CHAPTER II

Sy

THE CALCULATION OF BAND TAILS IN HEAVILY DOPED SEMICCNDUCTORS

2.1 Genernl Procedure1.

In the presence of the randenu distribution of impurities in dogred
semiconductors, the data obtained in a macroscopic experiment come out
as & result of the averaging over the random field configuration. Sihce
the potential energy being rendomly different in aifferent parts of the
sample. This fact is token ecccunt of if the observable quantity, for
instance, density of states, is calculatcd over the volume of a sumple
or of some big cnough part which gll the potentiel cenfiguraticns
aveliable are expected t¢ be met., In general, the calculation uses some
particular form of potential energy V first, ond then aversges tune result
over the rondom configurations of potential energy V. To this enu, the
distribution functiord,  PIV] , of the pctential energy V will Le defined.
Both the forn of P[V] and the type of funection V are defined cccording to
2 requirement cof o prcblem. The existance of this distribution function
P[V] of 2 system of N rendun particles in volime depends on the ...

statistical conditions of probability theory that

I ——— o and 1 > =

k] 3

tut 0 < N/Q < =,

2.2 Senmiclassical Approach.

KanQT used a semiclassical or Thomas - Fermi appraximation to

12
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calculate the density of states in eack small region of doped semiconductors,

The local density of states was assumed to le proportional to A/(E - v),

where V was the locael potential, For this approximation Kane assumed tl.at
the potential was sufficiently slowly varying that the potential enersy

could be treated as constant value over each region., The caleculation of

the average density of states then reduced to the determination of tie
distribtution function for the potential of each region, In this section

we will derive the Xane's density of states by using the physically intuitive

idea of Kane but in different mathematieal formulation.

If the small regions in doped semiconductors are large ereugh and
the potential is sufficiently slowly varyirg, by using Thomas-Fermi
method, the local density of states per unit volume of each region can ve

expressed as

NE -V h(E - V) 2.2

p(E) =
)

which appropriate to e large volume., The Leaviside step function H(x - &)

is defined as
AN (ZNH e

H(x - £) =
03 x<g
Because of the randomness of impurity distribution, the average
values of potential eneryy in each region are random. So that, to oltain
the total density of states, we must average this local density of states

over all the values of V .

N
-

ra
ra

pK(E) = <02(E)>



14

where V is randcm variable.

The next stage is to determine the distribution functicn of V,
Since the local potential is slowly varying, the average potential energy
V can be approximated Ly the potential energy of electron in the field of
all impurity potentials at centre of the considered region.

v o= v(F) = g v - R,) J
i=1 A

where v(; - ﬁi) is potential energy of electron at point T with respect
to the it? impurity atom at the position ﬁ;. Note that there are I
impurity atoms over all the sample., By this appreoximation the

distribution function P[V] ean be writter in this form ,

aR. aR, = aR_ ¥ i g .
Pv] = Uj e melegn vE-R)) L 2

The intepral ere all integrate over all volum @ of the sample, hence

(2.2.2) can be rewritten in terms of P[V] as follow
D E

o (£) BT = = ’f P[VWNE -V av . 2.2.h
21/2“2h3 —
- - ¥
Now ccnsider (2:2:3); the quantity EE; .ffg_... EEE is tuae
Q Q Q
prcbability tnat ﬁlis in the velume dﬁl,ﬁz is in the volume dﬁe...etc (siuce

impurities are treated as complete randem.) The Dirac delta function

tells us that the configurations of these impurities are accepted if and
N - -

only if V= I wv(r - Ri). So that, for simplicity, (2.2.3) can be
i=1

written as

P (v] <8 (V-1 vir-R)> . 2.2.5
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To evaluate (2.2.5), for conveniernce we transform Dirac delta

function by Fourier integral and ottain

N il
a o _ i J A - -
§(V - 121 v(? - Ri)) - T8 exp(io{ V-igl_v(r - RI)})da .

Then on substituing this into (2,2.5) we get

X

P v] =

K
J’ do exp(iaV) <exp(-io I

- e -
v(r - R ))> > i 2.2.6
i=1 1, Hy

If randem varialle ﬁi are all independent the average term can bte
reduced to a simple form like this
N - - - - by
<exp(-ia I wv(r /- Ri))> 5 = <exp(-iav(r - R))>] . 2,2.7

i=1 {Bi} R

The right hand side of (2.2,7) can be approximated by using cumulant
expansion 10. In tnislease only two order, - first end second cumulant,
are kept, and then the average in the right hand side of (2.2.7) can ue

epproximated as

exp(-ia<v(r - R)>

2
R

1]

<exp(-iav(T - R))>

- 3 v (T - R)>, - «w(F - R)>5 1)
2 R
) .

exp(:%E-j‘v(;-ﬁ)dﬁ - %é-{ Jv“(;-ﬁ)dﬁ -

- = ( [vE-Ra)) .

002541
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Since the assumption that the volume 0 must e large as introduced in the
first section, then the last term can Le droped out and the equaticn

(2.2.7) vecomes

N - ok C Y :( - -k P
<exp(-ia I v(r-Ri))>‘ = exp(g-{-ia (v(r—R)dﬁ - %—J vz(r—R)dﬁ}) c.2.8
i=1 {Ri} J
Placing this equation in (2.2,6), P [VJ Leconmes’
1 = ( YL D 32_[-{ T D oA a
P [v] = ”"nj da exp(-ia{V+Q Jv(r-R)dR}- = J v (r-R)dR), 2.2,9

-0

where N = N/0 .,

As mention in Chapter I« Kane used the screened Coulomb potential
to describe the potential 6f each impurity, the explicit form of tnis

pctential is

2
e

V(; = ﬁ) - Vs exp(_Q ’;"ﬁj)' Ele'lo |

el?—ﬁi

and then the final form of P [f] is

a
p [V] S exp(=(V=v )Q/ng) 3 2.2,11
T 2
2~ 2
where v, = - hne"/eq”,
n = e (bnk/Q) /e .

By sabstituting (2.2.10) into (2,2.4), the density of states
Lecomes a function of E only as
3/2 E
¥*
py(E) —_ lJ’ exp(-(V-Vo)Eme)JE-v av.

2 2
A2 1K N

H

-2
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The integration part of this equation can be evaluated in terms of

parabolic cylinder I‘unctionll’l2
3/2

m* AT 2 T & G Al
PK(E) £ hﬁm exp(—x /E)D_3/2(— 2 %) 4 Eelell

vhere x=(E - Vq)/n and

exp(=5°/L) 3 —v-1 2
D (2) = SXpr\-e /3 f t exp(Zt - t°/2)dt, 2,2.13
r(=v)

©

To consider the density of states at very high energy avove VO
and very low energy belcw Ve, we use the asymptotic form of paratolic

cylinder functicn12 stating that ;

Fer x >>|vl

2
Dv(x] = X EXP(—X'"/]-?) 2 2-‘10111
5 -1 =
and S Dykx) = — exp(x“/U)s EeEaIH
r(=v)
For  E>>V_, ve use (2.2.15) in (2,2.12), tnen obtain
3/2
- n* . T
pK(E) __gﬂg.rﬁ* E-V, 5 Ex»V . 2.2,16

This equation is equivalent to tie result oltaining from free electron
medel.

When the deep tail. states, E<<VD, are considered, the equaticr
(2.2.14) 1is used instead of (2.2,15) and then the result shows tail of

density of states
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-3/2
3/,
2. (VO-E)

n\
-
o
-
i}

=1

O,éE) = - exp(—(E-Vo):/nz); E<<V_ .

A,
8rond

This expression shows that when the considered energy is below Vo the

density of states does not vanish, There is an exponential tail when E is

very low.

Note that the tail of density of states derived iy Kaune is in a
Gaussian form only. This result does not agree witil the experiments
because the experimental results show that density of states is proportional

to exp(- iE| 7y where n is some mmter between 0.5 and 2.

Another unsatisfactory point is that the numerical values of density
of states at deep tail are/all larger than those observed and the lenstu

of the Gaussian tail is longer than the results from experiments.

The reason is that local density of states in each smell region
of sample is approximated by free electror mpodel for large sample. For
large sample this model ‘treat that all eigenstates of an electron as
veing continuous and the lowest enercy or zero pcint ener:y . f electron is
equal to the average potential energy of the sample, Dut, for a small
region, the continuity of eigenstates does not occur eand zero peint
energy is greater than tlie average potential energy V. oLut the
semiclassical epproximation assumes that the eigenstates in each small
region is continuous. Therefore, the excess states, that do nct cccur
in the disccntinuous case, will be included in an averaging procedure
using to calculate average density of states which produce over estimate

values of density of states.
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2.3 Wave Mechanics Methodg.

Te reduce the large values of Kane's density of states, halperin
and Lex solved for the discreate eigenstates of the random potential Ly
using trial wave function. Also they included the kinetic erergy of
localization (zero point energy), which was omitted in Kane's metiod, in

their calculetiou., The idea tehind their calculation will be discused

briefly in this section, A more details of calculation can Le found in

8

the reference~ .,

The simplest epproximation in the high density impurities is that
the electron is treated moving in an uniform potential erergy equal to the
average potential energy of All impurity atoms. The density of states in
this eprroximetion vanishes completely for energy below & minimum energy Eo
which is equal to tue average vazlue of impurity potentials. In the real
sample, we know that tine density of states does not vanish below the
energy Eo‘ Because of 'fhe randca neture of the impurity distribution,
there will be some mscrosecopic region of crystal in which we will find
higher or lower densities than the average density., Lence the average
potential energy of an electron in this region will Le lower or greater
than the average veluc of the sample as a whole. If the region in
question is sufficiently large and the potential energy is sufficiently
low, then we expect to find a bound state, localized in this region, witn

an energy less than Eo'

The density of states is now calculated from the definiticu that

1
B = —_ [
p(E) g <} §(E iy 2.3.1
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where Ei is the energy of the ith cigenstate of the Hamiltonian H, and
Q is the volume of the sample. For doped semiconductors, the Hamiltonian

H of an electron carrier (or hole) 1is assumed to be

H = T4+ V(¥) , 2.3.2
222
wh&re T = —&i v + E 3 20303
o “
- N - -
and Vv(ir) = I v(r-R)) -E 2.3.h4
o i o

V(r) definea by (2.3.4) yield the result that its average value will
be equal to zero. The quantity v(¥ - ﬁi) is an impurity potential as

described in section 2.2

To evaluate the eigenenergy Ei’ the wavefunction wi(?) must
be known first. But because of the complexity of the potential part in
Hemiltonien H, it is very hard to find the exact form of this wave
function. However, the wariational principle ensures that an approprieste
wave function. which gives and eigenenergy very close to the true vslue can
be determined. The process begins by assuming an approximate trial wave-
function first and then the form of this trial wavefunction is adjusted
until it approaches the most probable form determined by the variational

condition,

At this stage, the behavior of wavefunction as it relates to locel
inpurity densities should be known . In the high impurity density limit it
is assumed that the range of a single impurity potential is small compared

with the width of the wavefunction., For simplicity, attractive impurities
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are considered only, If the wavefuncticn of energy E<¢EO is very spread
out, its kinetic energy of localization will be very small, and the
necessary potentisl energy in this region of wavefunction will differ
from the average potential energy in the sample by the smount E - Eo.

The required excess density of impurities in this region must be such to
give an average potential energy of E - Eo' On the other hand if the
wavefunction is assumed to be very narrow, then the kinetic energy of
localization will be very large. Consequently the excess density of
impurities required in this region of wavefunction must be very high in

order that the average of V(T) An this region is negative below E - E_.

Next, if the wavefunction is assumed to be too narrow, the
probability of finding the required excess impurity density in the region
of wavefunction becomes extremely small, < Also, if the wavefunction is
assumed to be toc large, the probability of finding the high excess
density of impurities in a large region becomes ex.remely small also,
Now it can be seen that there will be a most proiable shape for o

wave function, not too narrow and not too spread out.

Let us assume that the wavefunction wi(;) is approximated uy

- -
trial wavefunction f(r - ro) ,

1]

wi(r)

- e
f(r - ro) .
In this case (T - ;0) is a real value function satisfying the

normalization condition

(P _2)vaR = 1.

) o
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;o is a position variable used to determine the position of function

f at any point through out the sample, For the case of very low energy
below EO, it can be assumed that the functicn f has the same shape at any
position of ;0. From this assumption, an approximated average energy of

electron at the point ;o is obtain as

B(F ) (8(F - F) BE(F - 7)) ar 2.3.5
[o) ) o Q

If H is given by equation (2.3.2), “then equation (2.3.5) can be rewritten

as
E(?O) = 9+ VS(FO) : 2.3.6
where o = Jrf(; -7 Yore(F - F )T, 2.3.7
v(F) = et R ) w@) el 2.3.8

7

The potential energy Vs(?o) is an average of the potential energy
V(;) in a region of f. As ;o is vermitted to vary throughout the sample,
Vs(;o) will fluctuete about an average value of zero, In general, the
energies of all physical systems have tendency to decrease to as small
values as posible, Thus, it can be assumed that the best approximated
eigenenergies Ei(;o) cbtained from trial wavefunction f are equal to the
minimum walues of the average energy function E(;O), not necessarily the
absclute minimum. Because the operator T is translatiochally invariant

the kinetic term, € , will be independent cf ;0. Hence thz behavior of

E(?o) will depend on VS(?D) only., Therefore the best approximated
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eigenenergies can be determined oy

Ei(?o)

- -
Ei(yi) = Q0+ vs(yi) ,

where i;i? is the set of all points satisfying
J

= =
v vs(yi) = 0,

and the second derivatives are positive at §i' Note that the variational
principle indicates that the encrgies E(§i) are all greater than the true

values of eigenenergy Ei’

Ey,) > E 4
If there is a one-=to-one correspondence between local minima in
E(;O) and the eigenenergies, —then the numier of eigenstates with energy
E is approximetely cqual ‘o the number of local minima in E(?O) with value

E., The approximate density of states in the volume Q is defined by

0 (E) %z" 68(E-6 -V (y))>y ,
<]

r
i

or in a new form

1 - - - : -
pf(E) T J'dy <3 6(y - yi)ﬁ(E = Q w vs(y)bv .

=]

When the concentration of impurities is sufficiently high, the
random variatle Vs(§) obeys Gaussian statistics., From this stage,
Halperin and Lax were able to evaluate pf(E), for three dimension, and

got
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( - 3
010203 Q0 - E)

2.2 17
3 %

p (B) = exp(=(8 - E)2/2€0§J ; 2.3.9

(em)

where Z is a constant proportionel to the concentration of impurities,

§ . The quentities O,s 015 0, ond o, are defined as follow ;

2 3
> = o) 2.3.10°
= -
01 0 0
and W) | . - o ag 0 : 2.3.11
=3 -
0 0 03
L -
- - { 1 2 - -2 2 - - - - & -y
where Gly -y) = j | ¢ (x=¥)£(x ~ y§ WX - X)axax’. 2,3,12
- - r - - - - 3
and W -x) = ¢ v(x - R) v(x'- R)oR . 2.3.13

"

Yow, Let us consider thc problem of findin; the best trial
wavefunction f, We know that regerdless of the choice of f, the variaticnal
estimates of the energies of the eigenstates will be higher than the true
values. So that, in the low energy tail, any approximation which
systematically over estimates the energies of all the eigenstates will
underestimate the density of states. Anc hence in the low-energy tail,

no matter what the choice of f, pf(E} will be smaller than the true
density of states, p(E). Clearly the best choice of f, for any given

energy E, is that which maximizes pf(E). We have

p(E) = maxf{pf(E)}
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Halperin and Lax considered only the expoénential part of (2.3.9)
They treated the limit £ — O when the exponential factor is dominant.
The best choice of f is that which maximizes the exponential factor in
(2.3.9), or nminimizes the quentity [s—g—g ]2' To minimize this
quantity Halperin and Lax looked at the solution of a nonlinear integral
equation,

Te(X) - pf(X) Jﬂfa(Ej Wx - Nax’ = Bf(%),

where W is o Lagrenge multiplier. By substituting the operator T given by

(2.3.3), this equaticn beeomes

nege
2r£*

-k -

£(X) - #1(%) ffg(i") WX - x') ax'= (E - B )f(x). (2.3.1%4)

%is equation locks like tile iartree equation for a particle cound in its

own self-censistent field, with an interaction- pi(X - X ). The equatio:

can be solvel by computer using the techniques developed by Hartree.

For each value of E - E; e trial function £(%) is first used to
eveluate the quantity J}Q(Qj W(X - x) &% in the equation (2.3.14). Then
the velue of p is varied until the soluticn f£(x) of (2.3.14) satisfies
the required boundary conditicns. HNext, the function £(%) thus cbtained
is used as a2 new trial function tc evaluate the new value of the quantity
’!fg(iﬂ W(x - Qﬁdﬁr. Now the process reverts to the previous step to sclve
o new wavefunction £(x). This iteration process will be carried on until

the new wavefunction and the old one ere approximately equal.

For screened Coulomb potentiel of impurities defined by (2.2.10)

we obtein



-

Wx - %) (e/R)exp(-QIx - %I)

n

where £ 2nehﬁ/Q52

Because screened Cculomb potential has spherical symetry the quantities

9,5 0, &and 0, are all equal and have the value

i 3

"‘2 Py

If the dimensionless quantities are introduced, i.e.,

L=
l

and v (B~ E)/E,,

then the density of states can be written in these new quantities as

= 3 3 c ~
EZQ o, " (T+v) E 2
plE) = [.-9:..2_ —'Lg_?"’ exp(- 9 IT + ul y
£ (2m)%! ¢ L %
or
i _ -
p(E) = (EQQ /6% )a(v) exp(-z; B(v)/28) 2.3.25)

a(v) and b(v) are dimensionless function.

Halperin and Lax considered only the ground state of the wavefunction
£(X) in the process of celculation. They obtained the numerical values o*

2(v) aend b(v) listed in table 2.1

As we mention, the density of states obtained from experiments

are ‘of the form
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o(E) o exp(-|EI™),

vhere 1/2 <n < 2.

Ey their calculaticn, helperin ond Lax ot tle quantity” n airee
with the experiment. They were able to obt2in tne nunerical velues of n
vy using the eguetion

é(1n o(v)) (2.3.126)
d{1nv)

The graph of n-plotted-against the quentities v is shown in Fig. 2.1.

/ .
The values of the Gengity of states are given for £ having the
values 0.05, 0.5, 5 and 50 i1/ Tatle 2.1 respectively. Tnese volues were

calculeated from cguction

o(E) = a(0) exp(=blv)/2z) (2.3.17)
where g = ngE -

This equation comes from the eguaticn (2.3.15) by dropping out the constant

factor EéQa/gg .

Since Halperin end Lex usea only the ground state egnergies in
their celculation, the values of density of states werc cn under estimate
of the true values. This results from the fact that therc may be some
excited states in some regions having the same enercies as the ground
states energies in cther ones.Thesé excited states was neglected in tue
caleulation. Fence the nuaser of stetes et encrgy E should Le reducea Uy

amount of number of these excited states and consequently the density of



Table 2

v

1.C0x10
5.62x%x10
3.162x1
1.78x10
1.00x10
5.62%x10
3.16x10
1.78x10
1.00x10
5.62

3.16

1.78

1.00

562x10
3416x10
1.78x10
1.00x10
5.62x10
3.16x10
1.78x10
1.00x10

o1

3
2

0
2

2

-1

-1
=1
-1
2
=2
=2
-2

2

Numerical values of a(y), b(v), and p(vy)e The values of a(v) and b(v)
are all calculated by Halperin and Lax.

a(v)
3.098x10
4. 645107
7.250x106
1.153x10°
1.888x10°
3.223x10"
5.781x10°
1.094:{103
2.197x‘|02
4,689x10
1.078x10
24793
7.259x10°
2.157x107"
5.957x10™°
2.423%10™°
8.906x10™°
3.532x10™7
1.485x10™
5.407x10_4
2.834x10~"

8

1

b(v)
1.h4ux106
1,912%10°
1.702x10°
6..00Jc‘10}'+
2.150%x10
?.808x103
2.988x10°
1.167%10°
4, 716x10°2
1.983x10°
8.720x10
4.043x10
1.956x10
1.,008x10
5.456
34108
1.846
15151
7¢516x10™
5.,006x10"
3.43%x10 ©

Iy

1
1

¢(v)

£=50
0.000
0.000
0.000
0.000
7.993510709
3.968%x10~29
6.099%10719
9.350%107
1.967
6.455
10507
1. 864
5.969%10™
1.950%10""
5.641%107°
2.349x1072
8.743x10™>
3.492x10-3
1.474x10™7
5-580}:10_li
2.824x10'“

£=5
0.000
0,000
0.000
0.000
0.000
04000
04000
227410
7.253x10‘19
1e146x10™7
1.760x1077
I ,900%107°
1.027%10™]
7.872%10™2
3, 452%1072
1.776x10™°
?.#05){10'3
3,148x10™>
1.377%1072
5.‘]’+3x10"1+
2.?38x10"h

=48

£€20.5

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
34a552x10
1.453x10™57
7.719x10~18
2.323%1072
9.Oh8x10—6
2.544x1o‘“
1.083%10™°
1.406x10™
1.117%10™2
?.003x10—#
3.278x10-h
2.011x10™"

<85

£=0.05
0.000
0.000
0.000
0.000
0.000
0.000
0,000
0.000
0.000
0.000
0.000
0.000
8.182x10
3.606x10™%
1.202x10™22
7.700x10~ 18
8.563}:10'11
3.542x10—8
8.083x10~7
3.621x10'6
9.178x10~°

-86

ge
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states at this energy E are lower than the true valiues.

2'0'Fi||ll1flll=|]| i v s

L

-

T
II‘I’i

_Tilillj_llg

-4
10 4] 10 1-)3

Fig. 2.1 The logarithatc-gerivative n = [d in b(v)] / [d¢ 1ln V]
of the/ exponent t{v) in the density of states is shown

to very smoothly from n ='1/2 to 2.

o]
S&-yakanit”lT has introduced another methed for calculating
the density of states in heavily doped semiconductors. It is Feynman Path
Integration teehnique. The density of stales evalusted Uy this method

agrees with that evelueted bty Halperin ana Lex, i.e.,

o(E) = (aA(E)/E) exp(-B(E)/28).
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The functions A(E) anc B(E) evaluated Ly path integral method are expressed
analytically in terms of parabolic cylinder function. #Although, it is

nore difficulty to obtain the numerical values of parabclic cylinder
function than fror the eveluation of ordinary algebraic cylinder functicon,
it is more convenient tu calculate the density of states by evaluating
parabolic cylinder function than by sulving Hartree's equation as was

dene Ly Helperin and Lax. To find the appropriate values of density of
states using path integration method, ' we only have tc finu the root of

en equation ¢f perubelic cylinder functicn. The outline of peth integration

nethod is es follow,

Ve begin with the/dénsity of stotes as defined by (2.3.1),

2=

p(E) = .<.§ &(E - Ei)>v .

This equation can be cxpressed in terms of the propagetor (Green's

function) for a single eléctron moving in the fielc of N impurities as

w

pl(E) % e jdt exp(iEt/‘n)i(‘j(D,C:t,{v})‘\
ot
= 2111 f &t G(0,03t)exp(iEt/n) 243

- -
wherr G (r2, o t) is the averoge propagutor in the random potential of

S N . b" il ) ‘ i 18
ell impurities. The prepagatoer L{(rg, rl,t,{v} satisfies the equation
N

[}h‘g_ B n({v}i] gg(?z, r; t,{v}) = in 8(r,- F)6(t)

Tt

vhich can Le expressed in the peth integral representation as
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a2
dt{%-(l) -z v(;(T)—ﬁi)}).

t
0 i

* g(;e’ Tst(v)) = f@(?u)) exp(%f

Echoz‘
where v(Tr - §2) is the i®h impurity potential energy. thationxgﬁ(;(T))
denotes the path integral to be carried ocut with the boundery conditicns
¥(0) = . and ¥(t) = . . Note that the operator h is dGefined

1 2
22
as H({v}) = - ﬁev +fv(r -R,) .
1F 2r# i

By assuming that the impurity potential 'V is weask but that their density
N is high so that ﬁvz is finite we find that the averege propagator can

be expressed in the foru

<§§k§2’ §l;t,{v})> = Gg(r

% §l3t) = ngx;(T))exp(iSfr) 2.4.3
Vv

2’

vhere 8§ is the action of the random system given as
t

t S5
* = - - Y
5= [ amrll) _ 5 « ..é.nf doW(B(t) - 2(o))} , 2.4k
2 o 2h
(e} O
> - and W is defined by (2.3.13), Eo is the everage of potential energy of

electron over all the impurities potential
E = fdﬁ'\f(; - ﬁ) .
o

For an impurity potential of the screened Coulomb form given by (2.2.10)

the function W(;(T) = ;(0))bec0mes
W(T(t) - 7(0))  =(&/F) exp(-alr(r) - x(o)l), 2.4.5

and E = - hﬂe2/5Q2 2.k .5
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where £ = 2me N/Qe  has the dimension of the energy squarec.

The action associated with tune above quentities is

t t
f. g2 N
8§ = ,[ dTJE_E_LIl._ E + ri & uo exp(-Q .r(t)n§(0)f)l o 24,7

% L 2 o 2n A )

In general the path integral of this action is very difficult to
evaluate analylicelly because it is not guadratic in r. To perforu the
path integral in(2.4.3), an action which is simple, integratle anu

similar to the action € in rough approximetion nust be assumeu. Tnis cen

te achieved Ly modelling the action & by Sol(’ls,
b t
u¥ a2 nd - - 2 i o
Bty = ,f 5 ATPT) - E) o |r(t) - r(0)|"} 2.11.,8
c

where @ is a parameter to/be ‘determined letter. Then we can rewrite the

equation (2.4.3) in a new fowm

c(rE, rl;t)' = Go(re,rl;t,w) €e:¢p(i(S--SO(w))/ﬁ),oc(w) &.h,0

where the propegetor Go(;é’ ;l;t,m) is deiinzd by
o - = > - ¥ [ |
Go(rg,rl;t,u) = Jgj(r('r)) exp(i ._.O(N)/Ti) 20,10

and the average < > (w) is defined as

Wi

jc(b(?‘(f)) exp(i So{w)/ﬁ)P

= .‘:-l-.l'_'.
9 féﬁ(i’-(r))exp(i f—:G(w)/Ti)

na

Further, the cquation (2.4.9) can te approximated Ly keeping only the

first cumulant, i.e.,
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(;2,§1;t) = Go(;e’;i‘t’“) exp((1/£)<8-8_(w)>¢ (1) 2,b,12

G
1 (o]

Hote that Gl(;°’ ?l;t) is defined as teing the first cumulant approximation

of G(¥,, T.;t).
[

1.

To ottain the density of stetes we need only the diagonal part of

the average propagator, G{D, 03t)./ /Then equation (2,4.12) tecomes

Gl(ogogt) = C’O(D,G;t,w] exp((i/ﬁ)<s—so(w)>so(m);;1232=6 )

2.4.13
The prepagator GD(O, 0;t,8) / can be evaluate exactly to yield tie result

[ m* ?3/2f wt )3
GO(O’ O;t’w) = 5 } - ;-)-.LI1J+
IEWiﬁt lEsinEE
2
The average <8 - SO> 4 igs given byg "
<8 = S (w)> =-§i‘31-(2£cot-u£-l)—]3t
(s} s (m)_; =; =B 2 2 2 o
o e M-
t ke "."/"J
t'(; ,2 —df e
+ Q—j dxj ay ¥ exp(=Q7y) (J(y,x,u,t)) >
21T
' o 0
2,15
where Jy,x,w,t) = v+ 2 ( sin 9% sin ELEE-u)fsin 9%—) i 2,4,16

m¥w
To oltein the approximated density of states we sulstitute(2.4.13),

(2.4.,14) and (2.4.15) into (2.4,1) and obtair
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oo

3/2
. 1 m* wt 3 3wt | wt oy _1ep
Ol(E,w) b j-mdt (21111:1-,) (2 sinﬁ) exp(z( s cut— > 1) (E E)t
2
t o
-3/2
S%— de I dy y exp(—sz)(J(N,x,w.t)) )
T o
2.5:27
If we let x = t§ . the sbove equation vecomes
o 3/2
1 n¥* wt i
p.(Euw) = — dt c.xp( (-——- cotit 1) - I(E -k)t
170 o Qﬁm)(EHngf 2 e
2
1 =)
2 =3/2
-/ J dzg J/dyy exp(~ Q:r)(:!(y. Tawy t)) )
24§h? /o) o
2.4.18
and J(y,t,0, t) = y + EERBin mzc sin wt(;”C)/Bin E%J 2.4.19

To obtain the density of states in tail region we consider the

ground state contributicn by.ibtting t~e« , Then (2.4,18) become59

oo

3/2 : .
1 *® 3 =3iwt i
p.(E,w) = at( ) (dwt)” exp( - =(E -E)t
1 onr  Lw  omint 4 oo
.2 .
- V2 r’; exp (2°/4) D _(2)) , 2.4.20
I n -3
where' 42__52 exp(z°/4)D_,(2) = -L dy y exp(-aZy)(y + =)
T i 2n J_ 2w ¥w
and 2% w2 un* .
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DP(Z) is parabolic cylinder function as defined by (2.2.13).

For convenience we change some quantities to new forus.

= %2n2 /o N 2 _ , 2
Let B, = M Q"/em* , E = Tw end v (Eo L)/EQ then Z

QEQ/Lw .

Introduce these new quantities to (2.4.20) and perform the integration,
the density of states in tail region can be expressed in term of two

dimensionless functions, a(v,Z) and b(v,Z) as follow20

3 ] ¥
pl(v,Z) = Q a(u,Zl_. exp(-b(u,Z)XhE)DazE('#b(v,Z}fi'}
EQasfh (o(v,z)3"
2,421
2! 3/2
where a(v,2) = LSEa o) i 2.k.22
gniz 28 exp(zzfz)DfB(z)
b(v,2) = (T(3/227"+)" > 2.4.23
245'exp(22/h)n_3(z)
and g = E/ES 2.l
= Q . L e

Note that (2.4.21) is evaluatec from (2.4.20) by using the formulall

-]
. 2 » - - 2 -~ P it
‘J dt(lt)P exp(=§ te— igt) = 2 IVEJE'E B exp(=-q /bBE)DP(q{J¢;4

2.4.25

In the limit cf large b(u,Z)/E' the asymptotic expression for pl(v,z)

i 1705608
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3
is pl(v.Z) = —95_2- al(v,Z)exp(=b(v,2)/2¢" ). 2.k.2¢
E
Q

‘This comes from the asymptotic expression for the persobelic cylinder

functionll

D (z) = exp(- 22/4)zP(1 - ﬂ%l-l +ena)e 2.4,27
. 2%

The parameter o which is contained in Z has to be determined.

Following Halperin and Lax8 the parameter w or Z must be chesen so that

Ol(v,Z) is maximized. For deep tail states b(U,Z)/25>>l the exponenticzl

term in density of states dominates. To maximize Dl(V,Z), we heed only
to maximize the exponential term by minimizing the function b(V,Z) as
Halperin and Lax8 did. There is another procedure of chocosing an
appropriate Z. This procedure is given by Lloyd and Best21 bases on
mathematical theorem of variational principle. The three processes uscc
to evaluate appropriste Z's and the numerical values of density of states

will be discussed inthe next chapter

Another interesting point of this path integral method is that
Kane's density of states can bLe obtained by considering only the high
energies which corresponding to the linit t —» o. From (2.4.18) and

(2.4.19), if we take t —» 0 the density of states et high energies
9

becomes
w0

3/2 2.9
Idt =By expled ta + i - E)t),
2miny = ®

1
o (B) = L
4 ¢ it

-0

2.4.28
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. 1/2
where n = ("LLQ—N‘) (Z_e_) .

This equaticn is equivelent to (2.2.12) which is derived from Kane's idec,

Notice that the parameter Z or w does not appear in the above equation.

Now let us pay attention to the quantity n defined as

u(v,2) = 31n b{v,2) 2.4,29

3ln v '

In the path integral method this gquantity is easily calculateu. By using

chain rule of differentiation (2.4.29) becomes

ey Blgvbgv.Z) / ?lu v

v '

Since the function v(v,Z) is given by equation (2.4.23), we have

2

dln bgv,Z!

av

A 3p=
e {2 1n( 5 27 v)

+ 1n(+7/(2 2 exp(2°/4)D_4(2)))}

]

2/(% 7=240).

Then n will be obtain as

n(v,z2) = 2v /(gz-2+v) 2.4.30

We can see that the values of n(v,Z) can be evaluated easily if appropriate
Z's are known. The values and graphs of n(v,2) will be given in the next

chapter.
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