C but below 128° C it does not agree with the above theory.

It has also been suggested that the change in slope was due to a biaxial -to- uniaxial nematic phase transition which has been argued to be responsible for the specific⁴ heat anomaly at 128° C. If such phase transition actually occurs, the intermolecular dipolar relaxation would have to be changed from a one order-parameter fluctuation to a two order-parameter fluctuation process. Another alternative explanation, also suggested by Dong et al., is to consider that the order fluctuation are slowed down with increasing amplitude of oscillation as temperature approaches $T_{\rm NT}$.

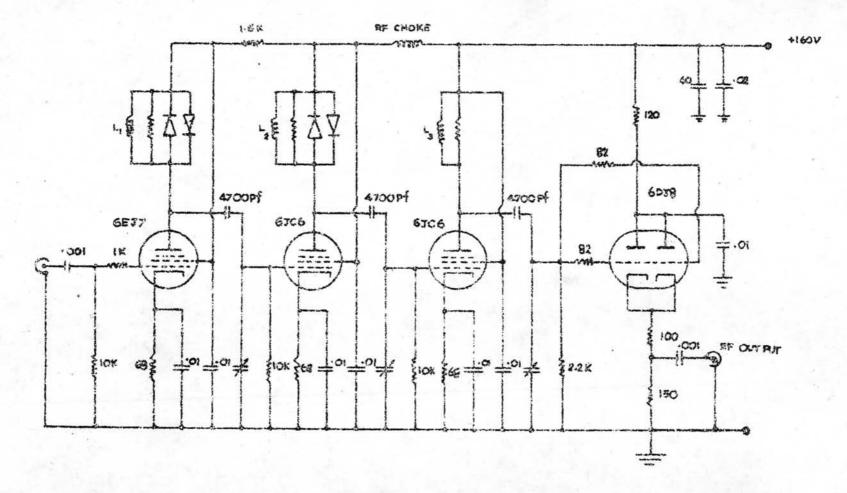
In addition, the results of T_2 also show a clear break in the temperature dependence of spin-spin relaxation time with a nematic-isotropic liquid transition point $(T_{\rm NT})$ at 135°C.

In the isotropic phase, T₂ varies almost linearly as temperature. As far as the translation diffusion (D) is concerned, the intensity of the echo at time t is determined by

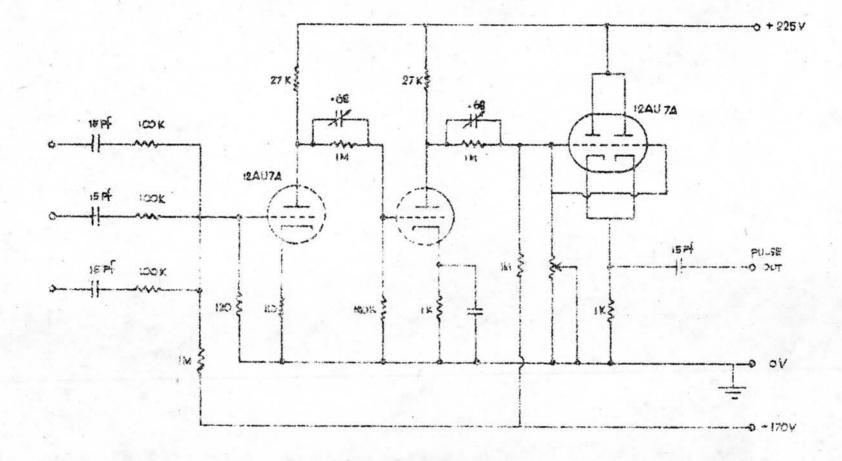

$$M_y(t) = M_o \exp \left[(-t/T_2) + (-y^2 G^2 D t^3/12) \right]$$

where G is average field gradient over the sample and must require that $12/\gamma^2 G^2 D \leq T_2^3$. The slope of a plot of $\ln(M_y/M_o)$ + t/T_2 v.s. t^3 is used to obtain D. Therefore in the isotropic phase we can again confirm that it is due mainly to the translation diffusive motion.

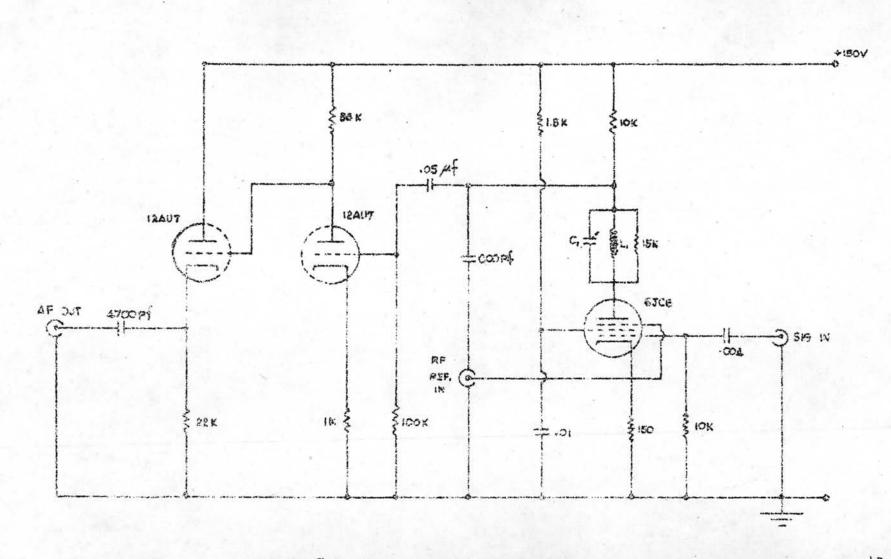
But in nematic phase, T_2 are observed to be very short in magnitude of the order of microseconds, and it is almost


constant over the whole nematic range but above the $128^{\circ}C$, T_2 rises smoothly with temperature. These also support the proposal that translation diffusion,D is small and constant over the whole nematic range and actually it is also confirmed that at the temperature range above $128^{\circ}C$, the smooth increase of T_2 is due mainly to the slowing down of order fluctuation with increasing amplitude of oscillation. In the isotropic phase, T_2 is also satisfied with the theoretical result, since it is approximately equal to $\frac{5}{8}$ T_1 (i.e. $T_2 = \frac{5}{8}$ T_1).

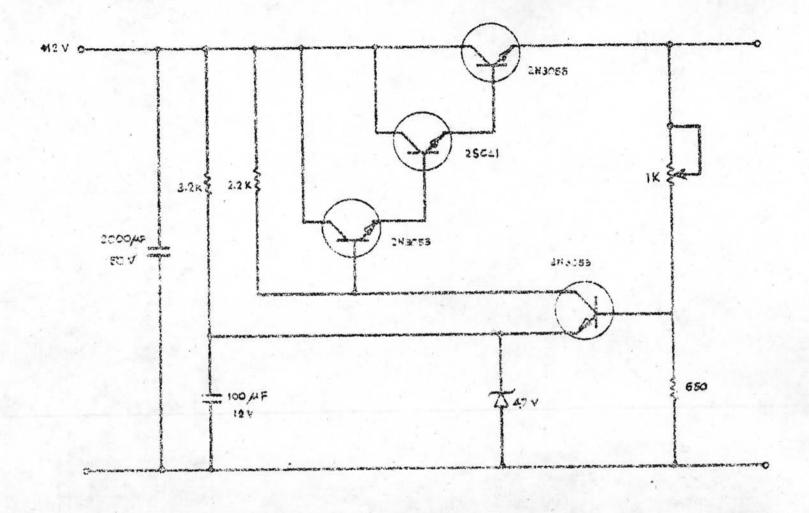
Finally, we can conclude that the contribution of T_1 and T_2 in the nematic liquid crystal PAA is mainly due to the order fluctuation and there exists a change of relaxation mechanism which contributed to T_1 and T_2 at 128° C. In the newatic renge (below 128° C) T_1 is not only due mainly to the order fluctuation, since we have noted that it is rather due to the translation diffusive motion because T_1 is increasing smoothly but not exponentially with temperature. Consequently in the temperature range $128-135^{\circ}$ C, it is due to the order fluctuation by a reason that T_1 agrees well with the theoretical approach by treating D very small, and similarly T_2 rises smoothly in this range, which may be interpreted as there exists another contribution in addition to the translation diffusion and order fluctuation, i.e. it might be a collective molecular motion, a slow coorperative mode which has been proposed by Dong et al.. APPENDIX I



Appendix I.A Preamplifier


4.9

Appendix I.B. RF. amplifier



Appendiz I.C Pulse amplifier

*

Appandix I.D Phose sensitive detector

Appendix I.E. Regulated power supply

APPENDIX II

APPENDIX II.A

T₁ DATA

 $T_1 = Spin$ lattice relaxation time

 $T_1 = 1.063$ (null/ln2

where 1.063 is the time scale correction.

At proton resonance frequency 10 MHz.

<u>WITHOU</u> Januar T(^Ô C)	T ZONE REFINED y 5, 1972 null(msec)	PAA T ₁ (sec)	137.5 135.0 133.0 132.5	560 525 600 605	.86 .80 .92 .93
167.0 157.0 149.0 144.5 141.0 136.0	1000 860 800 710 620 540	1.54 1.32 1.23 1.09 .95 .83	129.5 125.5 124.5 124.0 119.0	620 630 610 650 620	.95 .97 .94 1.00 .95
133.5 130.0	525 640 620	.81 .98	ZONE REI January	FINED PAA 11, 1972	
128.0	020	•95	T(^O C)	null(msec)	T ₁ (sec)
Januar T([°] C) 153.0 146.0 143.0 138.0 137.0	y 8, 1972 null(msec) 870 710 650 600 610	T ₁ (sec) 1.33 1.09 1.00 .92 .94	173.0 165.0 157.0 153.0 145.5 140.0 143.0	1020 910 870 810 715 610 645	1.56 1.40 1.33 1.24 1.10 .94 .99
136.0 135.0 133.0 131.5 130.0 127.0 123.0 119.0	590 530 550 580 640 635 620 590	.90 .81 .84 .98 .98 .97 .95 .90	137.5 134.5 134.0 133.5 133.0 132.0 131.5 130.0	580 550 560 620 690 660 670 720	.89 .84 .95 1.06 1.02 1.03 1.10
118.0 116.5 116.0 114.0 Januar	570 560 545 480	.88 .86 .84 .74	129.0 127.0 125.0 123.0 122.0 116.0 115.0	685 665 690 680 570 550 490	1.05 1.02 1.01 1.06 1.04 .87 .84
T(^O C)	null(msec)	T ₁ (sec)	111.0 109.0	480	•75 •74
143.0 139.0	640 595 595	.98 .91			

January T(⁰ C)	11, 1972	Π (860)	•	16, 1 <u>97</u> 2 null(msec)	T ₁ (sec)
173.0	null(msec) 1020	T ₁ (sec) 1.56	161.0	1000	1.54
164.5	940	1.45	158.5	900	1.38
148.0 145.0	750 690	1.15	151.5	800 675	1.23
139.0	590	.91	138.0	565	.87
135.0 134.5	500 550	•77 •84	137.0 135.5	550 520	.84
134.0	560	.86	133.0	600 700	.92 1.08
133.5 131.5	630 700	•97 1.07	131.0 126.5	675	1.04
130.5	710	1.09	124.5 119.0	650 610	1.00
129.0 127.5	690 650	1.06 1.00	114.0	585	.90
126.0	620 645	•95 •99	111.5 107.5	570 500	.880
124.0 121.0	640	• 98	10/10		
117.0	600	.92	January	16, 1972	
	12 1072		T(^O C)	null(msec)	T1(sec)
January T(^O C)	12, 1972 null(msec)	T ₁ (sec)	150.0	880	1.37
169.0	1100	1.69	145.0 141.5	800 700	1.26 1.11
161.0	1060	1.63	136.0	600 580	.92 .91
153.0 151.0	930 850	1.43 1.30	132.5 132.0	605	.94
145.5	740	1.14	131.5	690 740	1.08 1.16
141.0 139.0	640 61 0	• 98 • 94	130.5 128.0	730	1.14
138.5	600	.92 .90	127.0 125.5	760 765	1.19 1.20
136.0 135.0	590 575	\$88	123.5	730	1.14
134.0 133.5	625 645	.96 .99	123.0 121.5	715 695	1.12 1.09
132.0	665	1,02	119.0	660 610	1.02
129.5 128.0	695 710	1.07	116.5 113.5	550	.86
127.0	725	1.11			
124.5 121.5	230 210	1.12 1.07	January	24, 1972	
120.0	695	1.07	T(^O C)	null (msec)	T ₁ (sec)
118.0 117.0	655 665	1.02	160.5	1050	1.62
112.5 110.0	650 610	1.00 .94	159.5	1000 820	1.53 1.26
107.0	580	. 90	146.5	750	1.15
105.0	530	.81	138.5	620	.,,

137.0 136.0 135.5 135.0 131.5 130.5 127.5 125.0 121.0 119.5 118.5 115.0 111.0 107.5 105.0 103.0 102.0	570 530 550 630 690 735 720 635 630 635 630 570 570 550 545	.88 .81 .84 .97 1.00 1.13 1.10 1.00 .97 .96 .95 .87 .86 .88 .84 .84	137.5 135.5 134.0 133.0 132.5 132.5 130.5 128.5 126.5 124.5 121.0 118.5 115.5 114.0 112.0	550 510 655 720 675 715 750 730 715 695 675 640 630 595 570	.84 .78 11000 1.100 1.04 1.04 1.10 1.15 1.12 1.10 1.06 1.04 .98 .96 .91 .87
			January T(^O C)	the second of the second second	
January	24, 1972				c)T ₁ (sec) 1.46
T(°C) 158.0 152.0 151.0 148.5 144.5 144.5 144.5 140.0 138.0 135.0 134.5 133.0 129.5 128.5 128.0 129.0 120.0 117.0 112.5 111.5	null(msec) 950 870 790 765 670 600 570 520 510 630 750 750 750 750 750 750 750 750 750 75	T ₁ (sec) 1.46 1.34 1.21 1.17 1.03 .92 .88 .80 .78 .97 1.15 1.15 1.15 1.15 1.15 1.17 1.01 .97 .97 .89	155.0 149.0 143.0 141.5 138.5 135.0 131.5 129.5 127.5 125.5 125.5 122.5 119.0 117.0 113.0 107.5 January T(°C)	955 810 690 650 580 510 560 640 700 680 660 645 630 595 580 530 31, 1972 null (mss	1.24 1.06 1.00 .89 .78 .86 .98 1.08 1.04 1.01 1.00 .96 .91 .89 .81
÷			149.5	900	1.38
	29, 1972	· · · · · · · · · · · · · · · · · · ·	146.0 142.5	785 710	1.20 1.09
T(°C)	null (msec)	TI(sec)	139.0	640 510	• 98 • 78
154.5	890	1.36	134.5 131.5	600	.92
149.0	740	1.14	127.5 124.5	785 770	1.20
141.0	600	.92	124.)	110	1.10

120.5 119.0 115.5 112.5	710 690 660 630	1.09 1.06 1.01 .97	132.0 127.5 124.0 116.5 110.0	680 740 700 630 640	1.04 1.14 1.07 .97 .98
Februar	ry 8, 1972				
T(°C)	null (msec)	T1 (sec)	Februar	у 9, 1972	
154.5	930	1.43	T(°C)	null (msec)	T ₁ (sec)
151.0	840	1.28	153.0	975	1.40
142.0 136.0	660 530	1.01 .81	148.0 140.0	835 690	1.20
135.0	500	5007	138.0	615	.89
134.0	550	.84	134.0	550	.79
131.5 128.5	670 750	1.03 1.15	129.5 126.5	700 730	1.01 1.05
126.0	730	1.12	121.5	710	1.02
123.5	695 660	1.06	115.0	660 620	• 95
118.0	630	1.01 .96	111.0 107.5	580	.89 .84
110.0	610	.94			
			Februar	y 14, 1972	
Februar	y 8, 1972		T(^O C)	null(msec)	TT(sec)
T(^O C)	null(msec)	$T_{11}(sec)$	156.0	895	1.37
160.0	1100	1.68	153.0	840	1.29
152.0	395	1.37	#7:5	760	1.29
144.5	705 58 5 .0	1.08 53 9 0	1544428	8400 760 570	.87
136.5	540	.83	133.0	610	.88 1.00
133.5	635	.97	130.5 127.5	650 680	1.04
128.5 125.5	745 720	1.14 1.10	125.5	705	1.08
120.0	680	1.0年	124.0 120.5	695 660	1.06
116.5	640	• 98	119.0	615	.94
109.5 109.5	630 620	•97 •95	117.5	605	.93
			114.5	590	.90
Februar	y 9, 1972				
T(^O C)	null (msec)	Ti(sec)			
151.0	900	1.38			0.75
147.0	825	1.26			
142.5	740	1.14			
139.0 135.5	645 545	•99 •84			

APPENDIX II.B

T2DATA

To	= 5	oin-s	spin	relaxati	on	time	
----	-----	-------	------	----------	----	------	--

At proton resonance frequency = 10 MHz.

ZONE REI	FINED PAA	146.5	230
January	24, 1972	140.5 138.0	328 246
T(°C)	T ₂ (msec)	135.0	328 -3
155.0 148.0 140.0 137.5 134.5 132.5	492 460 410 328 52x10-3 45x10-3 36x10-3	134.5 133.0 130.0 128.0 123.0 122.0	61x10-3 34x10-3 33x10-3 31x10-3 30x10-3
129.5 127.5 123.5 117.0	35x10-3 32x10-3 30x10-3	January 2 T(⁹ C)	29, 1972 T ₂ (msec)
113.0 109.5 107.0 105.0 104.0	30x10-3 26x10-3 24x10-3 24x10-3 22x10-3	155.0 148.5 141.0 137.5 135.5 133.0	459 360 387 312 368 39x10-3
January	25, 1972	134.0 130.5	34x10_3 39x10_3
T(^O C)	T2(msec)	126.5 124.0	34x10-3 30x10-3
159.0 153.0 151.0 145.5 140.5 136.0 133.5	360 491 393 328 393 213 64x10-3	121.0 118.5 115.5 114.0 112.0	31x10-3 28x10-3 30x10-3 28x10-3 20x10-3
131.0	44x10-3 25x10-3	January	29, 1972
129.0 124.0	22x10_3	T(°C)	T2(msec)
121.0 117.5 113.0	23x10-3 26x10-3 23x10-3	152.5 145.5 139.0 136.5	442 360 328 295 344 3
Januar	y 25, 1972	134.0 131.0	49x10_3
T(^O C)	T2(msec)	129.0	39x10-5

127.0 124.5 122.5 120.5	33x10-3 33x10-3 29x10-3 31x10-3
January T(^O C)	30,1972
156.0 149.0 144.5 139.5 136.0 134.0 132.5 130.5 128.5 126.5 123.5 120.0 118.0 114.0 108.5	T(msec) 240 190 321 295 314 52x10-3 40x10-3 33x10-3 35x10-3 30x10-3 30x10-3 31x10-3 31x10-3 34x10-3 25x10-3 26x10-3
January T(°C) 149.0 145.0 142.5 136.5 133.5 129.5 126.5 122.5 121.0 117.5 114.5 107.0	31, 1972 T ₂ (msec) 420 256 295 256 39x10-3 39x10-3 36x10-3 27x10-3 25x10-3 25x10-3 25x10-3 22x10-3 21x10-3

-