Chapter I

INTRODUCTION

1.1 General and literature reviews

In present progress in designing heat transfer
equipments, there is a need to search for some new surfaces
which will give a high ratio of heat transfer area to core
volume. These more compact surfaces will, of course, give
higher heat transfer coefficients, lower capital cost,
smaller size, and lighter weight equipment. The flow passages
will also have a very small hydraulic diameter, therefore,
the flow, of air for example, can be laminar. Hence, the
theory concerning laminar flow solutions for flow
characteristics and heat transfer in ducts of various
geometries become important. These had been done by many
investigators and their works were fully compiled by Shah
and London;l In addition to circular ducts as well as parallel
plates, interests on non-circular ducts have been greatly
increased. On account of the fact that most of heat exchange

equipments such as air conditioning units, rocket power

1Shah R.K., and London A.L., "Laminar Flow Forced
Convection Heat Transfer and Flow Friction in Straight
and Curved Ducts - A Summary of Analytical Solutions."
Technical Report No. 75, (November 1971).




plants, gas turbine regenerators? radiators etc., the heat
transfer ducts usually have cross sections that are

non-circulars.

In order to design such an equipment, value of the
heat transfer coefficient, h, of each duct to be employed
must be known in order that heat transfer rate, §, can be

estimated from Newton's law of cooling? that is

¢ = hA(t, = %)

where A = surface area of the duct wall in contact
with the fluid,
t = wall temperature,

w

tb = bulk or mean temperature of the fluid.

The héat transfer coefficient at any section of a
duct depends upon the shape of the velocity and temperature
profiles of the fluid at that section, and fluid properties.
When fluid flows into a closed duct with an initially
uniform velocity profile shear forces retard local velocities

near the wall. The retarded fluid layer is called the

Bird R.B., Stewart W.E., and Lightfoot E.N.,
"Transport Phenomena," (New York: John Wiley & Sons, Inc.,
1960), p. 391.
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boundary layer. The central region is called the potential

5

or inviscid core: While the boundary 1ayei grows towards -
the centre of the duct, the velocity profile is called a
developing profile. The tenperature profile also exhibits
a similar boundary layer growth, the rate of which depends
upon the me%hod of heat transfer across the duct wall.

The associated thermal boundary conditions6 commonly are

constant wall temperature, constant heat flux and constant

wall temperature gradient.

As alfeady mentioned, in many cases where low flow
rates occur in small ducte the flows of gas tend to be
laminar. This is true for various duct geometries. And
in many practical cases, heat transfer begins as soon as
fluid enters the duct. It follows then that the tneoretically7

derived laminar boundary layer solutions for the two

developing profiles may be applicable. However, the

4The boundary layer is 2 thin region, very close to
the duct wall, in which the velocity gradients are large
enough so that the influence of viscosity cannot be
neglected.

5The potential core is defined as the region in
which the influence of the pressure of the duct wall
has died out enough so that the velocity gradients are
so small that the fluid viscosity can be ignored.

6Shah and London, op. cit. pp. 7=22

7Kays W.M., "Convective Heat and Mass Transfer,"
(New York: McGraw-Hill, Inc., 1968), p. 25, p. 34
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Navier-Stokes equa'bions8 and the equation of energy”’ for

a laminar flow in a duct may alsc be employed.

Leminar forced convection heat transfer solutions
in triangular ducts of various cross sections, by theoretical

X

¥ analysis with some experiments,o have been obtained for

(1) Pully developed velocity and temperature profiles.

(2) Pully developed véx?city profiles and developing
temperature profiles. \

(3) Simultaneously developing velocity and temperature
profiles.

For the former one case, Sparrow and Haji—Sheikhll

gsolved the momentum and energy equations numerically by the
finite difference method and obtained fully developed
Nusselt number for constant heat flux, Nuy,, for the

% . isosceles triangular and right triangular ducts with
opening angle, 2@, varying from 0° to 180°. Results were

reported graphically. They show that the equilateral

BSchlichting iernann, "Boundary-Layer Thecry,"

(iiew Yorks McGraw-Hill, Inc., 1968), p. 61.
& 9Bird et al., Ops cits D. 315.
105han and London, op. cit.

llSparrow E.M.,, and Haji-Sheikh A., "Laminar Heat
Transfer and Pressure Drop in Isosceles Triangular, Right
Triangular, and Circular Sector Ducts," Tran., ASME, J., Heat
Transfer, 87, (1965), 426-27. :




triangular duct gives the highest Nqu- The respective
results for ﬁ = 0 are the same as those for 5 = 900. In
addition the results for the right triangular duct are
symmetric about g = 45°. XKutateladze and Borishanskiil®
obtained fully developed Nusselt number for constant wall
temperature, NuT, for isosceles triangular duct with opening
angle, 28 = 20°, 40°, 60°, 80°, 90° and 100°. Results show
that the greater the opening angle, the higher the Nusselt

number.

13 ovtained

For the latter two cases, Wibulswas
laminar flow NuT and Nqu for an equilateral triangular
and right-angled isosceles triangular ducts for fully developed
velocity profile and simultaneously developing flow for the
fluid with Prandtl number, Pr = 0.72. He neglected the
transverse velocities u and v, as well as the axial viscous
and thermal diffusion, Pibgw/azz) and k(azt/azz) respectively.
Results were obtained by a modification cof the numerical
method. Some experimental results were also obtained, to

compare with the available theory, for an equilateral triangular

duct for fully developed velocity profile and simultaneously

lzKutateladze 5.5., and Borishanskii U.M., "A Concise
Encyclopedia of Heat Transfer," (Pregaman Press Ltd., 1966),
p. 107.

13Wibulswa5 P,, "Laminar Flow Heat Transfer in
Non-Circular Ducts." Ph.D. Thesis, London University (1966),
Dp . 86—107 .




Cartesian Co-ordinates Adapted in Theoretical Analyses.



developing profiles with constant heat input per unit length
of the duct. Results show a closed agreement with the

theoretical values.

In this paper an experiment was investigated, particularly
for the third case, that is, simultaneously developing velocity
and temperature profiles, for an equilateral triangular and
right-angled isosceles triangular ducts with the thermal
boundary condition of constant wall temperature, to provide

some data and compare with the available theory}4

1.2 Theory

Consider a steady state, simultaneously developing
laminar flow in a stationery duct. Also assume that the
fluid is incompressible and the fluid properties P’ Cp, k
are constanf, independent of fluid temperature, and the body
forces, viz., gravity, centrifugal, electromagnetic etc.

do not exist. The applicable differential momentum or

Navier-Stokes equation in the z-direction ocan be written as

3% . 2w . 7 1 d d 3
Ateite Rt A A

where u, v, and w are the velocities in the x-, y-, and 2z-

direction respectively,}p is the viscosity,/o is the density

and p is the pressure.




Montgomery and Wibulswa515 obtained an approximate
solution for the development of the velocity profile in

rectangular ducts by using the following assumptions:

(1) The term d>%w/dz° is neglected in comparison with
the terms d%w/dx° and d%w/dy2.

(2) The velocities u and v are assumed to be negligible
in comparison with the mainstream velocity w.

(3) The pressure gradient, dp/dz, is a function of
z alone.

The equation then simplifies to

3w . 2w S
%{-g;-‘%-{-gg}:/%%g-ﬁ-wyg ----- (1)

The above assumptions will also be applied to solve

a flow in triangular ducts.

By neglecting the temperature effect due to viscous

friction, the applicable energy equation for an incompressible

fluid with invariable physical properties can be written as

3% %y 2 3¢ , 3t . 3
c-((s_xa + Byg «_r-.az;) = UB_; + vB—; + wa%,

155.R. Montgomery, and P. Wibulswas, "Laminar Flow Heat
Transfer for Simultaneously Developing Velocity and Temperature
sr~files in Ductes -f Rectrngular Cross Section" Lippl. Seig~

Res. 18. (1967), 247-59.
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where t local fluid temperature,

o/ thermal fluid diffusivity, k/Cp p.

~
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The conduction term in the axial direction, Gzt/OZz,

is negligible in comparison with the terums égt/sz and th/éyz,

and the velocities u and v are zero, the energy equation is

therefore reduced to
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Solution of equations (1) and (2) can be obtained by
numerical method. The left hand sides of both equations
_ contain second derivatives in two dimensions and these can
be replaced by finite different approximations. The numerical
solutions for the equilateral and right-angled isosceles
triangular ducts are carried out on a computer. Details of
theoretical analyéis and the computing procedure can be
found in the Ph.D. thesis by Wibulswas].‘6 The numerical solutions
obtained can be put into the following equations:-
For equilateral triangular duct, Num = 1.59 @z0+3% ... (3a)

For right-angled isosceles triangular duct, Num_= 1.47 Gzo'Bl..(3b)

1.3 Experimental correlation

Consider a length L of a duct bounded by a closed
perimeter P and through which fluid could be circulated at

various measurable flow rates. The heat absorbed by the fluid

16Wibulswas, op. cit,
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in flow through the duct would be identical with the heat
passing into the duct in directions at right angles to its

longitudinal axis, thus

§ .= ;owaCCp(tf—to) =  hPLAt, ... (4)
where ¢ = heat .transfer rate,
Wy, = average velocity in the direction of duct axis,
AC = cross sectional area of the duct,
hl = logarithmic mean heat transfer coefficient,
tf = final fluid temperature,
t, = initial fluid temperature,
aml = logarithmic mean temperature difference,

B (tng-to) - (tw‘f-tf)
t )

B 1nrtw 620,
(%, ¢=t¢)

,O

and where tw initial wall temperature,

t final wall temperature.

Il

w,f

Then eq.(4) may be arranged to obtain the following expressions:=-

/owaCcE(tf—to)

1 - PLLty v et ED

h

By definition, the logarithmic mean Nusselt number,
Nul, is defined as

h-d
Nu, = —=2 (6)
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where dh hydraulic diameter of the duct,

4A /P

in eq.(5) to eq.(6), thus obtaining

Substitute hl
] ow. A C_(t.- t ) a
IIu:L: bOL f 2 “"i“} e 0 (7)
PLAG k
1,
Eq.(7) may be deduced and rearranged to give the
following expressionsi-
2
1 4, _':«'L ‘—‘htl * oo 8
where =< = thermal diffusivity of fluid,
= k/oC
/0y

Eq.(8) was used in this work to determine experimental

results. The results obtained were then compared with

predicted solutions.
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