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CHAPTER IV

MICROSCOPIC THEORIES OF SUPERCONDUCTIVITY

IV.1 The BCS Theory

This theory\was proposed by Bardeen,'Cooper, and Schriefer

in 1957 1 and is briefly reviewed in the following sections. The

theory based on the idea of Cooper & who showed, in 1956, that the

effective attraction between eleetrons near the Fermi surface, due

to electron-phonon interection, must lead to bound pairs of electrons

‘IV.1.1 Instability of the Normal State in the Presence of an

Attrwmctive Interaction.

3

It has been observed” that the critical temperature of super-

conduetors Tc varies with isotopie mess M. The experimental results

may ke fitted by a relation of the form

"
1Bardeen, J., L.N. Cooper and J.R. Schrieffer, Theory of
Superconductivity Phys. Rev. , 108, 1175 ( 1957 )

. 1
Cooper, L.N., Bound Electron Pairs in a Degenerate

- "
Permi Gas Phys. Rev., 104, 1189 ( 1956 )

"
3Maywell E. Isotope Effect in the Superconductivity of
1"
Mercury  Phys, Rev., 18, 477 ( 1950 ) ; Reynolds, C.A., et al

* Superconductivity of Isotopes of Mercury Phys, Rev. , 18,
487 ( 1950 )
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/2 T; = constant (4.1 )

M
( with the exception of several transition group which the isotope
effect is much smaller or hearly absent ).

The fact that the isotope effect is M1/2

leads one to con-
sider electron-phonon interaction as the mechanism responsible for
superconductivity.

The indirect electron-eleciron interaction via phonon field

can be written as4
y & w; L
H =‘DZZ, E—,C 0,0 C(42)
7 kk (ek-ek_})-wg Kig W g e
whers D = the interaction constant \

Q% =/ energy of & phonon
E = energy of an electron. ’
This interaction is shown in Fig. 7 .
The electron-electron interaction ( 4.2 ) is attractive
- (6 3y and
1g 21<| < |

repulsive otherwise.The screened Coulomb repulsion is less import-

( negative ) for excitation energies fgi

ant if the interaction constant D - is sufficiently large.
Assume for simplicity that in superconducting state the
attraction is dominant when
... : oo . ( 4.3)
F D<g/< )g/tizi<gp b >
where ¢%, 1is Debye energy.

\

4

Kittel, C., Quantum Theory of Solids, John Wiley& Sons,
Inc. 1967, p-152 '
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Fig. 7 Electron-Electron interaction through the

Yattice phonon
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The repulsion reglon of ( 4.2 ) is of 1little interest, so it
can be droped from the Ham:.lto'ua.n and one can write ( 4.2 ) in the
form |

+ T
H=—VZE k+g,kl l‘gk 3 ( 4.4 )
where the summation over q is only in the region ( 4.3 ) and
V is taken to be a positive constant.

The first suggestion that unusual properties would result
from attractive interactions in a Fermi gas was made by Coopers,
who proved that the Fermi sea is unstable with respect to the forma-
tion of bound pairs.

The instabilifty c¢an be understood by considering two particu-
lar electrons of coordinates 'SE,I and '522 . Consider only states
where the center of gravity of the pair is at rest; the wave func-
tion of the .two electrons, in unit ¥olume . X y ic then only

oS =)
afunctlon of x - X

2.
Expand (X in plane waves
[ ~J .
PR (R =%y ) |
'X(‘?’,-i;z)= Z ? e ) 5 ( 4.5 )
0 k
%12 is the probability amplitude for finding one electron in the

plane wave state of momentum #72 and the other electron in the

state -—'}’1 E .

Includlng the electron-electron interaction ( 4.4 ) in the A

Hamiltonien of the problem, we get

Ssee Ref, 2
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Now if /\ is the eigen\(alue,
) X Rk - o,
- so that on taking a matrix element we have the secular equation;
with €, = /<2/‘n') ;

0 ( 4.6 )

(€=M g, + } gk,<1< k}u}k ¥
whereI(- }c.,.?_ ' .—L ~ -k’-?‘

¥ }0(6) is the density of two-electron states k, =k per

un1t energy range, the secular equation becomes
. | 2/ ! ’ VAT
(€- »)3&7 ¢/ |depeer gerel Fle) -0
In sgreement with ( 4.4 ), we take, with V positive
" !
CEVH)ED = v

for energy range iCUD of one electron relative to the other,
outside this range the interaction is zero. Let us suppose the
packet ( 4.5 ) is made up of one electron states above ihe top of
the Fermi sea between €F and QF + &, or between k_ and

p F
km s Where km is defined by

4

1 3 _ ' .
Ql'm(kvn' kF ) - €~ Er D

Then the secular equation becomes
)

v dslf(e') 3(6’) - G ( 4.7 )

i

(en)9e)

Va28r
G constant, independent of £

or
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" 0{, }0&9)
A

F‘
where the limits refer to the pair. Over the small energy range

= 0 (408)

d !
involved one may replace (e’ by the constant , the value
F

at the Fermi level, so that

- 2e ’
._1__ = ) CJE, - /ﬂ °?é;7" >\
@V d—\ i&—%
A - 16¢ /Y) Kém - 26 + A

A4

where we have written the lowest eigenvalue >\oas

N

2527/ ( 4.9)
Then

A ey

( 4.10)
VEN
i

]

=1

This is the binding energy of the pair with respect to the
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Fermi level. We tave thus found that for V positive ( attractive

interaction ) and weak interaction limit, 42\/ K1, ve lower

the energy of the system by exciting a pair of electrons above the

Fermi level; therefore the Fermi sea is unstable,

IV.1.2 Self-Consistent Solution for the BCS Hamiltonian6

The Hemiltonian which describes a superconducting state is in the

form

\

L]
6Bogoliubov,N. A New Method in the Theory of
"

Superconductivity I JETP , 7, 41 ( 1958 )
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If we write

4, - *%, iw Sl
the Hamiltonian becomes \
4 o . ok
H = /QZGéACkrc/%_—%(AAc/dc'HJrAkC_HCH)( 4.12 )

where we neglect the terms of products of four Fermi- operators

( Hartree Fock approximation )

Next we transforms Eq. ( 4,12 ) by using the Bogoliubov

transformaiion defined as f0llowings,
Ck’ = UAYbO g (J’ ‘b/k

2

¥ ; (4,13 )
S =~ P Y,

where ﬁi, '?% are-Fermion operators, and where the coefficients
(]
_L%_ ’ I9k are chosen to make the Hamiltonian diagonal, ‘that is,
+ 4
they are chosen to make the coefficients of BL ZL’ and ?L|}’k
- o

in the Hamiltonian vanish. This latter condition requires that

,gck Uk A A/z U/z = 0 ( 4.14 )

Since the Eq. ( 4.13 ) represent a canonical transformation,
3 5
the commutation relations between the Ts being the same as those
"
between the C s s we have the further constraints on the constants

Uk s El\that

i
-

; 3
| U]+ | U] ( 4.15 )
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Eq. ( 4.14 ) and ( 4.15 ) are sufficient to determine 62

and tr in terms of A | . From the imaginary part of eq. ( 4.14 )

k

we find that Aﬂt%AJ is real, and hence eq. ( 4.14 ) can be written

’QCkIUWhl +,A|J[lok]2— lurkﬂ . B
From this and eq. ( 4.15 ) we then find
2
[ I7= 31+ &/ey)
| ' ( 4,16 )
)
_ ' B l = (1 - fﬁ//Ek )
where
9 )
Ek = ( Gk +, Ak,2)4 ( 4,17 )

Now

+ constant with no
o k) "k ) :

. 3 b,
H - ZEG Y +Y Y
ke
Je
: operators ‘
( 4.18 )
Since the operators ); ’ 78&! obey the Fermi-Dirac
o
commutation relations, this Hamiltonian describes independent

fermions with excitation energies laho

. The physical observed quantities are the statistical average,

h) Ty[eﬁpc—p H) AJ/’;} exp C-pH) y

so that

]

),

,Z;’ Viur & [@p C*F*”(C.HCM)]/T,Z Sxp CRHD

DLy

- +
) "2’ Vip! T Lexp CPOC D0,y Y, + %&45;,2’)27:)]
k | exp #)
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35,

where f%f)is the Fermi-Dirac distribution function,

fee)

A, - R% V/#l,' (r- 2Pcs,g) | ( 4.19. )

i

'
A exp CBED +) ] | oy

From eq. ( 4.19 ) and the assumption

Vig = v €l 16,1 (e,

= O’ .. otherwise ,

one gets the equation for Tc

ko

B e

10’3 j;’wb e"‘f [.— //N(‘&? V ] " ( 4,21 )

N(G) = density of state at Permi level

Al.so one can get the gap parameter

: /
& SNCFsy g 72 ,
il A ; ! .
w4 7 77 ( 4.22)
Awy = ke exp (L Neo V) £ dzs )

Since the energy of an exciﬁation is ZE s for the simple
model we have been discussing'there is & minimum energy required
to create a new excitation, namely, 4 . The new excitations are
created in pairs, thus the minimum energy required to create exci-~

tation from the ground state is
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IV.1.3 The Green Function Method ( T = ¢ ) 7

The effecfive Hamiltonian
| hi Tel e
H - Eébcksck “V/;', By -k e

may be written in the form

Ho - gwe Yortrnmds,

+ T
where ( q’ Y ) = q& qiL s and the particle field operators

» \P{F7 . \P (F) in the Schrodinger representation satlsfy the usual

commutation relations

( 4026 )

*\J IT\JI
{(Pcw) WL } OL(H)H;;CH = 0

Next, we gw ovex to the Heisenberg representation, in which
¢ ~

the operaftors 1? and 1yf depend on time and obey the Tollowing

operator eguations

I
o

Lo DheyyaE_ o~
) UK
('é%f + %)Wm -V ( li](x)u’lcm)l}’q\)

(z‘gf.- ;)W&Dﬂ- V l/)cx)(lf’m‘/’m) - 0_

where Xx= x,t ,

. The propagator C; (m)f) is defined by
A

7Abrikosov, A.A,, L.R. Gorkov and I.Y. Dzyaloshinskii,
Quantum Field Theoretical Methode In Statistical Physics , 2nd Ed.,
Pergamon Press, Oxford ( 1965 ) Chapter 7 .
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G ¥ = ) T{ Pt } ( 4.27 )
AP - ik < ZO\) FCx J >
where T is the Wick chronological operator and < i % £ >

indicates an ensemble average over the ground state.

The anomalous Green’s function is defined by

, 2 et-1") » o
, i
‘{;Cx,%’)= e y (Tz‘sgm 7/fpw} > e
+ , \,ZLUC "£) (\.,4- a 4.
Lyov e (T ¥ Yia]y

1

‘//;( = chemical potential ( in our case /LL = Fermi energy )
The ensemble average over ground state means an N‘- perticle
ground state ou the right and an N + 2 - particle ( N -~ 2 - particle )
( +
growat state on the left for F ¢ F )
Since we are/dealing with Héisenberg operators, we have, for

any operator & , the relation

r A
TN
Also we have
~ ~ . + 17
< BT SV W eer s
and +; %Cﬂl) %C‘U o C/~7[)
g%@ch“): Sel-) - —&cittt)

So we can get the equation for G, and F as following( assume
that it is a homogeneous problem , - G/CKQX,) depends only on the

b5 /
coordinate difference % _ % )

ovc Y
( 4.29 )

5 . ‘ .,
C'é% + }m)@‘cx-x') —1VFo9) Fex-¥)

O

]

) + . i
C’S% ¥ ;m '}“> Fexdy # 1V Feoty Gexo)
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where 5:(0»«') - & </V+.,z/ ?&a) IPF w [N

Finally, taking the Fourier components of

we obtain

2 2 . _ +
Ceo- Plam) G‘C/na) -V Feot)F )

these equations,
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= 1
-4 ( 4,30 )
2 -+ : ;?+ + - 0
(o + F/ll‘h"e%) F(fw)"’lv (o )d(/ow)
Since we measure energies relative to the Fermi level, we
~make the transformations
Cp . ‘ Pz
= (CSats - = L - = o
to get
A y \ +
oY) G’(fw, tIV Ret Fepeoy = 1
:\-\ ( 4032 )
t o, 1
Cor + \g ) F{;ow-) +1V F o) d(/ow) 0
g
( tke prime on'' s has been dropped )
Solving ('4.32 ), we obtain .
| b ¥ g
“IL :qwﬁ 9 Loz_ 2 ¢ Aiﬂ
i : : : fﬁ . ( 4.33)
L —V Feor)
N : Fc o) T K]
| _ . r e mpo A,
~5 3 2 -+
¥ where A" = V* | Fler))? ( 4.34)
-y
b The positive pole of the propagator give the energy spectrum
n of the system, so that
‘ﬂ? . ‘2 \
: 4
S ‘ | EF = / ¥ o+ 4 ( 4.35)
N )
& This spectrum has a gap
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AO | = 2 #COD ey/y ’
“where = Z = \/"’l% = VN(o), ( 4.36 )

vhich is the same as ( 4,23 )

- IV.2 sMW Theory

Experimental investigations of the specific heats by Sung

and Shen8 led a number of workers to postulate the existence of

‘two energy gaps in transition metals as a mean of éxplaining their

findings. Lafer, two gaps ‘were observed in tunneling and other
experiments by several workersg.

To take into account ‘the two-band structure of the transition
metals Suhl, Matthiag and Walker1o had proposed & two-band model
of superconguctivity ( SMW theory ) and it was shown that two energy
gaps would wesult., If these two bands do not interact the problem
is separable since esch band cen be treated individually, So super-
conductivity can result if either band possesses a mechanism giving

pairing, in the BCS manner. Two transition temperatures, and two

n
8Sung, C.C. and L.Y.L. Shen, The Specific Heat of Supercon-
" )
ducting Transition Metals , Phys. Lett., 19, 101 ( 1965 )

9Hafstrom, J«W., R.M. Rose and M.L.A., Mac Vicar, Phys. lett,

30 A, 379 ( 1969 ) ; Hafstrom, J.W. end M.L.A. Mac Vicar, Phys. Rev,
B 2, 4511 ( 1970 ) ; Mac Vicar, M.L.A., and R.M. Rose, Phys, Iett.,
26 A, 510 ( 1968 ) and Tang, I.M., Phyvs. Lett., 35 A, 39 ( 1971 )

1"
10Suhl H., B.T. Matthias and IL.R. Walker, Bardeen-~Cooper~

Schrieffer Theory of Superconductivity in the Case of Over]aplnn

Bands ", Phys. Rev., Lett., 3 , 552 ( 1959 ).
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energy gaps, can result from such a model if both bands can form
pairs. However, if the two bands interact, even if slightly, the
lower traﬁsition temperature disappears1o.

To apply these ideas to transition metals, one must note that
these metals have two bands ; the d-band, which is narrow and hence
the density of states at its Fermi surface is large, and the s-band,

which is wide and hence the density of states at its Fermi surface

is small, In the SNW model, which seems most appropriate to the

transition metal superconductors, we find two energy gapsl Zqﬁ'and
Ay s such that Aol> As ) but'*only one transition temperature
since there are non-zero interband interaction present.

It is important to mote here that the two-band i&eés do not
smoothly ©o over to the one band model. In transition metals, meas-
urements of mean free paths in the normal state are gererally made
by observing transport ﬁroperties »This means that these measure-
ments yield values for the electronic mean free path of the s-band,
the Iightexr electrons. However, when a trénsition metal superconduc-
tor is analiysed within the one-band model, the energy gap which ie
computed must be the larger of the-two gaps, the d-gap. Hence it is

not suitably to use values of the mean free path deduced from

transport properties in conjunction with value of the energy gap

deduced from properties of the superconductor, as these quantities

do not belong to the same eléctrons.
The Hamiltonian .of SMW theory is of the form
8
H Zélqs ho’ lz +Z C)fzol a;ﬁzs‘ \' 2 C -lz} '14’4CAI7G
Vauz s /eid/%dl/ef

( 4.37 )
LA
4 sdkz;z/(ckrc—k&oé—}?'4db'1‘ +d’/erd{/<¢c'l?'ircl?'7° )
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where é)zs’ élzd are s- and d- band kinetic energies, and C+,
¢ and g, A the éorresponding creation agd annihilation
operators. V,, , Vdc( , and VSC[_ are the averaged interaction
energies resulting from phonon emission and absorption by g-% ,
oL' c‘l s &and "J—C»{ processes, minus the corresponding shielded
Coulomb interaction terms.

| Assume, as in the BCS theory, that the summations extend only
over i? values corresponding to energies within a distance *’ACAT
of the Fermi surface. ( Res is of the order of the maximum

available phonon energy ) SMW showed that for this model the energy

specirums are,

JTH 2 44
E/es = (eks r A/?)

3 ; ( 4.38)
Ekol. ~ (éhd. + B )
where the energy gaps
A = Vel Do+ Vi S
: ( 4,39 )
B e VD VLS
and
D = _'}g sin ¥ [ 1- ”0752 CE) T ( 4.40 )
g = 2’% sine, [1—‘.2756553)7 (4047 )

The transition t\'emperatures are given by the equation

kT o wghes e {' [M\/AVS&( 3 (- Nsvss\:l""
g'c = b4A P (Vzl“VssVd.))/"s/\/a(

i(NJVJA K /\/s\/,ss )J

( 4042 )
ML (Ve - Vg Vi)
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where Ns ’ Nd are the densities of state in the s- and d- bands
near ‘the FPermi level.

The variation of energy gaps with temperature is shown

- schematically in the Fig. 8 .

The SMW model of superconductivity is however not generally
accepted. The objections to the SMW model by most theoriest in the
fie.ld centers on the question of what are the mechanisms responsi-
blé for the stirong attraction between the s-electr‘pns.. Since the
density of states of the s-band is very small at the Fermi surface,
tﬁe interactions Vss’ vsd y and Vds must be very large. Otherwise

NV in Eq. ( 4.42) c¢an be neglected in comparision with the NdV

s 88 daad

term. Thus we need vss» vdd o
At the present time, none of the proposed interaciion mecha-

nism will lead %o an dnteraction which will give L > Vag ©



Fig. 8 Variation of Energy Gaps with Temperature
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