The present chapter consists of two principal parts. The first part contains some preliminary lemmas about forms and systems of forms which play a central role in differential algebra and in particular, these results are necessary for the investigation of the second part. The second part is devoted to proving a very important theorem of differential algebra, the basis theorem which states that if \mathcal{F} is a differential field of characteristic zero and $y_{i}, y_{2}, \ldots, y_{n}$ are n indeterminates, then $\mathcal{F}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ is a Noetherian perfect differential zing.

Throughout this chapter, the differential ring Ω will denote $\mathcal{F}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$.

1. SYSTEMS OF FORMS AND SOME PRELTMINARIES PROPERTIES.

The materials of this part are based on reference $[2]$.
In the proceeding chapter we have already studied elements of the differential ring $\mathcal{f}\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}\right\}$ which we called forms. A form, let us recall, is a polynomial in $y_{1}, y_{2}, \ldots, y_{n}$ and any number of their derivatives with coefficients in of , that is a finite sum

$$
\sum a_{1_{1}} \cdots_{i_{n} 3_{1}} \cdots_{j_{n}}\left(D^{i_{1}} y_{1}\right)^{j_{1}} \quad \cdots \quad\left(D^{i_{n_{n}}}\right)^{i_{n}}
$$

where the i_{m}, j_{r} are non-negative integers, $a_{i_{1}} \cdots_{i_{n} j_{1}} \cdots_{j_{n}} \in \mathcal{F}$ and $D^{i} n_{y_{m}}$ is the i_{m} th derivative of $y_{m}, m=1,2, \ldots, n\left(D^{0} y_{i}=y_{i}\right)$.

From now on, capital itelif letters denote forms.
Notation The derivative of y_{1} will be indicated by means of a second subscript. Thus

$$
y_{i j}=D^{j} y_{i}
$$

We write $y_{i}=y_{i o}=D^{0} y_{i}$.
The f th derivative of a form A, denoted by $A^{(j)}$ is the form obtained by differentiating A j-times.

Definition 3-1 A form A in R said to be of order m with respect to y_{i}, denoted by ord $A=m$ in y_{1} if A involves y_{1} or some of its derivatives and m is the greatest positive integer such that $y_{\text {im }}$ is present in a term of A with a coefficient distinct from zero.

If y_{i} does not appear in A, the order of A with respect to y_{i} will be taken as zero.

Definition 3-2 A form A in R is said to be of class p, denoted by class $A=p$ if p is the largest integer such that $y_{p J}$ appears in A for some non-negative integer j with non-zero coefficient.

We see that if A is an element in of, A is of class zero.
Definition 3-3 Let A_{1} and A_{2} be two forms. The form A_{2} is said to be of higher rank than A_{1} in y_{p}, or more briefly, higher than A_{1} in y_{p} if either
i) A_{2} is of higher order than A_{1} in y_{p}
or
i1) A_{1} and A_{2} are of the same order, say q in y_{p} and the exponent (degree) of $y_{p q}$ in A_{2} is greater than that of $y_{p q}$ in A_{1} or we say that A_{2} is greater degree than A_{1} in $y_{p q}$.

Two forms for which no difference in rank is created by the preceding, will be said to be of the same rank in y_{p}.

All forms of class zero are of the same rank.
Definition 3-4 Let A_{1} and A_{2} be two forms. A_{2} is said to be of higher rank than A_{1}, or more briefly, higher than A_{1}, if either
i) A_{2} is of higher class than A_{1}
or
ii) A_{1} and A_{2} are of the same class, say $p>0$, and A_{2} is higher than A_{1} in y_{p}.

Two forms for which no difference in rank is established by the foregoing definition, will be said to be of the same rank.

In order to understand definitions above easily, observe the following example:

Example 3-1 Let $R=\sigma\left\{y_{\left.-, y_{2}, y_{3}, y_{4}\right\}}\right.$ where f is a differential field.

Let $\quad A_{1}=a_{0} y_{11}+a_{1} y_{22}+a_{2} y_{13} y_{24}+a_{3} y_{23} y_{35}$

$$
\begin{aligned}
& A_{2}=b_{0} y_{12}+b_{1} y_{11} y_{24}^{2}+b_{3} y_{32} \\
& A_{3}=c_{0} y_{1}+c_{1} y_{22}+c_{2} y_{33}+c_{4} y_{44}
\end{aligned}
$$

where a_{i}, b_{j}, c_{k} are all non-zero elements in f_{f}.

$$
\begin{aligned}
& \text { ord } A_{1}=\left\{\begin{aligned}
3 & \text { in } y_{1} \\
4 & \text { in } y_{2} \\
5 & \text { in } y_{3} \\
0 & \text { in } y_{4}
\end{aligned}\right. \\
& \text { class } A_{1}=3
\end{aligned}
$$

$$
\begin{aligned}
& \text { ord } A_{2}= \begin{cases}2 & \text { in } y_{1} \\
4 & \text { in } y_{2} \\
2 & \text { in } y_{3} \\
0 & \text { in } y_{4}\end{cases} \\
& \text { class } A_{2}=3 \\
& \text { class } A_{3}=4 .
\end{aligned}
$$

A_{1} is higher than A_{2} in y_{1}, by definition 3-3 (i)
A_{2} is higher than A_{1} in y_{2}, by definition 3-3 (ii), since A_{1} and A_{2} are of the same order 4 in y_{2} but the degree of y_{24} in $A_{2}=2$, which is greater than the degree of $y_{24}=1$ in A_{1}.
A_{1} is higher than A_{2} in y_{3}, by definition (i).
A_{1} is higher than A_{2}, by definition $3-4$ (ii) because A_{1} and A_{2} are of the same class 3 but A_{1} is higher than A_{2} in y_{3}.
A_{3} is higher than both A_{1} and A_{2}, by definition 3-4 (i), since : . it3 class $A_{3}=4>$ class $A_{1}=$ class $A_{2}=3$.

Lemma 3-1 If A_{2} is higher than A_{1} and A_{3} is higher than A_{2}, then A_{3} is higher than A_{1}.
Proof Suppose first that A_{2} is higher than A_{1} due to condition (i) and that A_{3} is higher than A_{2} due to condition (i), then it is clear from the definition that A_{3} is higher than A_{1} by condition (i).

Suppose now that A_{2} is higher than A_{1} by (i) and that A_{3} is higher than A_{2} by (ii). Since A_{3} and A_{2} are of the same class and A_{2} is of higher class than A_{1} then A_{3} is of higher class than A_{1}. Thus A_{3} is higher than A_{1} by (i). Now suppose that A_{2} is higher than A_{1} by (ii), while A_{3} is higher than A_{2} by (i). A_{2} and A_{1} are of the same class but A_{3} is of higher class than A_{2}, therefore A_{3} is of higher class than A_{1} and hence A_{3} is higher than A_{1} by (i).

Finally, if A_{2} is higher than A_{1} by (ii) and A_{3} is higher than A_{2} by (ii) then A_{1}, A_{2} and A_{3} are of the same class, say p. But A_{2} is of higher order than A_{1} in y_{p} and A_{3} is of higher order than A_{2} in y_{p}. This implies that A_{3} is of higher order than A_{1} in y_{p}. Thus A_{3} is higher than A_{1} by condition (ii).

Lemma 3-2 If $A_{1}, A_{2}, \ldots, A_{q}, \ldots$
is an infinite sequence of forms such that, for every q, A_{q+1} is not higher than A_{q}, then there exists a positive integer r such that for $q>r, A_{q}$ has the same rank as A_{r}.
Proof A_{q+1} is not higher than A_{q}, in other words A_{q} is higher than A_{q+1} or A_{q} and A_{q+1} have the same rank. If A_{q} is higher than A_{q+1}, there are 3 possible cases as follows:
i) A_{q} is of higher class than A_{q+1}
ii) A_{q} and A_{q+1} are of the same class $m>0$, but A_{q} is of higher order than A_{q+1} in y_{m}
iii) A_{q} and A_{q+1} are of the same class $m>0$ and the same order in y_{m}, say t, but A_{q} is of higher degree than A_{q+1} in $y_{m t}$.
We first consider the case (i). Since A_{q+1} is not higher than A_{q}, we see that the classes of the A_{q} form a non-increasing set of non-negative integers; it is then clear that there exists a positive integer n_{0} such that for $q>n_{0} A_{q}$ have the same class as $A_{n_{0}}$, say p. If $p=0$ we are done. If $p>0$ we are in case (ii). The set of the orders of the A_{q} for $q>n_{0}$ for ms a non-increasing set of non-negative integers and again there exists a positive integer $m \geqslant n_{0}$ such that for $q>m$ the forms A_{q} have the same class and the same order in y_{p}, say s.

Finally we have case(iii), and by the same reasoning as above there exists a positive integer $r \geqslant m \geqslant n_{0}$ such that for $q>r$ the form A_{q} will eventually have a common degree in $y_{p s}$. Thus for $q>r A_{q}$ have the same rank as A_{r}. This proves the Lemma.

The following corollary yields a more general result than that of above lema which is restricted to sequences $\left\{A_{q}\right\}$. But the corollary allows the set of forms to be uncountable.

Corollary Every finite or infinite set of forms contains a form which is not of higher than any other form of the set.

Proof If the set of forms is finfte, the corollary is trivial. Assume that there is an infinite set of forms containing no form which is not higher than any other form of the set. Thus if we pick a form in this set, it is higher than some other forms of the set. At this point we shall construct a sequence of forms by the following method.

To start with, we pick A_{1}, it is then clear from assumption that A_{1} is higher than another form of this set. We pick A_{2} such that A_{1} is higher than A_{2} and then A_{3} such that A_{2} is higher than A_{3} : By this process of construction we have an infinite sequence of forms

$$
A_{1}, A_{2}, \ldots, A_{q}, \ldots
$$

such that for every q, A_{q} is higher than A_{q+1}. This contradition of the preceeding lemma proves the corollary.

Definition 3-5 If A_{1} is of class $p>0, A_{2}$ will be said to be reduced with respect to A_{1} if A_{2} is of lower rank than A_{1} in y_{p}.
Example 3-2 Let A_{1} and A_{2} be the first two forms given in Example 3-1. A_{2} is reduced with respect to A_{1}, since A_{1} is of class 3 and ord $A_{1}=5$ in $y_{3}>$ ord A_{2} $=2$ in y_{3}, that is, A_{2} is of lower rank than A_{1} in y_{3}.

Definition 3-6 The system
(1)

$$
A_{1}, A_{2}, \ldots, \Lambda_{r}
$$

will be called an ascending set if either
i) $r=1$ and $A_{1} \neq 0$
or
ii) $r>1, A_{1}$ is of class greater than 0 , and for $j>i_{i}, A_{j}$ is of higher class than A_{i} and is reduced with respect to A_{i}.
Remark It follows directly from the definition above that
i) $r \leqslant n=$ the number of indeterminate
ii) every nonzero form of R is an ascending set.

Example 3-3 Let $R=\frac{\square}{f}\left\{y_{1}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}\right\}$
$A_{1}=a_{1} y_{19}$
$A_{2}=b_{1} y_{18}+b_{2} y_{27}^{2}$
$A_{3}=c_{1} y_{16}+c_{2} y_{26} y_{37}^{2}$
$A_{4}=d_{1} y_{14} y_{25} y_{37} y_{43}^{3}$
$A_{5}=f_{1} y_{17} y_{26}+f_{2} y_{36} y_{43}^{2} y_{51}$
where $a_{i}, b_{j}, c_{k}, d_{1}, f_{m}$ are all non-zero elements in f. The system

$$
A_{1}, A_{2}, A_{3}, A_{4}, A_{5}
$$

forms an ascending set. From this example we see easily that the class of A_{i} is an increasing set of positive integers and if A_{1} is of class p_{i}, then ord A_{j} in $y_{p_{i}}<\quad$ ord A_{i} in $y_{p_{i}} \quad$ for $j>i$

Definition 3-7 The ascending set (1) will be said to be of higher rank, or more briefly, higher than the ascending set

$$
\begin{equation*}
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{5} \tag{2}
\end{equation*}
$$

if either
i) there is a positive integer j, exceeding neither r nor s, such that A_{i} and B_{i} are of the same rank for $i<j$ and A_{j} is higher than B_{j}
or
ii) $s>r$ and A_{i} and B_{i} are of the same rank for $i \leqslant r$.

If $j=1$ in (i), this is taken to mean that A_{1} is higher than B_{1}.
Two ascending sets for which no difference in rank is established by the preceeding definition will be said to be of the same rank. For such sets, $r=s$ and A_{i} and B_{i} are of the same rank for every i.
Example $3-4 R$ is a differential ring as in example $3-3$. If $B={ }^{2} y_{11}$ where $a \neq 0$ in \mathcal{F}, then B is an ascending set and the ascending set in Example 3-3 is higher than the ascending set B by (i). Morever, let

$$
\begin{aligned}
& \mathrm{B}_{1}=\mathrm{a}_{1}^{\prime} \mathrm{y}_{19} \\
& \mathrm{~B}_{2}=\mathrm{b}_{1}^{\prime} \mathrm{y}_{16}^{2}+\mathrm{b}_{2}^{\prime} \mathrm{y}_{15} \mathrm{y}_{27}^{2} \\
& \mathrm{~B}_{3}=\mathrm{c}_{1}^{\prime} \mathrm{y}_{16}+\mathrm{c}_{2}^{\prime} \mathrm{y}_{27} \mathrm{y}_{37}^{2} \\
& \mathrm{~B}_{4}=\mathrm{d}_{1}^{\prime} \mathrm{y}_{14}^{3}+\mathrm{d}_{2}^{\prime} \mathrm{y}_{26} \mathrm{y}_{43}^{3} \mathrm{y}_{36}^{2} \\
& \mathrm{~B}_{5}=\mathrm{f}_{1}^{\prime} \mathrm{y}_{11} \mathrm{y}_{22} \mathrm{y}_{33}+\mathrm{f}_{2}^{\prime} \mathrm{y}_{51} \mathrm{y}_{42} \mathrm{y}_{36} \\
& \mathrm{~B}_{6}=\mathrm{h}_{1}^{\prime} \mathrm{y}_{18} \mathrm{y}_{32}+\mathrm{h}_{2}^{\prime} \mathrm{y}_{43} \mathrm{y}_{5}^{2}+\mathrm{h}_{3}^{\prime} \mathrm{y}_{62}
\end{aligned}
$$

The system

$$
B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}
$$

forms an ascending set and the ascending set in Example 3-3 is higher than this ascending set, by (ii) since the number of forms in this ascending set $=6>$ the number of forms in the ascending set in Example $3-3=5$ and A_{i} and B_{i} are of the same rank for $i \leqslant 5$. If we delete in turn the form B_{6}, we then have that the system
$B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$
again forms an ascending set and this ascending set is of the same rank as the ascending set in Example 3-3.

Lemma 3-3 Let Φ_{1}, Φ_{2} and Φ_{3} be ascending sets such that Φ_{1} is higher than Φ_{2} and Φ_{2} is higher than Φ_{3}. Then Φ_{1} is higher than Φ_{3}. Proof Let Φ_{1} and Φ_{2} be represented by (1) and (2) respectively, and let Φ_{3} be

$$
c_{1}, c_{2}, \ldots, c_{t} .
$$

Suppose first that Φ_{1} is higher than Φ_{2} and Φ_{2} is higher than Φ_{3} by (i). Since Φ_{2} is higher than Φ_{3} by (i), there exists a positive integer $j, j \leqslant s$ and $j \leqslant t$, such that B_{i} and C_{i} are of the same rank for $i<j$ and B_{j} is higher than $C_{j} . \Phi_{1}$ is higher than Φ_{2} by (i) also implies that there exists a positive integer $k, k \leqslant r$ and $k \leqslant s$, such that A_{i} and B_{i} are of the same rank for $i<k$ and A_{k} is higher than B_{k}.

If $k<j, A_{i}, B_{i}$ and C_{i} are of the same rank for $i<k . B_{k}$ and C_{k} are of the same rank and A_{k} is higher than B_{k}, hence A_{k} is higher than C_{k}. Thus Φ_{1} is higher than Φ_{3} by (i).

If $k>j, A_{j}$ and B_{j} are of the same rank but B_{j} is higher than C_{j}, this implies that A_{j} is higher than C_{j} and A_{i} and C_{i} are of the same rank for $i<j$, hence Φ_{1} is higher than Φ_{3} by (i).

If $k=j$, then A_{j} is higher than B_{j} and B_{j} is higher than C_{j} implying that A_{j} is higher than C_{j} by lemma $3-1$ and A_{i}, B_{i} and C_{i} are of the same rank for $i<j$. We have again that Φ_{1} is higher than Φ_{3} by (i).

Suppose now that Φ_{1} is higher than Φ_{2} by (i), while Φ_{2} is higher than Φ_{3} by (ii). Φ_{1} is higher than Φ_{2} implies that there exists a positive integer $j, j \leqslant r$ and $j \leqslant s$ such that A_{i} and B_{i} are of the same rank for $i<j$ and A_{j} is higher than B_{j}, while Φ_{2} is higher than Φ_{3} by (ii)
implies that $t>s$ and B_{i} and C_{i} are of the same rank for $i \leqslant s$. Therefore A_{i}, B_{i} and C_{i} are of the same rank for $i<j$ as well as B_{j} and C_{j} being of the same rank, but A_{j} is higher than B_{j}. Then A_{j} is higher than C_{j}. Thus Φ_{1} is higher than Φ_{3} by (i).

The next step we let Φ_{1} be higher than Φ_{2} by (ii) and Φ_{2} be higher than Φ_{3} by (i). Let j be the positive integer, $j \leqslant s, j \leqslant t$, such that B_{i} and C_{i} are of the same rank for $i<j$ and B_{j} is higher than C_{j}. Since Φ_{1} is higher than Φ_{2} by (ii), we have $s>r$ and A_{i} and B_{i} are of the same rank for $i \leqslant r$. If $j>r$, then $t \geqslant r$ and Δ_{i} are of the same rank as C_{i} for all $i \leqslant f$. This implies that Φ_{1} is higher than Φ_{3} by (ii). If $j \leqslant r$, then A_{j} is higher than C_{j} and A_{i} and C_{i} are of the same rank for $i<j$. Thus Φ_{1} is higher than Φ_{3} by (i).

Finally if Φ_{1} is higher than Φ_{2} by (ii) while Φ_{2} is higher than Φ_{3} by(ii), then $t>r$ and A_{i} is of the same rank as C_{i} for $i \leqslant r$, whence Φ_{1} is higher than Φ_{3} by (ii).

We shall need the following fact:
Lemma 3-4 Let

$$
\Phi_{1}, \Phi_{2}, \ldots, \Phi_{q}, \ldots
$$

be an infinite sequence of ascending sets such that Φ_{q+1} is not higher than Φ_{q} for any q . Then there exists a subscript x such that, for $q>r$, Φ_{q} has the same rank as Φ_{r}.

Proof To begin with, consider the first forms of the Φ_{q} 's for any q, By virtue of the lemma 3-2, there exists a positive integer m such that, for $q>m$, they are all of the same rank as the first form of the Φ_{m}. For the case in which Φ_{q} with $q>m$ has only one form, we are done.

We now suppose that s is the least positive integer such that $s \geqslant m$ and Φ_{s} has at least two forms. We are immediate confronted with the question: Is it possible that there exists a positive integer $\ell>s$ such that $\frac{\Phi^{~}}{}$ has one form ? A short word about this, there is no positive integer $\ell>\mathrm{s}$ such that Φ_{ℓ} has one form, since if Φ_{ℓ} has one form, it then follows from definition 3-7 (ii) that Φ_{ℓ} is higher than Φ_{S}, contrary to the hypothesis that Φ_{ℓ} is not higher than Φ_{s}. Thus Φ_{q} has at least two forms for $q \geqslant s$. However, by the same reasoning the second forms of Φ_{q} 's will eventually be of the same rank. Continuing in this manner, since the Φ_{q} 's are ascending sets and no Φ_{q} can have more than n forms where n is the number of indeterminates, we have that there exists a positive integer r such that all the Φ_{q} with $q \quad>r$ have the seme number of forms, corresponding forms being of the same rank. This completes the proof of lemma.

As a consequence of this result we have
Corollary Every finite or infinite set of ascending sets contains an ascending set whose rank is not higher than that of any other ascending set in the set.

The proof of this corollary is the same as the proof of the corollary of lemma 3-2.

Definition 3-8 Let Σ be any finite or infinite system of forms, not all zero. An ascending set Φ of Σ is said to be a basic set of Σ if Φ has the least rank among all ascending sets of Σ.

Remark The definition above is well-defined, since every non-zero form of Σ is an ascending set and by the corollary of lemma 3-4, among all ascending sets, there exist certain ones which have least rank.

At this point, we now introduce a method for constructing a basic set from any given system of forms Σ. It is easy in case Σ is finite. Suppose that Σ is infinite. Of the non-zero forms in Σ, by the corollary of lemma 3-2, there exists a form of least rank, say A_{1}.

If A_{1} is of class zero, then it is a basic set of Σ. Let A_{1} be of class greater than zero. If Σ has no non-zero forms reduced with respect to A_{1}, then A_{1} is a basic set. Assume such reduced forms exist; they are all of higher class than A_{1}, otherwise there is at least one form B which is of lower class than A_{1} or the class of B equals the class of A_{1}. If B is lower class than A_{1}, then B is of lower rank than A_{1} by definition 3-4 (i). Consider the case that the class of B equals the class of A_{1}. Since B is reduced with respect to A_{1}, therefore B is of lower rank then A_{1}. In either case B is of lower rank than A_{1} which contradicts the minimality of the rank of A_{1}.

Let A_{2} be the least rank/ which is reduced with respect to A_{1}. Unless Σ contains non-zero forms reduced with respect to A_{1} and A_{2}, we claim that the ascending set A_{1}, A_{2} will be a basic set of Σ. To prove this, assume that there exists an ascending set Φ of Σ such that Φ is lower than the ascending set A_{1}, A_{2}. If Φ is lower than the ascending set A_{1}, A_{2} by definition 3-7 (i), then the first form of Φ is the same rank as A_{1} since the first form of Φ is not of lower rank than A_{1} because of the minimality of the rank of A_{1} and is not of higher rank than A_{1} because of the assumption. Now it is necessary that the second form of Φ is lower than A_{2}. Since the second form of Φ is reduced with respect to the first form of Φ, it is also reduced with respect to Λ_{1}, contrary to the least rank of A_{2} of forms which are reduced with respect to A_{1}. If Φ is lower than the ascending set A_{1}, A_{2} by definition 3-7 (ii), then the number of forms of Φ is greater than 2 and the first and the second form of Φ are of the same rank as A_{1} and A_{2} respectively. Since Φ is an ascending set, the third form of Φ is reduced
with respect to the first and the second form of Φ, hence it is also reduced with respect to A_{1} and Λ_{2}, contrary to the assumption that Σ contains no non-zero forms reduced with respect to A_{1} and A_{2}. This proves the claim. If such reduced forms exist: let A_{3} be one of them of least rank. Continuing this process at most n steps we arrive at an ascending set which is a basic set of Σ.

Definition 3-9 If A_{1}, in (1), is of class greater than zero, a form K will be said to be reduced with respect to the ascending set (i) if K is reduced with respect to every \mathbb{A}_{i}, $i=1,2, \ldots, r$.

From now on, the first form A_{1} in the ascending set (1) considered is assumed to be a form of class greater than zero.

Lemma 3-5 Let \sum be a system of forms for which the ascending set (1) is a basic set. Then no non-zero form of \sum can be reduced with respect to (1). Proof Suppose that there is a form K reduced with respect to (1). Then K has to be higher than A_{1}, otherwise K would be an ascending set lower than (1). Similarly K must be higher than A_{2}, otherwise A_{1}, K would be an ascending set lower than (1). By the same reasoning K is higher than $A_{3}, \Lambda_{4}, \ldots, A_{r}$. This leads u s to conclusion that K is of higher class than $A_{j}, j=1,2, \ldots, r$ and then

$$
A_{1}, A_{2}, \ldots, A_{r}, K
$$

is an ascending set lower than (1). This is a contradiction since the ascending set (1) is a basic set of Σ.

Summarizing the preceeding lemma, we may now assert:

Corollary Let Σ be a system of forms for which the ascending set (1) is a basic set. If a non-zero form, reduced with respect to (1), is adjoined to Σ, then the basic sets of the resulting system are lower than (1).

Definition 3-10 If a form G is of class $p>0$, and of order m in y_{p}
a) The form $\frac{\partial \mathrm{G}}{\partial y_{\mathrm{Pm}}}$, the partial derivative of G with respect to y_{pm} will be called the separant of G.
b) The coefficient of the highest power of $y_{p m}$ in G will be called the initial of G.

Remark It is clear from the definition above that the separant and initial of G are both lower than G

Using the above lemmas we arrive at the following result which is necessary for the proof of the basis theorem.

Theorem 3-1 Let G be any form, S_{1} and T_{i} be respectively the separant and initial of A_{i} in (1), $i=1,2, \ldots, r$. Then there exist non-negative integers $s_{i}, t_{i}, i=1,2, \ldots, r$ such that when a suitable linear combination of the A_{i} and a certain number of their derivatives with forms for coefficients is subtracted from
the remainder, R, is reduced with respect to (1).

Proof For the case G is reduced with respect to (1) there is nothing to prove, merely put $s_{i}, t_{i}=0$ for every $i=1,2, \ldots, r$ and all coefficients of the Λ_{i} and their derivatives can be taken to be zero.

So we may assume that G is not reduced with respect to (1).
Let A_{i} be of class p_{i} and of order m_{i} in $y_{p_{i}}, i=1,2, \ldots, r$.

Let j be the largest value of i such that G is not reduced with respect to A_{i}

Let G be of order h in $y_{p_{j}}$.

Since G is not reduced with respect to A_{j}, then $h \geqslant m_{j}$. We suppose first that $h>m_{j}$, set $k_{1}=h-m_{j}$, therefore $k_{1}>0$. Claim that $A_{j}{ }^{\left(k_{1}\right)}$, the k_{1} th derivative of A_{j}, will be of order h in $y_{p_{j}}$ and also In ear in $y_{p_{j}} h^{3}$ with S_{j} as the coefficient of $y_{p_{j}} h$. To prove this,

we write

$$
A_{j}=\square+\sum_{k=1}^{m} \Delta_{k} y_{\mathrm{p}_{i}}^{\mathrm{k}} \mathrm{j} \text {, }
$$

where \square and Δ_{k} are forms not involving $y_{P_{j} m_{j}}, k=1,2, \ldots, m$.

$$
\text { We now investigate } S_{j} \text {, the separant of } A_{i}=\frac{\partial A_{j}}{\partial y_{p_{j} m_{j}}} \text {, that is, }
$$

$$
s_{j}=\sum_{k=1}^{m} \Delta_{k} \leqslant y_{p_{j} m_{j}}^{k-1} \text { เ่มหาวิทยาลัย }
$$

Consider $A_{j}^{1)}$. the first derivative of A_{j}

$$
A_{j}^{(1)}=D \square+\sum_{k=1}^{m}\left(D \Delta_{k} \cdot y_{p_{j} m_{j}}^{k}+\Delta_{k \cdot k y_{p_{j} m_{j}}^{k \cdots-1}}^{k} \cdot y_{p_{j} m_{j}+1}\right) .
$$

Thus $\AA_{j}^{(1)}$ will be of order $m_{j}+1$ in $y_{p_{j}}$ with $\sum_{k=1}^{m} \Delta_{k} \cdot k y_{p_{j} m_{j}}^{k-1}=S_{j}$ as the
coefficient of $y_{p_{j}{ }_{j}+1}$. We rewrite

$$
\AA_{j}^{1)}=\square+\sum_{k=1}^{m} k \cdot \Delta_{k} y_{p_{j} m_{j}}^{k-1} \cdot y_{p_{j} m_{j}+1}
$$

where $\square=D \square+\sum_{k=1}^{m} D \Delta_{k} \cdot y_{P_{j}{ }^{m}{ }_{j}}^{k}$.

It is clear that \square does not involve ${ }^{y_{p_{j}}{ }_{j}+1}$.
Differentiate ${\underset{j}{1}}_{1)}$ again, we have
$\stackrel{(2)}{A_{j}}=D \square+\sum_{k=1}^{m}\left(D\left(k \Delta_{k} y_{p_{j} m_{j}}^{k-1}\right) \cdot y_{p_{j} m_{j}+1}+k \Delta_{k} y_{p_{j}}^{k-1} y_{j} y_{p_{j} m_{j}+2}\right) \quad$.
(2)

Hence A_{j} will be of order $m_{j}+2$ in $y_{p_{j}}$ with s_{j} as the coefficient of $y_{p_{j} m_{j}}+2$.

Continuing in this way, A_{j} will eventually be of order $m_{j}+k_{1}=h$ in $y_{p_{j}}$ and linear in $y_{p_{j}}$ with S_{j} as the coefficient of $y_{p_{j}}$. In other words,

$$
{ }_{A_{j}}^{\left(k_{1}\right)}=\widehat{V}+s_{j} y_{p_{j} h}
$$

where $\left\langle\right.$ is a form not involving $y_{p_{j} h}$ which proves the claim.
We now take $y_{p_{j}}$ as an indeterminate and $A_{j} k_{1}$ as a polynomial in $y_{p_{j}}$ h of degree one with coefficients in the ring R, it then follows from theorem 1-5 that there exists a non-negative integer v_{1} such that

$$
\begin{equation*}
S_{j}^{v_{1}} G=C_{1} A_{j}^{\left(k_{1}\right)}+D_{1} \tag{3}
\end{equation*}
$$

where $D_{1}=0$ or D_{1} does not involve $y_{p_{j}} h$. For uniqueness, we take v_{1} as small as possible.

If $D_{1}=0$, the theorem is proven for the case $h>m_{j}$.
For the case D_{1} does not involve $y_{p_{j}}$. We shall prove that D_{1} is of order less than h in $y_{p_{j}}$. Suppose that D_{1} is of order k in $y_{p_{j}}$ with $k>h_{1}$.

Since $A_{j}^{\left(k_{1}\right)}$ and $S_{j}{ }^{v_{1}}{ }_{G}$ are of order h in $y_{p_{j}}$, therefore they do not involve $y_{p_{j} k}$. Hence $y_{p_{j} k}$ must appear in C_{1}, this implies that D_{1} must contain terms involving $y_{p_{j} h}$ and $y_{p_{j} k}$. This is a contradiction since $y_{p_{j} h}$ does not appear in D_{1}. This proves our statement.

Now let m be an arbitrary integer with $p_{j}<m \leqslant n$ where n is the number of indeterminates. Claim furthur that D_{1} is not of higher rank than G in y_{m}. To prove this claim, it is only necessary to mention the case in which y_{m} is actually present in G and let G be of order \& in y_{m} (If y_{m} is not present in G, then y_{m} will not be present in D_{1}, thus D_{1} and G are of the same rank in y_{m}). By the same proof as above we have that the order of D_{1} in y_{m} can not exceed \& . What we must prove now is that D_{1} is not of greater degree than G in $y_{m l}$. To prove this, assume that D_{1} is of greater degree than G in $y_{m \ell}$. Then C_{1} must involve $y_{m Q}$ in the same degree as D_{1}, say q. This not involve $y_{p_{j}}$ and S_{j} is free of $y_{m,}, S_{j}{ }_{1} G-D_{1}$ does not involve $\mathrm{y}_{\mathrm{P}_{\mathrm{j}} \mathrm{h}} \cdot \mathrm{y}_{\mathrm{ml}} \mathrm{q}^{\prime \cdot}$: This contradiction proves our claim.

If D_{1} is still of order greater than m_{j} in $y_{p_{j}}$, we take

$$
\mathrm{k}_{2}=\text { ord } \mathrm{D}_{1} \text { in } \mathrm{y}_{\mathrm{p}_{\mathrm{j}}}-\mathrm{m}_{\mathrm{j}} \text {, }
$$

then $k_{2}>0$ and by the same reasoning as above, there exists a non-negative integer v_{2} such that

$$
\begin{equation*}
\mathrm{s}_{\mathrm{j}}^{\mathrm{v}_{2} \mathrm{D}_{1}}=\mathrm{c}_{2} \stackrel{\left(\mathrm{k}_{2}\right)}{\mathrm{A}_{\mathrm{j}}}+\mathrm{D}_{2} \tag{4}
\end{equation*}
$$

with D_{2} of lower order than D_{1} in $y_{p_{j}}$ and not of higher rank than D_{1} (or G) in any y_{m} with $m>p_{j}$. In order to have a unique procedure, we take v_{2} as
small as possible. If the order of D_{2} in $y_{p_{j}}$ is greater than p_{j}, we continue as before obtaining

$$
\begin{aligned}
& S_{j}^{v_{3}} D_{2}=C_{3} A_{j}^{\left(k_{3}\right)}+D_{3} \\
& \left.s_{j}^{v} D_{3}=C_{4} A_{j}+D_{4}\right)
\end{aligned}
$$

.

$$
\begin{aligned}
& s_{j}{ }^{v}{ }_{u-1} D_{u-2}=c_{u-1} A_{j}^{(k, 1)}+D_{u-1} \\
& S_{j}^{v}{ }^{u_{u-1}}=C_{u} A_{j}^{\left(k_{u}\right)}+D_{u} \cdot
\end{aligned}
$$

where $k_{i}=$ ord D_{i-1} in $y_{p_{j}}-p_{j}, i=2,3, \ldots, u$
We eventually arrive at D_{u}, of order not greater than m_{j} in $\mathrm{y}_{\mathrm{p}_{j}}$. Multiplying (3) through by s_{j} yields

$$
S_{j}^{v_{2}} S_{j}^{v_{1}}=S_{j}{ }_{j} C_{1}\left(k_{j}\right)+{ }^{A_{j}}{ }_{j} D_{1}
$$

Substituting for $S_{j}{ }^{v_{2}} D_{1}$ from (4) in this relation, gives

Let us multiply this equation by $\mathrm{S}_{\mathrm{j}}{ }^{\mathrm{V}}$ and we substitute for $\mathrm{S}_{j}{ }^{\mathrm{V}} \mathrm{D}_{3}$ in the result, we have

Repeating this type of computation finally yields

$$
\begin{aligned}
& \text { Setting } \quad s_{j}=v_{1}+v_{2}+\ldots+v_{u} \\
& \left.F_{i}=S_{j}{ }_{j} u{ }_{j}{ }_{j}{ }^{u-1} \ldots S_{j}{ }^{v_{i+1}} C_{i}{ }_{i}{ }^{A_{j}}{ }_{j}\right), i=1,2, \ldots, u-1 . \\
& F_{u}=C_{u} .
\end{aligned}
$$

We have

$$
\begin{equation*}
s_{j}^{s_{j}^{j}}=F_{1}{ }_{1}^{\left(k_{1}\right)}+F_{2}{ }^{\left(k_{2}\right)}{ }_{j}+\ldots+F_{u}{ }_{u}^{\left(k_{u}\right)}+D_{u} . \tag{5}
\end{equation*}
$$

Furthermore, D_{u} is not of higher rank than $D_{u-1}, D_{u-2}, \ldots, D_{1}$ and G in y_{m} whenever $n \geqslant m>p_{j}$.

If D_{u} is of order less than m_{j} in $y_{p_{j}}$, then D_{u} is reduced with respect to A_{j}. Morever, we claim that D_{u} is reduced with respect to A_{i} for $i>j$. To see this, G is reduced with respect to Λ_{i} for $i>j$ by assumption, and hence the order of G in $y_{p_{i}}$ is less than the order of A_{i} in $y_{p_{i}}$ for $i>j$. Since $A_{1}, A_{2}, \ldots, A_{x}$ is an ascending set, therefore $p_{i}>p_{j}$ for $i>j$, We already know that for $p_{i}>p_{j}$

Ord D_{u} in $y_{p_{i}} \leqslant$ ord G in $y_{p_{i}}$ < ord A_{i} in $y_{p_{i}}$, that is, D_{u} is reduced with respect to A_{i} with $i>j$, this proves the claim (We will be back where we started and treat the ascending set $A_{1}, A_{2}, \ldots, A_{j-1}$ and D_{u} in place of $G_{\text {. }}$) If D_{u} is of order m_{j} in $y_{p_{j}}$, (We start proving the theorem for the case in which $h=m_{j}$ from now on.) we now consider D_{u} and A_{j} as polynomials in $y_{p_{j} m_{j}}$ with T_{j} as the coefficient of the highest power of $y_{p_{j} m_{j}}$ in A_{j} and then use theorem 1-5 again, we find, there is a nonnegative integer t_{j} such that

$$
\begin{equation*}
T_{j}{ }^{\mathrm{t}} \mathrm{D}_{\mathrm{u}}=\mathrm{HA}_{\mathrm{j}}+\mathrm{K}, \tag{6}
\end{equation*}
$$

where $K=0$ or K is of lower degree then A_{j} in $y_{p_{j} m_{j}}$. For uniqueness, we take t_{j} as small as possible. We thus limit ourselves to the case in which $K \neq 0$, btherwise we are done. If $K \neq 0$, then K is reduced with respect to A_{j}. By the same proof as above, we can guarantee that K is also reduced with respect to A_{j+1}, \ldots, A_{r}. It is possible in this case that K is reduced with respect to $A_{1}, A_{2}, \ldots, A_{r}$. If this occurs, the proof stops here. Suppose that K is not reduced with respect to $A_{1}, A_{2}, \ldots, A_{j-1}$. Let g be the largest value $i, 1 \leqslant i \leqslant j$ such that K is not reduced with respect to A_{i} and we will then be back to starting point again and treat K as G was treated, we find, there exists a nonnegative integer s_{g} such that

$$
\begin{equation*}
S_{g}^{s} g_{K}=E_{1}^{\left(k_{1}^{q}\right)}+E_{2}^{A}{ }_{g}^{\left(k_{2}^{p}\right)}+\ldots+E_{w} A_{G}^{\left(k_{w}^{9}\right)}+D_{w} \tag{7}
\end{equation*}
$$

where D_{w} is of order not greater than m_{g} in $y_{P_{g}}$ and furthermore, if $m>p_{g}$, D_{w} is not of higher rank than K in y_{m}.

Suppose that D_{W} is of order less than m_{g} in $\mathrm{y}_{\mathrm{p}_{\mathrm{g}}}$, by the same proof as above D_{w} is reduced with respect to $A_{g}, A_{g+1}, \ldots, A_{r}$. We shall then be back where we started again.

Suppose that D_{W} is of order m_{g} in y_{g}, we take a non-nagative integer t_{g} as small as possible such that

$$
\begin{equation*}
{ }_{T}{ }^{t} g_{D_{W}}=H^{\prime} / /_{g}+K^{\prime} \tag{8}
\end{equation*}
$$

where K^{\prime} is reduced with respect to $A_{g},{ }_{A_{g+1}}, \ldots, A_{r}$. Substituting ${ }_{T}{ }_{g}{ }^{t} g_{D_{W}}$ in $T_{g}{ }^{t} g$ (7) yields the result

$$
T_{g}{ }_{g}^{t} g_{S}^{s}{ }_{g}^{s} g_{K}={ }_{T}^{T}{ }_{g}^{t} g\left(E_{1} A_{g}^{\left(k_{1}^{\prime}\right)}+\ldots+E_{w} A_{g}^{\left(k_{w}^{\gamma}\right)}\right)+H^{\prime} A_{g}+K^{\prime}
$$

Substituting this in $\mathrm{T}_{\mathrm{g}}{ }^{\mathrm{E}} \mathrm{g}_{\mathrm{S}}{ }_{\mathrm{g}}{ }_{\mathrm{g}} \times(6)$, we obtain

We now arrive at the final stage, substituting this in $T_{g}{ }_{g} g_{S}{ }_{g}{ }_{g}{ }_{\mathrm{G}}^{\mathrm{T}}{ }_{\mathrm{j}}^{\mathrm{t}} \mathrm{j} \times$ (5), gives us

$$
\begin{aligned}
& \left.-T_{g}{ }^{t} g_{\left(E_{1} A_{g}\right.}^{\left(k_{1}^{\prime}\right)}+\ldots E_{b}{ }_{g}^{\left(k^{p}\right)}\right)-H^{\prime} A_{g}=K^{\prime} .
\end{aligned}
$$

Thus when such a linear combination of $A, A g$ and their derivatives is
 $A_{g}, A_{g+1}, \ldots, A_{r}$

Continuing in this way, the reach a form R required in the statement of the theorem. This completes the proof of theorem.

Remark Our procedure determines a unique R. We call this R the remainder of G with respect to the ascending set (1).
2. THE BASIS THEOEEM

Before proving the basis theorem, it will be convenient to establish the following lemmas:

Lemma 3-6 If the perfect differential ideal \rangle has a finite basis, then it has a finite basis consisting of elements of σ.

Proof Let $a_{1}, a_{2}, \ldots, a_{s}$ be the elements of a finite basis of $\langle\sigma\rangle$. According to theorem $2-3$, each $a_{m}, m=1,2, \ldots, s$ as an element of $\langle\sigma\rangle$ has a power in $[\sigma]$. Let t_{m} be a positive integer such that $a_{m}{ }^{t_{m}}$ belongs to $[\sigma], m=1,2, \ldots, s$. Being an element of $[\sigma], a_{m}^{t m}$ is equal to
a linear combination of a finite number of elements of σ and a finite number of derivatives of elements of σ with elements in R as coefficients, that is a finite sum of the form

$$
a_{m}^{t_{m}}=\sum_{i, j, k} b_{i} D_{y_{k}}^{j}
$$

where i, j, k are non-negative integers, $y_{k} \in \sigma$ and $b_{i} \in R, m=1,2, \ldots, s$. Let σ_{m} be the set consisting of all y_{k} in the expression of $a_{m}{ }_{m}$, hence σ_{m} is a finite subset of σ. It is clear that $a_{m}^{t_{m}}$ is in $\left\langle\sigma_{m}\right\rangle$. Since $\left\langle\sigma_{m}\right\rangle$ is a perfect differential 1 deal, a is also in $\left\langle\sigma_{m}\right\rangle$ for all $m=1,2$, \ldots, s. This implies that $\left.a_{m \in} \in \sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\rangle$ for $a l l m=1,2, \ldots$, s. Since $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle=\langle\sigma\rangle$, then $\left\langle\sigma_{1}, \sigma_{2} \ldots, \sigma_{n}\right\rangle=\langle\sigma\rangle$. This proves the lemma.

Lemma 3-7 Let Σ be perfect differential ideal without a finite basis. Let $F_{1}, F_{2}, \ldots, F_{s}$ be forms and Λ the system obtained by multiplying each form of Σ by some product of non-negative powers of $F_{1}, F_{2}, \ldots, F_{s}$. Assume that $\langle\Lambda\rangle$ has e finite basis then, $\left\langle\Sigma, F_{1} F_{2} \ldots F_{s}\right\rangle$ has no finite basis.

Proof Suppose that $\left\langle\Sigma, F_{1} F_{2} \ldots F_{s}\right\rangle$ has a finite basis, it then follows from the preceding lemma that $\left\langle\Sigma, F_{1} F_{2} \ldots F_{s}\right\rangle$ can be represented as $\left\langle\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{t}} ; \mathrm{F}_{1} \mathrm{~F}_{2} \ldots \mathrm{~F}_{\mathrm{s}}\right\rangle$ where $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{t}}$ are forms of Σ. By hypothesis, $\langle\Lambda\rangle$ has a finite basis, so we use the preceding lamina again to conclude that $\langle\Lambda\rangle$ has a finite basis consisting of elements of Λ. Since Λ is composed of elements of the form $F_{1}^{q_{\alpha}}{ }_{F_{2}}^{q_{\alpha 2}} \ldots F_{s}^{g_{\alpha s}} \cdot K_{\alpha}$ where $g_{\alpha i}$ are non-negative integers, $i=1,2, \ldots, s$ and K_{α} is in Σ, we may write

$$
\langle\Lambda\rangle=\left\langle\mathrm{F}_{1}^{g_{11}} \ldots \mathrm{~F}_{\mathrm{s}}^{\mathrm{g}_{\mathrm{F}_{1}}, \mathrm{~F}_{1}} \mathrm{~g}_{21} \ldots \mathrm{~F}_{\mathrm{s}}^{\left.g_{2 \mathrm{~s}_{2}}, \ldots, \mathrm{~F}_{1} \mathrm{~g}_{\mathrm{ml}} \ldots \mathrm{~F}_{\mathrm{s}}^{\mathrm{gs}_{\mathrm{K}}}\right\rangle .}\right.
$$

Let I be the set of $H^{\prime} s$ and K's above. It is obvious that

$$
\left\langle\Pi, F_{1} F_{2} \ldots F_{s}\right\rangle=\left\langle\Sigma, F_{1} F_{2} \ldots F_{s}\right\rangle
$$

Each $\mathrm{F}_{1} \mathrm{~g}_{\mathrm{il}} \ldots \mathrm{g}_{\mathrm{is}} \mathrm{K}_{\mathrm{i}}$ is in $\langle\pi\rangle, i=1,2, \ldots, m$ since $\langle\pi\rangle$ is an ideal, thus we get $\Lambda \approx\langle\pi\rangle$.

Since Σ has no finite basis, there exists a form L of Σ not in $\langle\Pi\rangle$. Some $F_{1}{ }_{1} \ldots F_{s}^{g_{L}}$ is in $\langle\Lambda\rangle$ and hence in $\langle\Pi\rangle$. Consequently, if g is the maximum of $g_{1}, g_{2}, \cdots, g_{s}, F_{1}^{\mathrm{g}} \mathrm{F}_{2}^{\mathrm{g}} \ldots \mathrm{F}_{\mathrm{s}}^{\mathrm{L}} \mathrm{g}$ is also $\mathrm{in}\langle\Pi\rangle$ and thus $F_{1} F_{2} \ldots F_{s} L$ is in $\langle\Pi\rangle$ since $\langle\Pi\rangle$ is perfect differential ideal. L is in $\left\langle\Sigma, F_{1} F_{2} \ldots F_{s}\right\rangle=\left\langle\Pi, F_{1} F_{2} \ldots F_{s}\right\rangle$, as well as being in $\langle\Pi, L\rangle$. By virtue of theorem $2-4, L$ is in $\left\langle\Pi, F_{1} F_{2} \ldots F_{s} L\right\rangle$ which is $\langle\Pi\rangle$ since $F_{1} F_{2} \ldots F_{s} L$ is in $\langle\Pi\rangle$. This contradiction proves the lemma.

Lemma 3-8 Let Σ and $\left\langle\Sigma, F_{1} F_{2} \ldots F_{s}\right\rangle$ be perfect differential ideals having no finite basis. Then at least one of the perfect differential ideals $\left\langle\Sigma U, F_{1}\right\rangle,\left\langle\Sigma,\left\langle F_{2}\right\rangle / E, \ldots,\left\langle\Sigma, F_{s}\right\rangle\right.$ has no finite basis.

Proof Assume that ali $\left\langle\Sigma, F_{1}\right\rangle,\left\langle\Sigma, F_{2}\right\rangle, \ldots,\left\langle\Sigma, F_{s}\right\rangle$ have a finite basis. We know that $\left\langle\Sigma, F_{i}\right\rangle=\left\langle\Phi_{i}, F_{i}\right\rangle$ where each Φ_{i} is a finite subset of $\Sigma, i=1,2, \ldots, s$, due to lemma $3-6$, also

$$
\left\langle\Sigma, F_{i}\right\rangle=\left\langle\Phi_{1}, \Phi_{2}, \ldots, \Phi_{s}, F_{i}\right\rangle
$$

We write this out explicitly

$$
\begin{aligned}
& \left\langle\Sigma, F_{1}\right\rangle=\left\langle\Phi_{1}, \Phi_{2}, \ldots, \Phi_{s}, F_{1}\right\rangle \\
& \left\langle\Sigma, F_{2}\right\rangle=\left\langle\Phi_{1}, \Phi_{2}, \ldots, \Phi_{s}, F_{2}\right\rangle \\
& \langle
\end{aligned}
$$

By 2 rue of theorem 2-4

and hence equals $\left\langle\Phi_{1}, \Phi_{2}, \ldots, \Phi, F_{1} F_{2} \ldots F_{s}\right\rangle$. This means that $\left\langle\Sigma, F_{1} F_{2} \ldots F_{s}\right\rangle$ has a finite basis, contrary to the hypothesis.

We now have all the necessary information to prove the basis theorem.

The basis theorem The differential ring $\mathcal{f}\left\{y_{j}, y_{2}, \ldots, y_{n}\right\}$ where \mathcal{F} is a differential field of characteristic zero is Noetherian perfect differential ring.

Proof We suppose the theorem is false. Then there exist perfect differential ideals of $\mathcal{F}\left\{y_{1}, y_{2}, \ldots, y_{n}\right\} \quad$ not having a finite basis. We construct a basic set for each. According to the corollary of lemma $3-4$, there is a perfect differential ideal Σ without a finite basis whose basic sets are not of higher rank than the basic sets of any other perfect differential ileal without a finite basis. Let Φ be the ascending set (1), a basic set of Σ. Then $A_{1} \neq 0$ is not an element of \mathcal{F}, because of is a differential field and if $0 \neq A_{1} \in \mathcal{F}$,
then A_{1}^{-1}, the inverse of A_{1} under multiplication, exists implying that $A^{-1} A=$ identity of \mathcal{F} is also in Σ. Thus Σ has the identity as a finite basis.

Consider $\Sigma-\Phi$, the set consisting of all elements of Σ not in Φ. By theorem 3-I, to each form G_{α} in Σ, where α ranges over some index set, there corresponds a remainder R_{α} which is reduced with respect to (1).
 S_{i} and T_{i} are separant and initial of $A_{i}, i=1,2, \ldots, r$, respectively.

Let Ω be the system composed of $A_{1}, A_{2}, \ldots, A_{r}$ and the remainders R_{α} of forms of $\Sigma-\Phi$.

Let A be the system composed of $A_{1}, A_{2}, \ldots, A_{r}$ and

We claim that $\langle\Omega\rangle$ has a finite basis. To prove this, assume that $\langle\Omega\rangle$ has no finite basis, therefore Ω contains some non-zero R_{α} not in (1). There are three cascs:

Case $1 \quad R_{\alpha}$ is of class greater than that of $A_{x^{\circ}}$ Since R_{α} is reduced with respect to (1), then

$$
A_{1}, A_{2}, \ldots, A_{r}, R_{\alpha}
$$

forms an ascending set which is of lower rank than (1), by definition 3-7(i1),
This is a contradiction.
Case 2 R_{α} is of the same class as A_{i}, for some i. Form the escending set

$$
A_{1}, A_{2}, \ldots, A_{i-1}, R_{\alpha} .
$$

By definition 3-7 (i), this ascending set is lower than (1), contrary to the the least rank of (1).

Case 3 Class $A_{i}<$ class $R_{\alpha}<$ class A_{i+1}, for some i. Form the ascending set

$$
A_{1}, A_{2}, \ldots, A_{i}, R_{\alpha} .
$$

This ascending set is lower than (1) by definition 3-7 (i) which is a con radiction.

Case 4 Class $R_{\alpha}<$ class A_{1}
then the ascending set R_{α} is Lower than (1) which is a contradiction.
In either case $\langle\Omega\rangle$ has a basic set of lower rank than (1). This contradiction proves the claim.

It is clear that $\langle\Omega\rangle=\langle\Lambda\rangle$. So $\langle\Lambda\rangle$ also has a finite basis. By lemma $3-7,\left\langle{ }_{N_{s}} S_{1} S_{2} \ldots S_{r} T_{1} T_{2} \ldots T_{r}\right\rangle$ has no finite basis and it then follows from the proceeding lemma that at least one of the perfect differential ideals

$$
\left\langle\Sigma, s_{1}\right\rangle, \ldots,\left\langle\Sigma_{,} s_{r}\right\rangle,\left\langle\Sigma, T_{1}\right\rangle, \ldots,\left\langle\Sigma, w_{r}\right\rangle
$$

has no finite basis.
We now claim that S_{i} and T_{i} for every $i=1,2, \ldots, r$ are reduced with respect to (1).

Let A_{j} be of class p_{j}. What we have to prove is that S_{i} is lower than A_{j} in $y_{p_{j}}, j=1,2, \ldots, r, i=1,2, \ldots, r$.

If $j>i$, it is clear that the class of S_{i} is less than that of
A_{j}. Then S_{i} is lower than A_{j} in $y_{p_{j}}$.

If $i>j$, then A_{i} is reduced with respect to A_{j} since (1) is an ascending set, that is

$$
\text { ord } A_{i} \text { in } y_{P_{j}}<\quad \text { ord } A_{j} \text { in } y_{P_{j}}
$$

Since ord S_{i} in $y_{p_{j}} \leqslant$ ord A_{i} in $y_{p_{j}}$.
This implies that S_{i} is of lower order than A_{j} in $y_{p_{j}}$, hence S_{i} is reduced with respect to A_{j}.

If $i=j$, then it follows directly from the definition of separant that s_{i} is of lower then A_{i}, thus S_{i} is reduced with respect to A_{i}.

In either case S_{i} is reduced with respect to (1), for every $i=1,2, \ldots, r$. By the same reasoning T_{i} is reduced with respect to (1) for every $i=1,2, \ldots, r$.

By the corollary of leman $3-5$, $\left\langle\Sigma, S_{i}\right\rangle$ and $\left\langle\Sigma, T_{i}\right\rangle$ are lower than (1) for all $i=1,2, \ldots, r$. Thus one of $\left\langle\Sigma, s_{i}\right\rangle,\left\langle\Sigma, T_{i}\right\rangle$, f. $=1,2, \ldots, r$ which has no finite basis is lower than the basic set (1) of Σ, contrary to the assumption that the basic set (1) of Σ which is not of higher rank than the basic sets of any other perfect differential ideals without a finite basis. This completes the proof of the basis theorem.

Remark The basis theorem is not true if σ is of nonzero characteristic Let p be a prime number and $\sigma \mathcal{F}=z_{p}$, a field of characteristic p. In the differential ring $\Omega=z_{p}\{y\}$, let Σ be the system of forms

$$
\mathrm{y}^{\mathrm{p}}, \mathrm{y}_{1}^{\mathrm{p}}, \mathrm{y}_{2}^{\mathrm{p}}, \ldots
$$

Form $\langle\Sigma\rangle$, a perfect differential ideal in Ω generated by Σ.

Suppose that the basis theorem is true, then there exists a finite set of forms in Σ, say $y^{p}, y_{1}^{p}, \ldots, y_{n}^{p}$ such that

$$
\langle\Sigma\rangle=\left\langle\mathrm{y}^{\mathrm{p}}, \mathrm{y}_{1}^{\mathrm{p}}, \ldots, \mathrm{y}_{\mathrm{n}}^{\mathrm{p}}\right\rangle .
$$

Since y_{n+1}^{p} is in Σ, therefore $y_{n+1}^{p} \Leftarrow\left\langle y^{p}, y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle$, contrary to the fact that y_{n+1}^{p} is not in $\left\langle y^{p}, y_{1}^{p}, \ldots, y_{n}^{p}\right\rangle$.

With the two equivalent corollaries below, we achieve the objective of this chapter.

Corollary Every system Σ of forms has a finite subset $\bar{F}_{1}, F_{2}, \ldots, F_{\text {s }}$ such that, for each form $A E \sum$ there is a positive integer t such that $A^{t} \in\left[F_{1}, F_{2}, \ldots, F_{S}\right]$

Proof As a consequence of the basis theorem, the perfect differential ideal $\langle\Sigma\rangle$ has a finite basis, that is, there axe forms $F_{1}, F_{2}, \ldots, F_{s}$ in Σ such that

$$
\langle\Sigma\rangle=\left\langle E_{1}, F_{2}, \ldots, F_{s}\right\rangle
$$

Let A be an arbitrary form of Σ, it then follows from theorem 2-3 that there is a positive integer t such that $A^{t} E\left[T_{1}, F_{2}, \ldots, F_{s}\right]$. Corollary Every system Σ of forms has a finite subset $F_{1}, F_{2}, \ldots, F_{s}$ such that Σ is contained in the perfect differential ideal generated by $F_{1}, F_{2}, \ldots, F_{s}:$

$$
\Sigma \leq\left\langle F_{1}, F_{2}, \ldots, F_{s}\right\rangle
$$

