1

To ke wood of the second of th

THE GENERALIZED DIRICHLET PROBLEM

Now we shall study the Dirichlet problem for a bounded open subset G of Rⁿ and for an indicator function on an open subset of 3G, we show that an associated harmonic function can be constructed by a method which is known as the Perron-Wiener-Brelot method.

- 3.1 <u>Definition</u>. Let G be any nonempty open subset of Rⁿ and let f be any extended real-valued function defined on 3G. The <u>Generalized Dirichlet problem</u> is that of constructing a harmonic function h on G corresponding to the boundary function f.
- 3.2 <u>Definition</u>. An extended real-valued function u is <u>hyperharmonic</u> on G if it is superharmonic or identically + ∞ on each component of G and u is <u>hypoharmonic</u> on G if it is subharmonic or identically ∞ on each component of G.
- 3.3 <u>Definition</u>. The <u>upper class</u> of functions $\mathcal{U}_{\mathbf{f}}$ determined by the function f on ∂G is given by

 $U_f = \{u | u \text{ is hyperharmonic on G, lim} \inf_{y \to x} u(y) \ge f(x) \text{ for all } x \in \partial G,$

u is bounded below on G}.

The <u>lower class</u> of function $\mathcal{L}_{\mathbf{f}}$ determined by f is given by $\mathcal{L}_{\mathbf{f}} = \{u \mid u \text{ is hypoharmonic on G, lim} \quad \sup_{\mathbf{y} \to \mathbf{x}} u(\mathbf{y}) \leq f(\mathbf{x}) \text{ for all } \mathbf{x} \in \partial G,$

u is bounded above on G).

Note that $\mathcal{U}_{\mathbf{f}}$ contains the function that is identically + ∞ on G and that $\mathcal{L}_{\mathbf{f}}$ contains the function which is identically - ∞ on G.

3.4 <u>Definition</u>. $\overline{H}_f = \inf \{u | u \in \mathcal{U}_f \}$ is the <u>upper solution</u> for the generalized Dirichlet problem for the boundary function f. $\underline{H}_f = \sup \{u | u \in \mathcal{L}_f \} \text{ is the corresponding <u>lower solution.</u>}$

Before proving the next lemma a few words should be said about the upper and lower solutions relative to the components of G. Let W be a component and let $\mathcal{U}_{\mathbf{f}}^{W}$ and $\overline{\mathbf{H}}_{\mathbf{f}}^{W}$ be the upper class and upper solution, respectively, relative to the component W. We first remark that $\mathcal{U}_{\mathbf{f}}^{W} = \mathcal{U}_{\mathbf{f}}|_{\mathcal{U}}$ where

 $\mathcal{W}_{\mathbf{f}} = \{ \mathbf{u} | \mathbf{u} \text{ is hyperharmonic on } \mathbf{w}, \text{ lim inf } \mathbf{u}(\mathbf{y}) \geq \mathbf{f}(\mathbf{x}) \text{ for all } \mathbf{x} \in \partial \mathbf{w}, \mathbf{y} + \mathbf{x}$

u is bounded below on w},

 $\mathcal{U}_{\mathbf{f}|_{\mathbf{W}}} = \{\mathbf{u}|_{\mathbf{W}} \mid \mathbf{u} \in \mathcal{U}_{\mathbf{f}}\}.$

to verify this suppose $u \in \mathcal{U}_{\mathbf{f}|_{\partial W}}^{W}$ and let $u^* = u$ on W and $u^* = +\infty$ on $G \setminus W$ Clearly $u^* \in \mathcal{U}_{\mathbf{f}}$ and $u = u^*|_{W}$ so $u \in \mathcal{U}_{\mathbf{f}|_{W}}^{W}$. This shows that $\mathcal{U}_{\mathbf{f}|_{\partial W}}^{W} \subset \mathcal{U}_{\mathbf{f}|_{W}}^{W}$. Suppose $u \in \mathcal{U}_{\mathbf{f}}$ and $u \in \mathcal{U}_{\mathbf{f}|_{W}}^{W}$. Then $u \in \partial G$ and

$$\begin{array}{cccc} \lim & \inf u(y) & \geq \lim & \inf u(y) \geq & f(x). \\ y \to x & & y \to x \\ x \in W & & y \in G \end{array}$$

Therefore $\mathbf{u}|_{\mathbf{V}} \in \mathcal{V}_{\mathbf{f}}^{\mathbf{W}}|_{\partial \mathbf{W}}$ and $\mathcal{U}_{\mathbf{f}}|_{\partial \mathbf{W}}^{\mathbf{W}}$. It follows that $\overline{\mathbf{H}}_{\mathbf{f}}^{\mathbf{W}}|_{\partial \mathbf{W}}^{\mathbf{W}} = \overline{\mathbf{H}}_{\mathbf{f}}|_{\mathbf{W}}^{\mathbf{W}}$. Because of this it usually suffices to consider components of G.

3.5 Lemma. \overline{H}_f and \underline{H}_f are identically + ∞ , identically - ∞ or harmonic on each component of G.

<u>Proof</u>: We can assume that G is connected. If $\mathcal{U}_{\mathbf{f}}$ contains only the identically + ∞ functions, then $\overline{H}_{\mathbf{f}}$ = + ∞ and we are through. Suppose $\mathcal{U}_{\mathbf{f}}$ contains a hyperharmonic function that is not identically + ∞ on G. Then

 $\bar{H}_f = \inf \{u | u \in \mathcal{U}_f, u \text{ is superharmonic on G} \}.$

To show that \overline{H}_{f} is either identically - ∞ or harmonic on G, we define

$$u^* = \begin{cases} PI (u,B) & \text{on } B \\ u & \text{on } G \setminus B \end{cases}$$

where u is a superharmonic member of \mathcal{U}_f and B is a ball with $\overline{\mathbb{B}} \subset \mathbb{G}$. Then u* is harmonic on B, u* \leq u on G, and u* is superharmonic on G by Theorem 2.12. For x ϵ $\partial \mathbb{G}$

$$\lim_{y \to x} \inf u^*(y) = \lim_{y \to x} \inf u(y) \ge f(x)$$

and u* is bounded below by the same constant bounding u, then u* $\varepsilon \mathcal{U}_{f}$. Since u* \leq u for every u $\varepsilon \mathcal{U}_{f}$, inf $\{u^{*}|u \varepsilon \mathcal{U}_{f}\} \leq \inf \{u|u \varepsilon \mathcal{U}_{f}\}$. But u* $\varepsilon \mathcal{U}_{f}$ so u* \geq inf $\{u|u \varepsilon \mathcal{U}_{f}\}$ and hence inf $\{u^{*}|u \varepsilon \mathcal{U}_{f}\}$.

\(\geq \text{inf } \{u|u \varepsilon \mathbf{U}_{f}\} = \text{H} \) Therefore $\text{H}_{f} = \inf \{u^{*}|u \varepsilon \mathcal{U}_{f}\}$. To show that \mathcal{U}_{f} is left-directed family, let u₁, u₂ $\varepsilon \mathcal{U}_{f}$. For x ε 3G, \(\left\) \text{im inf } u₁(y) \(y \right) \(x \right) \) \(\geq f(x), \) i = 1,2. This implies that \(\left\) \text{im inf } \(\left(\text{min}(u_{1}(y), u_{2}(y)) \) \(y \right) \) \(y \right) \)

\(= \text{min } \left(\limin \text{ inf } u_{1}(y), \limin \text{ inf } u_{2}(y) \right) \(\geq f(x). \) Since u₁ and u₂ are bounded below, \(\text{min } \left(u_{1}, u_{2} \right) \) is bounded below on G and and \(\text{min}(u_{1}, u_{2}) \varepsilon \text{U}_{f} \). Therefore, given u₁ and u₂ \(\varepsilon \left(\text{f} \) there is u₃ = \(\text{min}(u_{1}, u_{2}) \varepsilon \text{U}_{f} \) such that

 $u_3 \le u_1$ and $u_3 \le u_2$, and hence U_f is left directed-family. $\{u^* | u \in U_f\}$ is left-directed family of harmonic functions. Then by Theorem 1.16 \overline{H}_f is either - ∞ or harmonic on G.

3.6 <u>Definition</u>. If $\overline{H}_f = \underline{H}_f$ and both harmonic on G, then f is called a <u>resolutive boundary function</u> and $H_f = \overline{H}_f = \underline{H}_f$ is called the <u>generalized Dirichlet solution</u> for f.

The above method of obtaining a harmonic function corresponding to the boundary function f is called the Perron-Wiener-Brelot method.

3.7 <u>Lemma</u>. Let G be a bounded open subset of \mathbb{R}^n . If $u \in \mathcal{L}_f$ and $v \in \mathcal{V}_f$, then $u \leq v$ and $\underline{H}_f \leq \overline{H}_f$ on G.

<u>Proof</u>: We can assume that G is connected. If either v is identically + ∞ or u is identically - ∞ , then u \leq v on G trivially. It suffices to show that v-u \geq 0 on G where v-u is superharmonic. If x ϵ ∂G and f(x) is finite, then

 $\lim_{y \to x} \inf(v-u)(y) \ge \lim_{y \to x} \inf(y) - \lim_{x \to x} \sup_{y \to x} u(y) \ge f(x) - f(x) = 0;$

if $f(x) = +\infty$, $\lim_{y \to x} \inf(v-u)(y) \ge 0$, since $\lim_{y \to x} \inf v(y) = +\infty$ and

 $\lim_{x \to \infty} \sup_{x \to \infty} u(y) < +\infty \quad \text{with a similar result holding if } f(x) = -\infty.$

Therefore $\lim_{y \to x} \inf(v-u)(y) \ge 0$ for all $x \in \partial G$ and $v-u \ge 0$ on G

by Theorem 2.6. We have $u \le v$ on G and this gives $\frac{H}{f} \le \overline{H}_f$ on G.

3.8 <u>Theorem</u>. Let G be a bounded open subset of R^n . If f is bounded on aG and there is a harmonic function h on G such that kim h(y) = f(x) y + x for all $x \in a$ G, then f is resolutive and $H_f = h$.

 $\frac{\operatorname{Proof}}{\operatorname{y} + \operatorname{x}}$: Since f is bounded and $\lim_{y \to x} h(y) = f(x)$ for all $x \in \partial G$, h is bounded by Theorem 2.6. h belongs to both \mathcal{U}_f and \mathcal{L}_f . Therefore $\overline{H}_f \leq h \leq \underline{H}_f$, but $\underline{H}_f \leq \overline{H}_f$ then $\overline{H}_f = h = \underline{H}_f$. Since h is harmonic, f is a resolutive boundary function.

- 3.9 <u>Lemma</u>. Let G be a bounded open subset of Rⁿ, let f and g be extended real-valued functions on ∂G , and let c be any real number
 - (i) if f = c on ∂G , then f is resolutive and $H_f = c$ on G,
 - (ii) $\overline{H}_{f+c} = \overline{H}_{f} + c$ and $\underline{H}_{f+c} = \underline{H}_{f} + c$. If f is resolutive, then f+c is resolutive and $H_{f+c} = H_{f} + c$
 - (iii) if c > 0, then $\overline{H}_{cf} = c\overline{H}_f$ and $\underline{H}_{cf} = c\underline{H}_f$. If f is resolutive, then cf is resolutive and $\underline{H}_{cf} = c\underline{H}_f$; c > 0
 - (iv) $\overline{H}_{-f} = -H_{f}$. If f is resolutive, then -f is resolutive $H_{-f} = -H_{f}$.
 - (v) If $f \leq g$, then $\overline{H}_f \leq \overline{H}_g$ and $\underline{H}_f \leq \underline{H}_g$.
- (vi) $\overline{H}_{f+g} \leq \overline{H}_{f} + \overline{H}_{g}$ and $\underline{H}_{f+g} \geq \underline{H}_{f} + \underline{H}_{g}$ whenever the sums are defined. If f and g are resolutive and f+g is defined, then f+g is resolutive with $\underline{H}_{f+g} = \underline{H}_{f} + \underline{H}_{g}$.

<u>Proof</u>: (i) Suppose f = c on ∂G . It is easily seen that $c \in \mathcal{U}_f$ and $c \in \mathcal{L}_f$ and $\overline{H}_f \leq c \leq \underline{H}_f$. Therefore $\overline{H}_f = c = \underline{H}_f$ and since c is harmonic f is resolutive and $H_f = c$ on G

(ii),(iii),(iv),(v) and (vi) are easily proved directly from the definitions.

3.10 <u>Lemma</u>. Let G be a bounded open subset of R^n . If $\{f_j\}$ is an increasing sequence of boundary functions, $\lim_{j \to \infty} f_j = f$ and $\overline{H}_f > -\infty$ on G, then $\lim_{j \to \infty} \overline{H}_f = \overline{H}_f$; if, in addition, $\{f_j\}$ is a sequence of resolutive boundary functions, then $\overline{H}_f = \underline{H}_f$ and f is resolutive if either \overline{H}_f or \underline{H}_f is finite.

Proof: Suppose that G is connected. Since $f_j \leq f$, $\overline{H}_{f_j} \leq \overline{H}_{f}$. If $\lim_{j \to \infty} \overline{H}_{f_j} = +\infty$, then there is nothing to prove so we assume that $\lim_{j \to \infty} \overline{H}_{f_j}(x_0) < +\infty$ for some $x_0 \in G$. Since $-\infty < \overline{H}_{f_1}(x_0) \leq \overline{H}_{f_j}(x_0) < +\infty$, \overline{H}_{f_j} is not identically $+\infty$ and \overline{H}_{f_j} is harmonic by Lemma 3.5. Since the limit of an increasing harmonic functions is harmonic or identically $+\infty$ and $\lim_{j \to \infty} \overline{H}_{f_j}(x_0) < +\infty$, $\lim_{j \to \infty} \overline{H}_{f_j}$ is harmonic on G. Given $+\infty$, for each j, choosing $+\infty$ such that $+\infty$ of $+\infty$, $+\infty$ such that $+\infty$ of $+\infty$, $+\infty$ such that

and define

$$v = \lim_{i \to \infty} \overline{f}_{i} + \sum_{j=1}^{\infty} (v_{j} - \overline{f}_{j}).$$

For each j, v_j \overline{H}_{f_j} is superharmonic on G, since $v_j \ge \overline{H}_{f_j}$, v_j \overline{H}_{f_j} is non-negative and smaller than $\varepsilon 2^{-j}$ at x_0 . From the inequality

$$v \ge \lim_{i \to \infty} \bar{H}_{i} + v_{j} - \bar{H}_{j} = \lim_{i \to \infty} (\bar{H}_{i} - \bar{H}_{j}) + v_{j}$$

and the fact that $\lim_{i \to \infty} \overline{H}_{j} \ge \overline{H}_{j}$, we obtain $v \ge v_{j}$ for each j. Since v_{j} is bounded below, v is bounded below. It is easily seen that v is superharmonic on G. Moreover, for $x \in \partial G$ and for each j,

$$\lim_{y \to x} \inf v(y) \ge \lim_{y \to x} \inf v_{j}(y) \ge f_{j}(x)$$

and

$$\lim_{j \to \infty} (\lim_{y \to x} \inf v(y)) \ge \lim_{j \to \infty} f_j(x)$$

$$\lim_{y \to x} \inf v(y) \ge f(x)$$

Therefore $v \in \mathcal{U}_f$ and $v(x_0) \geq \overline{H}_f(x_0)$. Since $\lim_{j \to \infty} \overline{H}_f(x_0) \leq \overline{H}_f(x_0) \leq v(x_0)$ $= \lim_{j \to \infty} \overline{H}_f(x_0) + \sum_{j=1}^{\infty} \varepsilon 2^{-j} = \lim_{j \to \infty} \overline{H}_f(x_0) + \varepsilon, \varepsilon \text{ is arbitrary, } \lim_{j \to \infty} \overline{H}_f(x_0)$ $= \overline{H}_f(x_0). \text{ Since } \lim_{j \to \infty} \overline{H}_f(x_0) \text{ is finite, } \overline{H}_f(x_0) \text{ is finite and } \overline{H}_f \text{ is harmonic on } G. \text{ Since } \overline{H}_f - \lim_{j \to \infty} \overline{H}_j \text{ is harmonic on } G, \overline{H}_f - \lim_{j \to \infty} \overline{H}_j \text{ satisfies minimum principle on } G \text{ and } \overline{H}_f - \lim_{j \to \infty} \overline{H}_f \text{ is a non-negative function which vanishes at } x_0 \in G. \text{ Therefore } \overline{H}_f - \lim_{j \to \infty} \overline{H}_f \text{ attains its infimum on } G \text{ and } \overline{H}_f - \lim_{j \to \infty} \overline{H}_f \text{ is identically zero on } G. \text{ If the } f_j \text{ is infimum on } G \text{ and } \overline{H}_f - \lim_{j \to \infty} \overline{H}_f \text{ is identically zero on } G. \text{ If the } f_j \text{ is identically zero on } G. \text{ If the } f_j \text{ is are resolutive, then } \overline{H}_f = H_f \text{ and } \overline{H}_f = \lim_{j \to \infty} \overline{H}_f = \lim_{j \to \infty} H_j = \lim_{j \to$

3.11 Lemma. If u is bounded subharmonic function on the bounded open set G such that $f(x) = \lim_{y \to x} u(y)$ exists for all $x \in \partial G$, then $y \to x$

Proof: Clearly $u \in \mathcal{L}_f$ and $u \leq \underline{H}_f$. Since u is bounded, \underline{H}_f is harmonic on G. Then $\lim_{y \to x} \inf_{f \to f} \underline{H}_f(y) \geq \lim_{y \to x} \inf_{y \to x} u(y) = f(x)$ for all $x \in \partial G$ and therefore $\underline{H}_f \in \mathcal{U}_f$. It follows that $\underline{H}_f \geq \overline{H}_f$; but since we always have $\underline{H}_f \leq \overline{H}_f$, $\underline{H}_f = \overline{H}_f$ and f is resolutive.

3.12 Lemma. Let K be a compact subset of Rⁿ and let f be a continuous function on K. Then, given $\epsilon > 0$, there is a function u which is the difference of two continuous subharmonic functions defined on a ball containing K such that $\sup_{x \in K} |f(x)-u(x)| < \epsilon$.

Proof: It follows from the Stone-Weierstrass theorem that for each $\varepsilon > 0$ there is a function u polynomial in the n coordinate variables such that $\sup_{x \in K} |f(x) - u(x)| < \varepsilon$. We must show that u can be expressed as the difference of two continuous subharmonic functions defined on a ball $B \supset K$. Consider $v(y) = ||y||^2$, $\Delta v = 2n \ge 0$. Then v is continuous subharmonic on R^n and for $\lambda \ge 0$, λv is a continuous subharmonic function on R^n and for $\lambda \ge 0$, λv is a continuous subharmonic function on R^n . Choosing $\lambda_0 > 0$ such that $\Delta(u + \lambda_0 v) \ge 0$ on R^n , then $u = (u + \lambda_0 v) - \lambda_0 v$ with $u + \lambda_0 v$ and $\lambda_0 v$ are continuous subharmonic functions on R^n .

3.13 Theorem (Wiener). If f is a continuous real-valued function on the boundary 3G of the bounded open set G, then f is resolutive.

Proof: Since ∂G is compact, let B be a ball containing ∂G , there is a function u = v - w, where v and w are continuous subharmonic functions defined on B such that $\sup_{x \in G} |f(x) - u(x)| < \varepsilon$. Since $v(x) = \lim_{x \in G} v(y)$ and $v(x) = \lim_{x \in G} v(y)$ for all $x \in \partial G$ and v, v are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ and v are $v \to v$ are $v \to v$ and v are $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ are $v \to v$ and $v \to v$ and $v \to v$ are $v \to v$ and $v \to v$ and $v \to v$ are $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ are $v \to v$ and $v \to v$ and $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ are $v \to v$ and $v \to v$ are $v \to v$ are $v \to v$ are $v \to v$ are

$$|\overline{H}_{\mathbf{f}}(\mathbf{x}) - \overline{H}_{\mathbf{u} \mid \partial G}(\mathbf{x})| = |\overline{H}_{\mathbf{f}}(\mathbf{x}) - H_{\mathbf{u} \mid \partial G}(\mathbf{x})| < \varepsilon$$

for all x ϵ ∂G and then $\sup_{x \in \partial G} |\overline{H}_f(x) - H_u(x)| < \epsilon$ that is, $H_u|\partial G$ approximates uniformly to \overline{H}_f . In the same way $H_u|\partial G$ approximates uniformly to \underline{H}_f . Therefore $\overline{H}_f = \underline{H}_f$, but since the above inequalities also show that \overline{H}_f is finite, f is resolutive.

3.14 Theorem. If C is a subset of R^n , then χ_C , the indicator function of C, is a resolutive boundary function.

<u>Proof</u>: If C is open, then χ_C is lower semicontinuous on \mathbb{R}^n . If C is closed, then χ_C is upper semicontinuous on \mathbb{R}^n . Therefore, there is a sequence of continuous functions $\{f_j\}$ on \mathbb{R}^n such that $\lim_{j\to\infty} f_j = \chi_C$ on C and $0 \le f_j \le 1$ for each j. By Theorem 3.13 f is resolutive for each j. It follows from Lemma 3.10 that χ_C is a resolutive boundary function.