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CHAPTER III
PHENOMENOLOGICAL THEORY OF SUPERCONDUCTIVITY

The macrpscopic chéracteristics of a superconductor have
been the subject of a number of phenomenological treatments of which
the principle ones will be discussed in subsequent sections of this
chapter. A thermodynamic treatment and an associated two-fiuid‘model
were worked out by Gorter and Casimir. F. and H. London developed
é model for the magnetic behavior which is based on a point by
point relation between the current density and the vector potential
associatéd witha magnetic field..Pippard modified London theory
aﬁd obtained a nonﬁlocal>integral relation befween the current den-
sity at a point and thevvthor potential in a region surrﬁunding
the point. Gingburg and Landau have used a thermodynamic approaqh
to develop anAalterﬁate and evenrmore useful method of treating the
coherence of the superconducting wéve functioné; Their treatment
explicitly allows for spatial variations in the superconducting
order due to size>and magnetic field effects.

A successful microscopic theory of superconductivity has

kY

been developed by Bardeen, Cooper, and Schrieffer.It is based on

the fact, established by Cooper, that in the presence of an attr-
active interaction the electrons in the neighbourhood of the Fernmi
surface condense into 'a state of lower energy in which each electron

is paired with one of opposite momentum and spin.
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IIT,1 Two-Fluid Models of Superconductivity

The thermodynamics of a two-fluid model of superconductivity
was worked out by Gorter and Casimir1. They assumed that below Tc
the metallic electroﬁs could be divided into two distinct groups.

A fraction x were assumed to condense into a superconducting

aggregate, while the remainder ( 1 - x ) remained normal. Since the
phase transition at Tc is of secénd ordér, x is assumed to be
unity at T = O and decreasing continuously to zero at T = Tc. They
_ then assumed a free energy expression of the form
KD — = xF (D) _+ (1-x)" F (1) ( 3.1)
| where
| AN *.;.‘6T2' | o 3.2)
L\ as in the normal metalz, and
| F(M = =H/8 5 H =H (T=0) (3.3)
8 » 0 0 c .
i ' The: last expression is based on the fact that supercurrents
| carry no entropys. They fbund best agreement with experiment if
& the exponent r is 1/2. Minimizing the free energy with respect
ﬁ K to x ,-and using the condition that x =0 at T = Tc’ one gets
il the following relations
?
X b
¥
b* 1Gorter\, C.J. and H.B.G. Casimir, Physica , 1 , 1934.
§ quoted in Chandrasekkar, B.S., Superconductivity , Vol. I, Edited
4 ‘; by R.D.Parks, Marcel Dékker, Inc, Wew York, 1969, p.24 .
~3 2Tinkham, M., Superconductivity , Gordon and Breach science
) publishers, 1965. p. 4
2 3 Ref. 2 p.4
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which are in good agreement with experiment. The two-fluid model
in superconductivity has had only limited successsince this model

was set up so as to have the observed thermodynamic properties. It

 did not provide information about the electirodynamic of superconduc-

tivity.

I1I.2 London Theory

To account for the electromagnetic properties of supercon-
ductors, in particular the Meissner effect and the existence of

persistence current, F. and H. London4

proposed that Ohm’s law,
which relates current density end impressed field in normal metals,
be replaced by some other relations connecting the superconducting
current with the fields in the sugerconductor. They also assumed

that the current in a superconductor , J , is composed of a super-

current Js and a normal current Jn. The electrodynamics of the

superconductor are then embodied in the following equations:

"

4London, P. and H. London, The electromagnetic equations

1" °
of the supraconductor , Proc. Roy. Soc. London, A 149, 71(1935 )

~
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curlcajy - = - S (35)
D (AT - & | .6
2 (A (3.6)

J - I * I ( 3.7)
.j" - 6 e ( 3.8 )
_/L = ﬂ#ne& " is the density of electrons
along with the Mexwell equations,
AT T 1 C(D__é
CU"‘/ ‘h‘ = . —E ] + E _(_ ( 3.9 )
&= L =_1.97
curl c ot ( 3.10)
div.# 2 (@) ( 3.11)
MVEL 4T P ( 3.12)

where 6 is the normal conductivity,,dis the electric cherge density,
and E§ andli% are “the tocal fields. One can show that for the
quasi-static case, these equations:-lead to perfect conductivity and
the lMeissner effect as follows.

- Combining Eq. ( 3.5 ) = (.3.8 ) yields

-c cuv¥lA ] = ‘h + 6N QN ( 3.13)
2 3
a-(ﬂj) - € +oA QF ; ( 3.14)
: er T 8qﬁ =
C CUP/(UYH? = -(K + 4TS Q@_f + 8,77,) ( 3.15)
- - ) 24
Carlad 8 o 4T+ s E e
X ~3 ) 20
Q v r
deorl 7 - _cal] 4 arsdI L 84,
¢ curl ] (407 4 &T+@f) ( 3.17)
¢
axg or = S (4P 4+ A4S QF ( 3.18)
o2 A A :
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Assume that there is total charge neutrality leading to the
z ~ )
venishing of P, 8y ét anddl\VJ; and static conditions, so that

all time derivatives vanish. Using the cartesian identity

curl -curl = grad div -Vz\

13

along with Eq. ( 3.9 ), one gets

ANV yi Wl ) ( 3.19)

From the Eq. ( 3.10) curlé\ = 0, and from the Eq. ( 3.16)
E = 0 . Thus the electric field in a superconductor vanishes,
even though the electric current may be nonzero. Thus the London
equations imply perfect conductivity. The vanishing of the field #
inside a macroscopic 'superconductor ( Meissner effect ) is contained
in the Eq.‘( 3.19), which along with ( 3.5 ), ( 3.6 ), ( 3.7 ),

and { 3.8 ) known as the London equations.

ITI.2.1 Solutions of the London Equations >

(a) Plane superconductor -/vacuum interface : Le% the plane
be @t the x- axis and positive _x being the superconductor. Assume
that }72 = }79 8L o X150 e 508 I)‘= /)7= O -« Then the physically meaning-

ful {[,z-» 0 as x —=0) solution of Eq. ( 3.19) is

/?z = /7 exp C-%/N) ( 3.20)

) 2
where W = ( -A.C/ 4T )1/2 , showing an exponential decay of

the field with a characteristic distance )\ , the penetration depth.

‘.

5Shoenberg, D., Superconductivity, Cambridge University

Press, 1960, p. 234.




O% > »r B> N o < D ® T =

23

(b) Flat slab in parallel field : Let the slab be of

thickness 24 along the x- axis, AZ = Ao at x = : d ; and

AY = h, = 0. One then gets the solution

h, - cosh (x/x) ¢ 3.21)

o cosh CA/N)

(c) Sphere and circular cylinder : For a cylinder of radius

Tos in an applied field l% parallel to its,axis

hey = b Te <P/ ( 3.22)

® o CB/N)

—

where lv is the Bessel function of imaginary argument.

IIT1.2.2 London Kernel6 : When one introduces a vector

~
potential /) for the magnetic field 7 .
hecwd curl A | ( 3.23)

then equation ( 3.5 ) is satisfied by

-

Jo = =G/AC)A ( 3.24)
th " =
The q Fourier component of f and Js e therefore
related by
: ) i}
153 = _V(f/AC) Acg) ( 3.25)

, Suppose we now wish to obtain the magnetic field as a function of

position, taking into account the distribution of shielding currents,

6Chandrasekhar, B.S., Superconductivity, Vol.I., edited
by R.D.Parks, Marcel Dekker, Inc., New York 1969 P.33
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for a superconductor with a plane infinite surface in the yz -
plane and extending‘ih the x- direction. The simplest mathematical
model is to considef thé field }7a as .produced by an external current
sheet j“e in an infinite sﬁperconducting medium in the yz- plane
and along the z-direction, producing a magnetic field })a in the

N

y- direction; let js be the supercurrent response. We can write the

Maxwell equation , :

curl 1'.7‘ - r/c) J
for this case as ‘
93 ' ]
\ <A S s C et Js ( 3.26)
ol §a ' I
Then\jA and J will B¢ in the z- direction. The quantities /) , Je

and js all vary along the x - axis, and each may be expressed as a

Fourier integral like

2] :
Ao A J 5‘5’37‘1" cigx) g ( 3.27)
= ES

Equation ( 3.26) may therefore be rewritten | |
,%‘95%) - -M[/c)j;cg.) + Ko /Z)_\ij ( 3.28)
where we have defined h(ﬁby
‘75(}) & Ld V(A?f/() l’icg)/tj(’;) ( 3.29)

Note that for the London case, by comparing Eg. (3. 29) and

( 3.25), we get /’il(zﬂ?, the London kernel, as
ey - 47/( A <) ( 3.30)

Thus the London kernel, as defined above, is independent of g- .

We shall see later that a more realistic description of the
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electrodynamic properties of superconductors is obtained by using

the Pippard kernel, kﬁﬁu which is a function of 8..

-III.3 Pippard Modification of London Theory

ITITI.3.1 Pippard Coherence Length and Nonlocal Relation :

In 1953 Pippard7 measured the penetration depth in a series of
dilute élloys of indium in tin, and found that the decrease in the
normal electronic mean free path of the metal was accompanied by
an appreciable rise in the value of >\ ( Fig. 6 )

The London relation for the penetratioﬁ depth,

' >\l = ( mc2 / t‘l,’ﬂ’nse2 )1/2 .

gives wmo indication/at all that dilute alloying should give a
siénificant change of ); s since m and hs should change
only #lightly. We note that the rapid variation of A begins at
about where it is comparable to /[ s the mean free path.

Pippard wmé mﬁch impressed by the resemblance of his results
to thowse on the anomalous skin effect in normal metals. In the ano-
malous skin effect, as soon as the mean free path in metals becomes
comparable with the skin depth, thé skin depth varies rapidly with
free path. This is accounted for in normal metals by the nonlocal

relationship between the electric field, E it ( at low frequencies )

\

"
'7Pippard, B An Experimental and Theoretical Study

for the Relation between Magnetic Field and Current in a
1"

Superconductor Proc. Roy. Soc. London, A 216 , 547 ( 1953 )
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Pig. 6 Variation of penetrationdepth with mean

free path in tin dilutely alloyed with indium.
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and the current densit& it inducesB, W
“ iy 5 s 7 .‘.E = R/
J (Fof) 4371 dv’ Fl[f;Z4 ] . ( 3.31 )
B RV "

Here JZ denotes the electronic mean free path and & the dec

conductivity. Pippard9

probosed that London’s local relation between
-3 = N ’
J and A should be replaced by a similar nonlocal relation of

the form

%

ah . o NV s :
(b = o’ RIRAHT e
J‘ b= R*

where o and'?g are new parameters. It is assumed that the vector

( 3.32)

poteritial is transverse. If in analogy with the equation between
-3 e~ ] &

J end F , we assume that paremeter E; depends on the mean free
path and that, for slowly varying fields, in pure specimens, the

equation should reduce to that of London, then we obtain
% ol
LSRR = ) ;

here E;D is the wvalue of &g for pure specimens. The equation for

the current density is now

o | ) BB Nk 1 —P)
o - D (et dr RERATDT 7% 4 4y
5 475; 94

b}

"

8Reuter, G.E.H., and E.H. Sondheimer The Theory of the
v "
Anomalous Skin Effect in Metals  Proc. Roy. Soc. London s A 195,
336 ( 1948 )

S Ref. 7 ' .
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Even in pure metals there is a nonlocal relation between
current density and vector potential which depends on & new para-

meter ?,, « According to equation ( 3.33 ), any local disturbance

is spread out over a distance of the order of }) o This was inter-

preted by Pippard as meaning that any disturbance of the wave

function would spread over this distance and that electrons tend

to cbhere over distances of the order of ? « For this reason he

called the length ‘g the coherence length.

II1.3.2 Pippard I('ernel10 : If we consider a semi-infinite

~J

“superconductor bounded by the yz-plane, wii':h a current js flowing

, =
in the z- direction, t\ in the y-direction, and A in the z-direc-
tion, then in terms of the qJCh Fourier components of the field

N ~
quantities js and/p /y/we have , from Eq. ( 3.33 )

\J
VIIRa i Zev&PC-V/f)e”’(’ﬁ")dz( 3.34 )
3.5 A z |
ATC. r

The intergration in spherical coordinates leads to an

expression for %he kernel hpcg)defined in terms of Eq. ( 3.29 )

=_§..?___[-“ oY 0% . [( 3.35 )
KPCP SX 4(3;)3“ Z'}:)mﬁ £¥ ] '
From this exp:r'ess1on for /{ (;), we get the following

limiting forms of JC&)

A e
; jscz) = -E. __%) 4 ‘Z__}Q+ 9 ( 3.36 )
‘f@ CA 5

y—ro

1osee Ref. 6 p. 39
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‘ T
3 fepr ), 4 £ ave T 3 ( 3.37 )

S Y AT

and the penetration depth

A Al(fo/y)'/‘ ; SL N ( 3.38)

Z«-—roo

1/ . /
ST AL 2 |
| R wm N Gm,/}( )\L> ; f> / ( 3.39 )
Now we have the expressions for the kernels,
kfi5=- —lz ' | ( 3.40 )
Koo - /3 1 £y, ‘?“S‘«f (341 )
PSR Frp o
- ,
Ky )= '4-?—{—-4 } > (3.2
PES Sl iyt B

The magnefic behavior is markedly different according to
whe ther >\ > g’ )\[é(¥§ - In the former case, the connection
betwesn J and H is local jand, although the penetration depth
can depend on the mean free ‘path s /the behavior is given essentially
by the London egyations. Supérconductors of this type are referred
to as London superconductors or type-1I superconductors. They include
many alloys and tramsition metals. At the other ex:cjreme of \S > >\
we have to use the nonlocal relatlonshlp between j and A .
These superconductors are Pippard superconductors or type-I supercon-

ductors. The common, pure superconductors belong to this class.
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ITTI.4 Ginzburg Landau Theory

In 1950 Ginzburg and Landau11 introduced a phenological
approach to superconductivity which modifies the absolute rigidity

of the superconducting order parameter or wave function which is

' implicit in the London model. They defined & parameter uQV)which

is a measure of the order in the superconducting phase, so that it
is zero for T:7Tc and increases smoothly as T is reduced below

Tc in zero field. Then the free energy density FsO(Pﬂ3w) of the

 superconducting phase in zero field near Tc caen %e expanded as

d 4
Fo = Tt LIV + g V] -enns ( 3.43)

S Do

where b(, f3 are funetions of fD and T. This equation leads

to the result

4
/(: . gecr (T T) (C(t’i) ( 3.44 )

which agrees with experiment.
This is the first success of the GL theory. The second step
that GL took was to state that, if there was a spatial variation

-
of u} s 88 well as a magnetic field H derived from a potential
~
A » then the energy density in the superconducting phase, F%H -

was given by

11Ginzburg, V.L. and L.D. Landau,JETP ( USSR ), 20,
1064 ( 1950 ); quoted in Ref, 6 p. 42
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Fy = @O+W+£»m<—rhv+ ch l ( 3.45)
T = electronic mass
e* = effective charge |, y
which led to the results
L
2 g NS Fo &FO
iy - eply 4+ S5 =0 ( 3.46 )
.zm'ﬂ gn oOY*
.)_Q\l ],‘ >
VAL -

« F ) fﬁ F r.?\, -
oezr/mc;#(;u*vyf VYY) RS VA 5

With the subsidiary conditions
dive < /g | ( 3.48 )

4 CLE
;r-\’b (“',A.VA_"

e

A) ¥ = 0 . ( 3.49 )

I ;
where ) is the unit vector normal to the superconducting boundary,
. TIhe application of the GIL equations to a planar boundary
leads to the following results, Oné can define parameters >\0'

( of the dimension of length ) and /i ( dimensionless ) such that
N7
Ao )

K

2
et aretiy

22 b oy, 0 0\
(oze“/v’c}\o/ﬁci) ( 3.51)

( 3.50 )

so that the GI equations are formally reduced to the ILondon equations

if K — 0 and %o = /), . Thus >\o becomes the penetration

depth for a macroscopic sample.
But for a thin sample it turns out that the penetration
depth becomes a function of the sample thickness, because the zf}('x)

needed to minimize the free energy depends on sample dimension.
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A second important result that GI obtained was that,

for k «1 s the interphase surface energy density 6’;5 between

normal and superconducting phases is

6 S ¢ Nz,

ny =

S = 189 N,/ K

‘ : : d
Thus explaining the very large positive energy (>7>\,,//c /9///)

needed . to explain the Meissner e_ffect, and the structure in the

‘intermediate state. Physically, the significance of this result

was' that while the magnetic field decayed over a éharacteristic
distance )\o to a venishingly small value in_ the superconductors,
]l}l/’g decayed to zero /toward the normal region over a much longer
distamee w~ )\O/K N .

°L made the further observation that for K> Ify , G
becom=s negative. This was subsgquently recognized as defining the
diffewrence between type=T (/?.’({/J';O‘ ) and type-IT ( A T,Q )

superconductors,
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