CHAPTER VIT
' CONCLUSION

From chapter VI we have the response kernel
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For weak-coupling limit is small compare to
and UJ , So we can neglect the last term in B .
Now let us consider 'the function
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the function ( 7.7 ) can be written as
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Locoking at Fig. 10,/ we see that this function is small compare to

one if X 7 &
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TPor Hranaition netal s U~ 2.5 ev ; E fv-g A
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Nee> VT ~ g lev T, ~ 1-10 °K', 9.5 °K for Nb and 4,5°K

for Ta.

From Memada, H., and F. Takano, ! Self- Consistent Treat-
ment of Anderson Model and Magnetic Susceptibility ", Prog. Theor
Phys. , 43 , 1458 ( 1970 ). and Parks, R.D., Superconductivity,

Vol. II, Marcel Dekker, Inc; New York 1969.
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This happens when
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If we now essume that B )/ 5 we can neglect the C

2
term appearing in the denominator of ( 7.9 ) since ( is nothing
but the function- y shovn in Fig. 10 and goes to zero when
inequality ( 7.8 ) /Ais satisfied.

Therefore, close to Tc’ the response kernel is
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Iﬁ both cases, the response kernel is independent of .L, .

Therefore if we take the Fourier inverse of
- : ,
Jckb v Qck) AckD ( 7.12 )
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where the constant is >( 7«10 ) if ‘32 is small and is ( 7.11 )
if Bz is large. :

From Eqii{=t13 ) ana ioné?n Theory of superconductivity
( see Sect. IIIwé an@ " 3 o Y I Qe conclude that near Tc’ the
s~ electrons algo goes into superconducting phase.

Therefore the iransport properties of transition metal which
are mostly due to the s~ electrons in normal statelshould not
change abruptly when changing from normal to superconducting state
at T . This behavior has been foungd experimentally in several

b C

researches., For example we show the result from the experiment of

’

Connolly and Mendelssohn2 in Fig. 11. In this experiment,

\.

"
2Connolly, A. and K. Mendelssohn, Thermal Conductivity

11
of Tentalum and Niobium Below 1 'K Proc. Roy. Soc. Lon., A 266,

429 ( 1962 )
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C
ks = Thermal conductivity in superconducting

state

K, = Thermal conductivity in normal state

Fig.11 Thermal Conductivity of Ta and Nb .
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measurement of thermal conductivity of tantalum and niobium have
been done for both the normal and superconducting phases. The result
shows continuous change at T,

Experiments on ultrasonic attenuvation also show this conti-
nuity. Fig. 12 shéws result from the work of LevyB.

If the attenuations were discontinuous at Tc the slope at

that point should be infinity.

"
3Levy, M. and T. Rudnick, Ultrasonic Determination of

"
the Supercvonducting Energy Gap in Tantalum  Phys. Rev., 132,
1073( 1963 )
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APPENDIX A

GREEN’S FUNCTIONS

The retarded double - time temperature dependent Green's

function is defined as 1

LAchr; Bt = -?9(}-%’)<{hd>s Bd’)}> (A1)

where
1. < ~ ra g> denoﬁes a grand canonical ensemble average
; - B En
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2. @c.i-%’)}is the Heaviside step function

: "‘. 1 " X0
Gle ‘
- 0 y %<0

3. { --1;'} denotes an anti-commutation relation.
’ N
4., Ac‘!’) ,BC.-‘) are general products of particle creation
and ammihilation operators in the Heisenberg representat-

ion. The time dependence arises from
!
L

Acl) = e A e 3 k=1

"
1Me.'l:suba:z*a, To, A New Approach to Quantum Stetistical

. "
Mechanics  Prog. Theor. Phys., 14 , 351 ( 1955 ) and Abrikosov, A.A.
et al , Quantum Field Theoretical Methods In Statistical Phyeics,
end Ed., Pergamon Press, Oxford ( 1965 ) Chapter 7.
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where = H-_MN s N is the total

number of particles opertor and//M_ is the chemical
potential ( for temberature near o° K S = E?F )
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substituting ( A.3") and ( ;.4‘) into ( A.2 ) yiglds
ﬁl}( &heh; By o Sekth{{neh, by -ioc-th ({Iach, H], 3}

S ABICheh, BB o+ 1, 1T Ry (as
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This equation is called the Green’s differential equation .

If we now introduce the Fourier transform of the Green’s function
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and substitute it into Green’s differential equation, we obtain

the algebraic equation
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The special case of A= Ck and B

one particle Green’s function e C#}‘7 o The equation (A.7)
) = k’w
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gives & prescription for calculating these one particle Green’s
“TrAn +
functions. In the case that C| , ¢, are fermion operators, we

find
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The Green’s functions satisfy a set of coupled eguation. The
< -‘ 4 W ' i . .
funetion 4;{{{1,“3'38760_; contains higher order Green’s function
tharn Q I},B})w « This hierarchy of coupled equation connec-
ting the Green’s functions of higher orders is exact s but 3 in
general, @Goes not terminate im'a fimite set which would allow an

exact solution. One usually introduses some approximation in order

to decouple thisphierarchy of 'equa'.?ti.cms to obtain a finite set.
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APPENDIX B
THE HARTREE FOCK APPROXIMATION

The Hartree Fock approximation cen be written in the form1

]

PBCD = (ABYCD + {CDY B - CRCYBD- LEDIAC ( 31 )

From Eq. ( B.1 ) the Hartree Fock approximation for Coulomb repul-

sion term can be written as
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where

Ay = -ULdpdyy

In equilibrium <n56> = <;Y},_5> s thus the Anderson

" T
1Shiba, s g ‘A Hartree-Fock Theory of Transition Metal

"
Impurities in & Superconductor , Prog. Theor. Phys., 50, 50 ( 1973 )

Abrikosov, A.A., L.R. Gorkov and I.Y. Dzyaloshinskii, Quantum Field
Theoretical Methods In Statistical Physics, 2nd Ed., Pergamon Press,

Oxford ( 1965 ) Chapter 7 .
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Hamiltonian ( 5.1 ), in the Hartree Fock approximation, becomes

BT . kZ e‘,c,,mc,ur + 7 CE 4 Ud) c%fdds
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Similarly the BCS coupling term,
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in the last step.

To get the Hamiltonian for superconducting transition metals
in the Hariree Fock approximationiwe add ( B.3 ) into Eq. ( B.2 ).
The result is
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