CHAPTER I
INTRODUC TION

Classical Statistical Mechanics1

Phase space

!

Consider a system of N molecules each with g degrees
of freedom. The motion of these molecules is described by

Hamilton's equations of motion,
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which constitute 2 Ng first order differential equgtions in
2 Ns unknowns. Once/all the values of the p; and q4 are
known at any one time the motion of these molecules is com=
pletely known for all time: Thus, in principle, the macro-
scopic properties of any system can be determined by a
detailed investigation of;the microscépio motion of the
molecules constituting the system. However, if the system

‘consists of a large number of molecules such a procedure
quickly becomes highly complecated and loses its value. For
this reason, in order e obtain a description of the macro-

scopic properties of such a system, we shall adopt a guite

different proesdure,
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The behavior, in time,tof this system can be graphicalxy
?epresented by means of a single trajectory in a 2 Ns dimenr_
Eiopal spaqe‘which is determined by the 2 Ns coordinates p1,
wevs Pygr Qyrees Oypge At any time the instantaneous state of
E'bhe system is specified by the position of a representative

point in this space. This space is called the phase space or

E;ggagg of the system. Sometimes a phase space is used to
represent the motion of a single molecule contained in the system.
Such a phase space is called ¥ space.

The macroscopic/ properties of the system are thus time
averages over a segment of the trajectory in phase space.
Instead of following this procedure, it is much more advantage~
ous to follow the suggestion of Gibbs. He suggested that
instead of takipg time averages we consider a large number of
similar systems, eaeh consisting off N molecules and Ns degrees
of freedom, but whose represéntative points in phase space are
sultably random so that every state accessible to the actual
system in the course of time is represented by at least one
system at any instant of time, Such a collection of similar
systems is called an ensemble, We assume that there are so -
many‘gygtems in the ensemble that we can speak of the density
D(pi,qi,t) with which the representative points are distributed
in phase space, Gibbs' suggestion was that we replace time

averages over a single system by ensemble averages over the

ensemble at a fixed time. Thus the average value of a



function A(p,q) is,
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Liouville's theorem

We shall nmow consider how the density of representative
points changes with time, TIn cohsidering how D(pi,qi,t)
changes with time we must distinguish between its rate of
change with respect t0 /& /fixed point in phase space, which
is 9D/ 9% since p; and/q, will not vary, and its rate of
change in a coordinaté system moving with a particle through

phase space, dD/dt. These two rates of change are related by
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we shall prove that dD/dt = O, This is "Liouville's Theorenm',

Thue the density in phase space remains constant in the
neighborhood of a particle which is moving in phase space.
An equivalent statement of this theorem is that if ow! ig
the volume occupied at time t + A4t by the representative

points which occupied a volume oW at time t then
dw = dw! ———=(1.4)

It is this property of conservation of volume in phase space

during the motion that distinguishes phase space from any



other space in which the motion of the system could be
represented and which makes phase space important in the
study of statistiqal mechanics, As we shall see, the fact
that Iamilton's equations hold for the coordinates of phasel
space gives it this unique property.

If the system to be represented by an ensemble is ip

thermal ecuilibrium, then the ensemble averages must be in-

dependent of time, sinee the maeroscopic properties of a
system in thermal equilibrium do not change with time, There-
fore, we may reasonably require that the composition of the

ensemble be independeht ofibime, In er words,

D / o
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An ensemble satisfying Fq.(1.5) is e¢al stationary

ensemble and we shall in general b€ concerned with this type
of ensemble., It can readily be shown that if D is a function
of the energy € alone the ensemble is stationary. We shall
f£ind it convenient to work with a normalized density of
representative noints

o D(p;,a4)
p (pi,qi) 1Y ——=(1.6)

jb(pi,qi)dqi...dps
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The Maxwell-Boltzmann distribution

Ve consider a system consisting of N molecules, each
molecule having s degrees of freedom. Each molecule will
then have a representative point in the 2s dimensional K

space. We divide K space into a number of cells each of
whose volume is extremely small so that all molecules in the
ith cell have the same energy €i. TLet the number of-allowed
states associated with the) energy €, (i.e. the degenerscy of
ei) be g, . Further we suppose that the state of the system
is such that there are ni molecules whose representative
points lie in the ith/c¢elds

We now calculate the number of ways of realizing this
situation. In order to make this calculation,let us first
calculate the nuMbgr of ways of putting n, o?jects of N
objects in one box, then n, objects out of N—n; in a second
box, and so on until we have exhausted all of the ob jects,

The number of ways of choosing n1 objects out of I objects

is given by
: (1.7
o 1, t
(v n1).n1.

and the number of ways of choosing n2 objects out of N-—n1

objects is .
: - t
 (W-n, )t
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And so the number of ways of achieving this arrangement is
! e ! (9
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If all the g; = 1 this would be the number of wa&s that the
system can be in a macroscopic state such that thene are ny
molecules whose representative points are in the ith celli
But if gi is different from unity then we must multiply Eq.
(1.9) by g?i. Hence the number of ways of achieving a

maéroscopic state of phe,syétem such that n:.L molecules have

representative poinﬁs;in/the ith cell is

v Igni ¢ 7o
W = N! § _‘_;'-~ ~——=(1,10)
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We shall assume that the total number of molecules in the

system is extremelgrlarge so-that the number of molecules n

2

whose representative‘points are in‘'each cell is also large.
Under these conditions we can regard W as a continuous
function of the ni. We seek the most probable distribution
of the s which we assume to be overwhelmingly more probable
than any other distribution. To do this we must determine
the values of n, which make Eq.(1.10) a maximum subject %o

the constraining conditions:
2 = -Z'y €, = i
3oy N » §om s E (1.11)

By calculation, we obtain the most probable distribution.



e 5 o o (1, 18)

Since we have divided U space into regions of extremely small
volume to insure that every molecule in each cell has the
same energy €i’ it is more convenient to express this result

in the differential form. We do this by making the transi-

tions

e; —=*/74/(Pya) -

gi e d_q_1 ev e d ps = do') ""-—'—(1'13)
Since g, is proportional tp the volume of the ith cell. Hence,

i
we obtain for the number of molecules, dn, whose representa-

tive points lie inh.the region of [ /Space defined by the

interval (qi,qi‘+ dqi), (1.).1,;):.L +ldp;) the following,.
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We can calculate the value of (B, and obtain that
B = 1/KT w1 ,15)
where Xk is Boltzmann's constant.
Thus, BEq.(1l.1l) becomes
~€(p,q)/kT cooe
N e w
dn = e = ee(1.16)

/‘ e—e(p,q)/kT 4o



Entropy in statistical mechanics

As a preliminsery to this discussion let us calculate
the entropy of one mole of a perfect gas from the combined
first and second laws of thermodynamics

T4d8 = AE+padv —eme(1,17)

But for one mole of a perfect zas

il

C. AW pV=RT ———(1,18)
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Hence,
8§ =FPLn T £ RInV + C ————(1.19)
where C is a constants: / /If we have one mole each of two
/
different perfect gases contained in vessels of equal volume
at the same temperature and pressure, but separated by a

partition, then the entropies of the) two gases are

SA =| CV a-P-—+"R 1nlV + C

sB Ch, InT+R1InV +C e (1,20)

If the partition is removed and the gases allowed to

diffuse into one another, then the entropy of the mixture is

1l

SA+B 2 CV ¥n T +#.2 R 2 ¥V + 2C

il

2, InT+ 2R 1InV + 2R 1n 2 + 20 -=(2,21)

8j.0 Sy, + S5 + 2R 1n 2 e (2,22)

il

Thus, from nurely thermodynamic reasoning we see that the

entropy of the mixture is greater than the combined entropy



of the geparated gases.

As a result of the diffusion of the different perfect
gases we have lost a certain degree of knowledge about the
gases, since before the partition was removed, knowledge of
the position of molecule also gave knowledge of its species
whereas this is no longer true after the partition is removed,
In other words, an element of randomness has been introduced

into the system. Because of“this it is resonable to postu-

late a relationshipjﬁéﬁﬂpen the entropy of a system and the
randomness or degree Of diSOPder of- the system in the given
state. Thus,

s = /£OF) ~eee(1,23)
where VW is the number of;a-priori equally probable states
accessible to the?ﬁ?spgm; which is ‘proportional to the total
volume of accessible phase space.

If we consider  two separate systems with entropies S1

and 82 then,

n
I

£(v,) (1. 20)
-

Thermodynamics tells us that the entropy of the combined
system is

—mm=(1.25)

But, since the systems are independent, the number of a
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priori equally probable states 1 ‘
e i |
w,w, (1.26)

Thus
s1+32 = f(aﬂhwz)

The only Tfunctional relationship that can exist between 5 and

W satisfying Bq.(1.27) is
S = K'/In W + C e (1,28)
; that W is

and C are uqme conscanto. But we assume

where k'’
one at absolute ze€9, 6ﬁén the third law of thermodynamics
TLet us now evaluate k'.

allows us to set C/egual $0) zero.

From BEqg.(1.10) we %gve
n,
g.l A ]
W= 2 Wing) 22 o G i G ————(1.29)
Cni) : ni) 1 nge
AV le ¢ But
i

the summation.beiﬂé’bver'all possible sets of the n
since the most probable distribution of the ng is overwhelming-

1y more probable than any other, only the most probable dis-

will contribute to W so that

tribution of the ng
n.
g
W =N!II Si . eeee(1,30)
1 n.t
i
where —Gi/kT
Ngi e
Ne T —€_/%T
2 gi e L

Thus
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S=k'1nW=k' [1n N+ 3 (ny1n gs-1n ny !)]'—--(1,31)

Applying Stirling's approximation, we obtain

e -ei/k:T " )
h = " 1 Z . ..i;. e s o
S =k l_Nlnigle b ] (1.32)
Thus
i Y L .

But thermodynamics, informs us that

25 o
(‘5*53')\/‘ P % armeiien (4, 4 311}

and hence we have that/ k! ds'Boltzmann's constant, and this

gives the famous Boltzmann relation

S B wpesen{ 15 35)

The microcanonical ensemble

Let us consider an isolated system composed of large
number, N, of molecules having total energy €o. Since the
system is isolated the energy €o is a constant, independent
of time. In order to obtain the macroscopic properties of
this system, we must find an appropriate ensemble of similar
systems. he representative points of such an ensemble must
be uniformly distributed in the accessible regions of phase
space (to give a priori probabilities to equal volumes of

phase space)c The ‘ensemble described by the density



12
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constant €O< € < eo + 0O€ ~——~(1.36)

il

p( €)

p( €) 0 elsewhere

satisfies these recguirements. Such an ensemble is €alled a

microcanonical ensemble. Since P is a function of € alone

the microcanonical is a stationary ensemble. Thus the micro-
canonical ensemble is appropriate to represent a system of

known energy in a marcoscqp 4§lly steady state.

\\

Since the megginé ? Eﬁ%(l 36) is that the energy of

the systenm is constan , ‘that equal volumes of accessible
> 4 =4
‘phase space have eafa ﬁpr brl probabilities, the microcani-
/‘~ ¢
cal ensemble vlelds/no more 1nformatlon than we obtained by
| PREE

— B

more elementary meane & ,prex;ous section.Neveprtheless Eq.
“*-umnw_n',“
(1.36) will nrove useful in. der1v1ng the density for canoni-

- —————————————

cal ensemble whlc% lows for a relaxation of the condition

e ee——

of € being constant.

The canonical ensemble

Following CGibbs, the canonical ensemble is defined by

the density,

- &/ kT
p(€) = Ce 4 —mm(1.37)

€ being the energy of the entire system. As we shall
see the canonical ensemble can be used to represent a system
in the thermal contact with a heat reservoir.

In order to prove this point, we consider a microcano-
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- of the total syst
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nical ensemble representing a very large isolated system. We
wish to consider the behavior of a constituent subsystem of

this isolated system which is in thermal equilibrium with the
rest of the system. We shall denote the properties of the
subsystem by the subscript s, properties of the remainder of/

the total system (which acts as a heat reservoir) by the sub-
script r, and the properties of the total system by the'sﬁbsgript
t. Since the total gyggem igé§301ated its energ*,ei = €é+€f’

is constant. As the ylcsyStem is part of a microcanonical

ensemble, the pro@gb‘ :5§,djpt that the representative point
J ey ‘

;/' ,@n;géjelement d ﬂt of phase space is
ap, #/€xa ~~—-(1.38)
ot / =L
7
ommeen
for €, <€ < € % d»ﬁf_and
Ve i
d i ' N ——-=(1.39)

’
otherwise, C being a constant., We may write

afl, = af adn ——==(1.0:0)

where d fﬂgcontains only the coordinates and momenta belong-
ing to the subsystem and dﬂr contains only the coordinates

and momenta of the reservoir., Hence

dp, = ¢'a a ——=(1.41)

for €t<€<€t+d€tand

a P, = 0 e (1, 142)

otherwise.
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We seek the probability 4 p_, that the representative
[} v
point of the subsystem is in the volume element d.fg, Wi the
out specifying the condition of the reservoir but still

requiring that Et be a constant. Thus,

dp, = C'df 49 ———(1.,U43)

where A 5% is the volume of phase space accessible to the
representative point of the reservoir if the representative
point of the subsystem is in d ﬂh. Let us evaluate A f%.

P

(&l

Since each accessible state of the reservoir is associated

i m . R
with the volume h , the entropy of . the reservoir is

o s 2o
S = "% 1n r sl By E111.)
s hm

where m is the number of degrees of/ffireedom of the reservoir,

and thus,

Sk
Aﬂr ::hmer/

Since the subsystem is small in comparison with the
total system we have that gp << €t and so, using a Taylor!s
expansion, we have

0s
a - - e N - r c K
Sp(6) = Bule~eg) = §le) - (57) €y T oeees
T Eh e
———(1,U46)
Thus, from(l.45)
s 7 o A

m . . \

A QI‘ =h e exp [-( SDP/BG‘P)G . ES/k ] (1.17)

r %
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But from the thermodynamics; we have, since €, ~ Gf,

e (1 18)

m
M-

where T is the absolute temperature of every part of the
system. Then,
S./k =€ /KT
m S
AR, = he (e ) ~eem (1. 119)
and hence the probability thiat the representative point of
the subsystem be in the volume d Q, is

- 7 7///
7/ /)| =€ kT

"’:/ 5/ Rl (o [P
d p, ////94e @St (1.50)
where C is a constaﬁy/déﬁéfﬁined by the normalization condi-
/7 »
tion
~c_ /¥ o
c /}e 4 Adlce= 1 ——ee(1,51)

Equatﬁon (1.50) j&&%ifiES‘our‘statement that the canonical
ensemble represents a system in thermal contact with a heat
reservoir,

The averge value of property P(p,q) over a canonical
distribution is then

f P(p,q) e—e(p’ /T an

- [e-e(p,q)/k’f 40

T emme(1,52)

The strong resemblance between the canonical ensemble

and the ‘Taxwell - Boltzmann distribution function Eq.(1.16)

002321
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Should be noted, Indeed, we could look upon the canonical
ensemble as consisting of . a system of 'molecules! which are
weakly interacting.

In the case where the system of interest contains a
large number of particles then nearly all the systems in the
ensemble have energies which differ only slightly fron the
average of the ensemble, This makes it possible to use cano-

nical ensembles to Peprgsentfsystems of interest which have

defined energies. £

Y f
7

One further prepbrty#of the canonical ensemble 1is of
interest. If two canbﬁioal énsembles, representing two
systems in thermal cont&d@;'gﬁe coupled together, the result-
ing ensemble is again‘anangﬁieal ensemble., Let the properties

of the first systém be—denoted-—by-—the indexiand the correspond-

ing properties of ﬁhe‘§écond:§ysﬁén by the “index 2 then,
in Py = 1n.C1 e (€1/kT)
In o = 1nC, - (€/kT) wcarie(1 .53 )

and adding

i

In p, B, In 0y 0y, = [(e‘1 + 62)/kT] e (1, 51)

so that with p p1P2,43 =0 C and € = € +€

12 1 2

we have . o
in p 1n ¢ - (&/xT) —m(1.,55)

showing that the coupled ensemble is also canoniecal, . . .. ..
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The grand canonical ensenble

We imagine: the system under consideration to be
embedded not only in a heat bath but also in a 'particle bath!
and ridding ourselves of the restrdction of a constant number

of particles we shall obtain the grand canonical ensemble,

We congider a large isolated system t, whose total

number of particles and energy is constant, which is repre-
| D g ,

I/ 7

sented by a microcanﬁﬁgéa% épsémble. Let s be a subsystem

e (1.56)

As in'our”%?fggimggg:gf the canonical ensemble we have
Por the prdbabiliﬂﬁ;\a\ﬁgj“that representative point of the
subsystem is in a volume d ﬂs of its own phase space without

specifying the condition of the reservoir

a = a2 AQ R
where A Qb is again the volume of phase space accessible to
the representative point of the reservoir when the represen-

tative point of the subsystem is in d@ 1, The entropy of
8

the reservoir is

S, = kiln (b ﬂf/hm) ~==~(1.58)
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m being the number of degrees of freedom of the reservoir, -
We note that since W << N , m is well defined. Thus,

Sr/k

A = — b
A QI' (1.59)

But expanding in a Taylor's series using the fact that the
subsvstem is small compared to the total system, i.e.

N <<N, and E_ << E,, we have
s 8 t

t
W,
S.(€,N,) = %ﬁt € ;-Jﬁ - W)
= u/{ )~€ (-?-S-E) N (aS =)
///®f qﬁ 81.9€, et’Nt aNr 6 » 1y

/ { R ' ,v, 4

In eq.(1.60) e, and 3/ behQVC as|differential quantities
‘-‘— - gﬁ ,-r/
because of the small 81ze of . the svbsystem. Put from thermo-

dynamics we bave \\\\xa__,_,////
’1 (1

a5 S
By s 1
(5 = = ~—=—(1,61)
¥
and we define the chemical potential 4 by
Tds = dE+pdV - pdaN ————(1,62)
Thus, ' . o
D,”
o= = 4T ——m=(1,63)
and we get for d Py
(£ N _~ € )/kT -
d py:= Qe R a ——ee(1,6U)

s 8
where Cis & normalization constant. We are therefore led to

the grand canonical ensemble, which is defined by --- ———-—
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pAN, ) b © e(N“ - €)/kT ~—==(1,65)

The normalization is given by
=N S
> [pdﬂ =4 1 ~—==(1.66)
17=0

and the average value of quantity A(p,q) over a grand canoni-

cal ensemble is defined by

7v [t pas en(1.67)
If more than one ﬂolégélar Qp601es i1s present we replace

N K ‘by Zer Hy o

Suppose two grand canoﬁieaiVensembles, representing two

systems enﬁaced 1n thermal and-paruicle exchange, are coupled
together, then, if %‘re represent tne two systems by the indices
1 and 2 and assuming, for convenience, that only one molecular

species is present in each system, we have,

IJ1 /l1 ea
1n ,O1 = 1n C1 ER < W ——
SR o
-~ 2ty ;
o fyr= InG, + 55 - 1R -——-(1.68)
Adding,
N, U, + W 4 €,+€
_ Hafy * Noly €6, ~
10 Ay = AnSEe T e -6

So that with p = 0P, C = C,C, and € =€,+€, the resulting
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enserble is a grand canonical ensemble, If both systems have
the same species of molecule, then the resulting ensemble is
a grand canonical ensemble only if M1 = #2, which is another
way of arriving at the well known equilibrium condition.

rom the aboﬁe considerations we can conclude that

the grand canonical ensemble is appropriate to represent an
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