CHAPTER II

SUBHARMONIC AND SUPERHARMONIC FUNCTIONS

We give the definitions and study some properties of
subharmonic, superharmonic functions and polar sets in this chapter.

Some of the material in this chapter is drawn from [1] and [2].

2.1 Definition. Lgt-ﬁ is an open subset of Rn. An extended real-
valued function u defined on G is said to be subharmonic on G if it
has the following properties :
(i) u is upper semicontinuous on G,
(ii) u<+wong,
(iii) If x e G, then u(x) < L(u:x,8) whenever Ex,é: G,

(iv) u is not identically - « on any component of G.

The function u is supgrha:ﬁpnic on G if -«u is subharmonic on G.
It is easily seen that u+h is superharmonic if u is super-

harmonic and h is harmonic on G.

2.2 Definition. A function u defined on an open connected set G

obeys the maximum principle if sup u(x) is not attained on G unless
xe>
u is constant. There is a corresponding minimum principle if inf u(x)
xeG
is not attained on G unless u is constant.
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2.3 Theorem, If u is continuous on the open connected set G and
for each xeG there is a 6 > O such that u(x) = L(u:x,8) vhenever

Ex g ©B, s CG, then u obeys the maximum end minimum principles.
» ]
x

Proof i Let M= {x|xeG and u(x) = sup u(y)}. Since u is 004277
YeG

continuous, M is a relatively closed subset of G. We shall show
that M is open. Let xeM, then there is a 6:: > 0 such that

u(x) = L(u: x,8) whenever § < 6,0 Let ye Bx,Gxand 64= [x=y} < L
since u(x) = L(u: Xs84), L{u(x)-u: x364) = 0, but xeM so u(x)-u 2 0

on 3B Therefore u(x)-u = 0 almost everywhere on B_ 4
: ] ?

0
and,in particular u(y) = u(x).

8

By the continuity of u, u = u(x) on 3B,
!60
This shows that yeM and Bx 5 CMand also M is open. By the comnected-
]
x

ness of G either M=@P or M =G, If M =@, then sup u(y) is not
yeG

attained in G and if M = G, then u is a 'consta.nt. This completes
the proof that u satisfies the maximum principle., Next, -u satisfies
the hypothesis and therefore maximum principle, but the maximum

principle for -u is the same as the minimum principle for u.

2.4 Theorem. Let u be continuous on the open set G. If for each
xeG, u(x) = L(u: x,8) for all sufficiently small 8, then u is harmonic

on G; in particular, u(x) = L(u: x,8) = A(u: x,8) whenever ﬁx sC G.
]

Proof : Let B = Bx,pc §x pC G We define the function v by
PI(u,B) on B
v =
u(y) on 3B,
v is continuous on B and harmonic on B. For each yeB, v(y) = L(v:x,8)

¢
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for all sufficiently small & and by the hypothesis, u(y) = L(u:x,8).
Then u(y)=v(y) = L(u~v: x,6) for all sufficiently small §. Suppose
there is a point zeB such that u(z)-v(z) ¢ 0. Since u-v is continuous
on B, u-v attains its infimum on B. By Theorem 2.3 u-v must be
constant on B. Since u-v = 0 on 3B, u-v = 0 on B, a contradiction.
Therefore u > v on B. Applying the same argument to v-u, we obtain

u =von B. Since v is harmonic on B, u is harmonic on B and B is

arbitrary ball with B (C G, then u is harmonic on G.

2.5 Theoremn. Let u be a function defined on an open set G r®
having continuous second partials. Then u is superharmonic on G

if and only if Au € O on G.

Proof : Assume that Au < 0 on G. Consider first that Au < 0
onB=Bx’6CG. Let
PI(u,B) on B
hic=
Tu on 9B
The function h is continuous on B and harmonic on B. If we can show
that u > h on B, then u(x) > L(u: x,8) whenever BE- G since
h(x) = PI(u,B) = L(u:x,8) on B. Let w = u-h. Then Aw = Au = Ah < 0

on B, w =0 on 3B and w is continuous on B. Suppose w attains its

minimum on B at x,+ If xy € B, then

4 |
2
3
X3 %

and Aw(xol 2 0, a contradiction., Therefore w = u-h 2 O on B and u 2 h

20, i=1,2’o-o’n

on B, Now suppose that Au £ O on B. Letting q(x) = ]]x“2, Aq = 2n.
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For each e > 0,
A(u - eq) = Au=-¢gAqg <O

on G. By the first part of the proof
u(x)-eq(x) > L(u-eq: x,8) = L{u: x,8)-eL(q: x,8).

Letting ¢ + 0, we obtain u(x) 2 L(u x,8) whenever B (C G. Therefore
u is superharmonic on G.

Conversely, suppose that u is superharmonic and has continuous
second pertials on G. Then Au is continuous on G. Let R =(x|su(x)> 0}.
R, is an open subset of G. Suppose Rlﬁ @#. Then A(-u) < 0 on R,. By
sufficientdy part -u is superharmonic or u is subharmonic on R, .

1
Therefore we have u(x) < L(u: x,6) and u(x) 2 L(u: x,8) whenever

-

B ’5(: G and that u(x) = L(u: x,6). By Theorem 2.4 u is harmonic and

X

then Au = 0, & contradiction. Thus R, = # and Au < 0 on G,

2.6 Theorem, If u is subharmonic on the open connected set G, then
u satisfies the maximum principle on G, If G is bounded open set,

u is subharmonic on G, and fim sup u(z) < 0 for all x € 3G, then
Z+Xx

u<o0ongG,

Proof : To prove the first assertion, suppose that there is a

point xy¢ G such that u(x,) = :gg u(x), =« <u(x,) = :zg u(x) < + e,

Let M = {x|u(x) = sup u} which is relatively closed subset of G by
G

the upper semicontinuity of u. We shall show thet M is open. Let

¥y € M. Since u is subharmonic on G, u(y) < L(u: y,8) whenever

B 6(: G. Suppose there is a point z ¢ B \NM, Letp = “y-zﬂ < §.
Y ' ¥

Since y € M, u(y) > u(x) for all x ¢ G,
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v

'_lE:I J uly)ao(x) “égjf S u(x)do(x)

cp 3B Oy 3B
o Y.P R y,.P

u(y) 2 L(u: y,).

Therefore u(y) = L(u: y,p) since u(y) < L(u: x,p) whenever

B CB 6. Sowe have L(u(y)-u: y,p) = 0. Since u(y)-u > 0
YspP ¥s0

on aBy 0? u(y)=u = 0 almost everywhere on aBy 0 But since
’

>
u(z) < u(y), there is an a such that u(z) < a < u(y). By the
upper sgqigqntinpity of u there is a neighborhood U of z such that
uc<a < uly) on_l:JTnEB . Therefore u(y) =u>0 on 8 h U which

YsP YsP

has positive surface area, a contradiction. This show that By’pc:li
that is, M is open. Thus M =@ or M = G by the connectedness of G.
It follows that u satisfies the meximum principle on G. To prove
the second assertion, it suffices to prove that u 2 0 on each component
of G, that is, we can assume that G is connected, Suppose there is

a2 point y € G such that u(y) < 0O, Then u is not a constant function.

Define a function v on G by v(x) = %im sup u(z), x € G. Then v is
zZ +> X

upper semicontinuous on G, v > 0 on 3G, v(y) < 0. Since v is upper
semicontinuous on G which is compact, it must attein a meximum on G,
in fact, on G ; but this contradicts the maximum principle. Therefore

uz 0 onG.

If u and v are superharmonic funétionsen an open set G, then
for showing that u+tv is superharmonic, we must show that v cannot be

identically + = on the set where u is finite.
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2.7 Theorem. 1If G is an open set, u is an extended real-valued
function on G satisfying
(1) wu is not identically + = on any component of G
(11) u> ~won G
(iii) wu is lower semicontinuous on G

(iv) there is a Gx > 0 such that Bx 3 C G and u(x) 2 A(u: x,6)
*Ox

whenever § < Gx’ then u is superharmonic on G. Moreover, if u is

superharmonic on G and x ¢ G, then u(x) » A(u: x,8) whenever B 6(: G.
]

Proof : Let xeG and Ex s C G, Since u is lower semicontinuous
L]
X

on an 5 there is an increasing sequence {ﬁjl of ‘continuous
’
x
function on 3B such that 2im @, = u on 3B . Let
x,Gx Pl J X, 6
x
GJ on an,c
b, = 2
PI B n B .
(gj’ x’ax) o x’ax
Then hJ is continuous on Ex,ﬁx’ harmonic on Bx,é and u » GJ = hJ on
an 5 ° Since hJ- u is upper semicontinuous and there is a &y >0
]
x

such that By.sy(: Bx,dx and (hJ- u)(y) < A(hJ- u: y,8) whenever

8 < gy, as in the proof of the first assertion of Theorem 2.6 we

can show that hJ- u satisfies the maximum principle on Bx 6- by
E ]
_ X
',;-;E'ﬂﬁbﬁtitﬁtiné (hJ-"'u)(Y) < A(hd- u: y,g) for (hJ- u)(y) < L(hj- u: y,6).

Therefore hJ- u cannot attain its supremum on B As an upper

x5 6
semicontinuity on the compact set Ex 3 h;' u attains its supremum
. s

X
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on EX,GK end, in fact, on an'Gx Since hy-u <0 on an.Gx‘

h-u<O0 and B and h, <uonB « Therefore
r x,ﬁx x,6

3 3 ’

u(x) 2 hJ(x) = PI(GJ,Bx’sx)(x) = L(¢J= x,6)

with the latter -equality holding since x is the center of the ball

B

.6 " Since ¢

- J

monotone convergence theorem. This shows that u is superharmonic

+ u on an 5’ u(x) > L(u: x,8) by the Lebesgue

on G. We show that u(x) > A(u: x,8) whenever ﬁx sEG. If ulx) =+ =,
]
the inequality is trivially true. Assume u(x) <+, for 0 <p < §

we have B. [T G then
X4P

u(x) > L(u: x,p)
anpn'l u(x) > Ju(y)do(y).
an'p
Integration over (0,8)
2 n-1 ¢
Jop T ulx)de 2 S fulylao(y) = fu(y)dy
0 03B. B
Xsp Xsp
o &%
= u(x) 2 fu(ylay .

B
%n

X,
Since v_=—, u(x) > A(u: x,6) whenever B 6.
n n X,6
2.8 Theorem. If u is superharmonic on the open set G, then u is

finite almost everywhere on G relative to Lebesgue measure and Lebesgue

integrable on each compact set K( G.

Proof : It suffices to show that u is finite almost everyvwhere
on each component of G. We can assume that G is connected. Since u

is nét 1dentica1}.y + ®op Gs let :
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M = {x|u is finite almos? everywhere on Bx,é C G for some 6§ > 0
and x € G}.

M is nonempty since there is at least one point of G such that u is
finite and according to Theorem 2.7, u is finite almost everywhere on -
each ball in G having this point aa'its réenter. We can show that M
is open and also relatively closed on‘G. By the connectedness of G
and M #@§ we get M =G, For each x € M = G there corresponds a
Bx,é C G on which u is finite almost everywhere. Since such open sets
cover G, a countable number of them suffice to cover G. Since u is
finite almost everywhere on each elements of a countable covering of G,
u is finite almost everywhere on G. To show that u is Lebesgue integrable
on each compact set K C G, there is a finite number of balls with

Cc G,1i=1,...,p covers K.

center x, and radii 8, such that Ex
i

328

Since u is finite almost everywhere on each ball containing X;, We can

,61) for each x,.

assume that u(xi) <+, Then + © > u(xi) > Alu: X

We can assume that u > 0 on G, Then

P P
- < fulz)dz s £ f u(z)dz < I vndi u(xi) < 4+ @
K i=1l Bx s i=l

1*°%

and u is integrable on K.

2.9 Theorem. If u is superharmonic on the open set G and B is a ball

with B CG, then PI(u,B) is harmonic on B and u > PI(u,B) on B.

Proof : We can assume that u 2 0 on 3B. Since u is lower

semicontinuous on 9B, there is an increasing sequence {@#.} of

J

nonnegative continuous functions on 3B such that 2im GJ =u on 9B. Let
J -+
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PI (QJ, B) on B

J ¢J on 9B

Then u > ¢J = vJ on 3B, v, is harmonic on B and v, is continuous on E,

J J

Since v, is harmonic on B, u - v, is superharmonic on B and satisfies

J J

minimun principle by Theorem 2.6. Therefore u - v'j cannot attain its

infimum on B, Since u - vJ is lower semicontinuocus on the compact

set B, u - v, attains its infimum on B, infact, on 3B. Since u - v 2 0

J

on 9B, u ~ w.r'j > 0 on B, The sequence {VJ} is an increasing sequence

of functionshermonic on B and v = Rim vJ is either identically + «
J>r =

or harmonic on B by Theorem 1.1k, Since u is finite almost everywhere
on G and u 2 v, v is harmonic on B. It also follows from the Lebesgue

monotone convergence theorem that v = PI(u,B) on B,

2.10 Theoren. If u and v are superharmonic on an open set G and ¢ > 0,
then

(i) cu is superharmonic on G.

(ii) wu+v is superharmonic on G.

(iii) min (u,v) is superharmonic on G.

Proof : (i) It is obvious from the definition of superharmonic
function. To prove (ii) note that u*v cannot be identically + « on any
component U of G since each component has positive Lebesgue measure
end both u and v are finite almost everywhere on U. Moreover utv > - «
on G since u and v have this ﬁrnperty and utv is lower semicontinuous

on G. Since u(x) 2 L(u: x,8) and v(x) 2 L(v: x,8) whenever ﬁx GC: G,
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u(x) + v(x) > L(u+v: x,8) whenever Ex §C G. This conéiiﬂés:%hqe'proof
]
of (ii). To prove (iii) suppose that I-Bx §C G. Then
;]

u(x) > L(u: x,8) L(min(u,v): x,8)

v

and

v(x) > L(v: x,6) > L(min(u,v): x,8)

-

Therefore min(u(x), v(x))> L(min(u,v): x,6). Moreover, min(u,v) > - ®
on G and min(u,v) is lower semicontinuous on G. Thus the proof of (iii)

is complete.

2.11 Lerma. Let u be superharmonic on G ¢~ Rn and suppose that

ﬁx GC G. Then L(u: x,8) and A(u: x,8) are decreasing functionsof §,
»

and

2im L(u: x,6) = fim A(u: x,8) = u(x),
§ >0 § >0

Proof : Let 0 < dl < 62. Define a function h on Bx 8 by

*72
h = PI(u, B ). Thenu > h on B by Theorem 2.9. Since
1’62 x’62
Ex,ﬁc Bz,ﬁ and h is harmonic on Bx,ﬁ 3
1 2 2
L(u:x,ﬁl) 2 L(h: x,86.) = h(x) = L(u: x,62) "

This shows that L(u: x,6)is a monotone decreasing function of §.
Since u is lower semicontinuous at x ¢ G, given € > 0, there is § > 0

such that u(y) > u(x)-e whenever y ¢ B, s @nd hence, for p ¢ &
L : ]

L(u.; x,p) > u(x)- e.

We have u(x) > L(u: x,p), so #im L(u: x,0) = u(x). To show that
p+0

Au:- :t:,'ﬁ_)is & rionotone decreasing function of §. We consider that




=2

Alu: x,8) = 1n J u(x)ax .

unﬁ Bx,5

o, & om u
- n n-1, 1 " n-l . n=-2
Gn g p (—?:1 I-Or é -.oé U(p,ql’.'igon-l)p Bin 0101
Vo 0,0
RO Binon_edol . .dgn_ll dp

vhere u(x) = U(p,ol,....en_l). By changing varisble p to w = %- we get

1 n=-1 2n 7q n el ., n=2
if (wé) (-1 1 I e U(wc,ol...,sn_l)(wa)n sin” "0

A(u:x,8) =
Yno & o (w6)"" 0 0 o

- .sinﬁn_edel o, .dOn_l) Sdw

1
- B g2 L{u: x,wé)dw.
“a 0

Q

=

Since L(u: x,w8)is amonotone decreasing function of 8, it follows that
A(u: x,6)is a monotone -decreasing functionof §. For 0 < p < §, we have

by (1-3) that

o $ o
Alu:x,s) = -2 - fo" A L(u:x,pldp > —= - fapn-ldpL(u:x,fS)_ = L(u:x,8d).
vn.s 0 vnﬁ 0

Since u(x) > A(u: x,8)> L(u:x,8), 2im  A(u: x,8) = u(x).
§=20

2.12 Theorem. Let u be superharmonic on the open set G and let

Ex.at: G. If B = Bx’s , define

PI(u,B) on B
u on G\ B

then u 2 v on G, v is harmonic on B, and v is superharmonic on C.
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Proof : Sinceu>von3B, u2vonGandvis harmonic on B.
If we can show that v is lower semicontinuous on 9B, then v is lower
semicontinuous on G since v is lower semicontinuous on G \3G. To do

this, we first show that for x_.e 9B

0
2im  inf v(y) 2 fm  inf u(y).
i -> ;50 Y » xo
- Y € 3B
Assume that 2im inf u(y) > = ® ., If k is any number such that
y+Xx
0
Y € 3B
2im inf u(y) 2 k, then u(y) > k for all y € 3B in a neighborhood
Yy +Xx
0
¥y € 9B
of x,. Suppose that k < 0, then -u(y) < ~k and -k > 0. Choose € > 0
such that -u(z) < =k for z ¢ Bx er\a B. Then for y € B

0)

PI(-u,B)(y) = =15 s Gﬂ-"l';"-“ (~u(2))ao(2)
n Z-y

1 il ﬁ-:ﬂEZXﬂE (=u(z))do(z)

(ﬂz-x0"<e)naB lz=y "

R Exyl? (023 aote).

("z—xoﬂ’e)naB | z=y|?

If Al(y) and Ae(y) denote the first and the second terms, respectively,

then

A

2 2
A (y) X el 4y

o4 n
" (ﬂz-xol<e)ﬁaB Iz-v|

—‘1§— f—“ukﬂl— do(z) = -k PI(u,B) = -k.

3B | z-y|"

IA
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Then ||z~y|| > e/, vhen "z—xoﬂ >

Consider |A,(y)| and y e on’eéz.
for if notwe would have "z-x0||5 'z-y|+ny-x0" < e+ Then for y ¢ on’ 5’2
W) s s =Xl | u(e) fao(z)
n” (Jz=x,[2e)naB  ||z-y |
2 2
< YL f o fu(z)|do(z) .
o, 8(e/2) 3B

Since |y-x|| + 6§ as y » Xy |A2(y)| *0 asy=x,. Therefore

2im  gup PI(-u,B)(y) < %im sup Al(y) + Rim sup Aa(y) CA

vz xO. ¥ x0 y > x0
Since gim  sup PI(~-u,B)(y) = -gim inf PI(u,B)(y),
y+x0 y+x0
#im  inf v(y) = 2im  inf PI(u,B)(y) - 2im  sup PI(-u,B)(y) > k.

But k is any number less than &im  inf u(y),2%im inf v(y) > %im inf u(y).
A e b yeu
y € 3B y e

If k 2 0, then consider u-k-l. We have u-k-l > =1 in a neighborhood of

x0 and
2im inf PI(u-k-1,B)(y) = %m inf PI(u,B)(y) -k -1.
Y * X, Y > X,

Therefore for any y € 3B

im inf v(z) > %im  inf u(z) > ¢m  inf u(z) = uly) = v(y).
zZ +y z*y zZ *y
Z B Y e B

Since v = u on G\B,%im inf v(z) = fim inf u(z) > gim inf u(z)
z+y 2 +Yy z *>y
z € G\B . z ¢ G\B
= uly) = v(y).



27

Hence, 2im inf v(z) > v(y) and v is lower semicontinuous on y € 9B,
zZ >y

So we have v is lower semicontinucus on G. For y € 3B and ﬁy'é: G.
We have

v(y) = uly) > L(u: yp) 2 L(v: y,p)
since u 2 von G. For y e G \3B, we get

v(y) 2 L(v: y,p)
whenever Ey pc: G. Therefore v is superharmonic on G.
»

Let G be an open set and u be a function on G which is locally
integrable. If § > 0, then Gg will denote the set {x € G|d(x,nG)> &},
If 8,0 > 0, then it is easily seen from the inequality of triangle
that Csyp C (Gﬁ)p' Define a function ug on Gg by ug(x) = A(u:x,s),

xEGGO

2.14 Theorem. If u is superharmonic on G, then udis a continuous
superharmonic function on G6 for each § and us increases to u as §

tends to zero

Proof : Suppose x, X,€ GG' Then

lug(x)- u(x )| = |[— s £(z)az - r £(z)dz)
6 §'70 n
v B v é B
n X,ﬁ n xo,ﬁ
< 1n s |£(z)|dz .
vnﬁ Bx aﬁon 8
-] ’
Since the Lebesgue measure of B AB tends to zero as x tends
xs‘s x036

to Xy the latter integral tends to zero as x tends to Xy by the

absolute continuity of the indefinite integral with respect to
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Lebesgue measure. It follows that £im u (x) = ué(xo) and that ug

X+ X
0

Suppose 8,0 > 0 and x ¢ G_, . Since

is continuous on G §+p

6 .

X € Gﬁ"-pc (GG)O s for any y ¢ Bx o Ve have

d(y, ~G) > d(x, nG)=d(x,y) > 6+p=p = 8.

Therefore Bx,pc: GG ; similarly Bx,a(: Gp » It follows that

A(ua: X,p) and A(up: x,8) are defined. By Fubini's theorem

A(uﬁz X,p) = s us(y)dv

= 1n I xg (Y)(:_l; ! Xp (z)u(z)dz) ay

\’np Xq.p np Y6

vapnﬁn

rulz)(r X (y) Xg (z)dy)dz .
n Xs

P Y.6

Since z ¢ B if and only if y ¢ B
V6 z

»$

- l_
A(us. X,p) = S u(z)(Bx’pn B dz
vnp 8

2,0

s u(z)(Bx’Gﬁ Bz )dz

2 n.n P

\an ()

pn Bz is a

where the last equality follows from the fact that Bx 8
;]

L]

symmetric function of 6 and p . Therefore

A(uG: X,p) =

3 u(z)(IxBx (y)xB (z)dy)dz

2 n
v p »8 Ysp

n

§




Alug: x,0) = =52 [y (= 7y (2)ulz)az) ay

vnp X,8 VP Y0
1
= / u(ylay = A(u_: x,8)
v, pn B P P
n X,6

for x ¢ Gs+p. Now consider any x ¢ Gd and chcose r such that x ¢ G6+r'

Then for all p <r, A(x,AG) > 6 +r > 8 +p and x ¢ G6+rC: Ge+p .

Therefore
A(ud: X,p) = A(up: X,8) < Alu: x,8) = ué(x)

for all p < r. It follows that Us is superharmonic on G6 by Theorem 2.7.

From Lemma 2,11 u6 increases to u as 6 tends to ZEYO .

2.15 Theorem. If u is continuous on G, then us has continuous first

partial derivatives on GG' More generally, if u has continuous

partial derivatives of order k > 1 on G, then ug has continuous

partial derivatives of order k+1 on GG =

Proof : We want to show that 35}-u6(x) exists and is
i

continuous, for x e G6 and 1 = 1,2,...,n. Without loss of generality

we may suppose i = 1. Let h1> 0 and h = (hl,o,...,o). Thus

ug(x+h)-us(x) _ A(u: x+h,68)= A(u: x,6)

b, b,

= El [l—n( S u(t)at - s u(t)at)] .

1 vn6 Bx+h,6 Bx,ﬁ




So we get
uﬁ(x+h)—u8(x) 1
vnﬁn{ o = -ﬁ—-{ i § u(t)at = S wu(t)at) .
1 10D, 4 By s

Let S denote the unit sphere in R" ; that is, § = {o|fo = 2} . 1f

e = (1,0,...,0) is a fixed element in S, let Yo denote the angle
between © and e,. Define § = = {0 ¢ S cos, 20} and8 " =8-8",
L) e
Let E, Dbe the set of points in LJ {60 + x + pell @€ S 7} but not
1 Osp<h,

in Bx,éluj3x+h,6 - The former set is jJust the region swept out by

translating a hemisphere in the direction e Then

1 -

nfug(xth)-ug(x)] M
Vné { = = = [ s u(x+pel+ 60) cos_ ao(0)] dp.
1 0 8 %

Ry 9

Since u is continuous on G, the inner integral is continuous as a
function of p in some small interval about p = 0 and we have
——-us(x) = Lim = = Ja(x+60) cos do(09).

ax; By 0 hy v 8 e

Since the integral on the right is a continuous function of x on q‘ ~

Ug is continuous on GG .

3
=y
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2.16 Theorem. Let u be superharmonic on the open set G and let V be
an open set with compact closure Vt: G. Then there is an increasing
sequence {VJ} of superharmonic functions on V having continuous

second partialssuch that u = 2im v, on V.
J+e J

Proof : Let 36 = d(V,n~ G) and let {GJ} be a decreasing sequence

in (0,8) with gim GJ = 0., For any p > 0 and any superharmonic
J+o

function w on G, define wp on Gp as in the preceding theorem. Fix J,

u6 is superharmonic and U, <uon G6 5 (u6 }5 is superharmonic and

J J J J d

) )6 is superharmonic and

85755

(u6 )6 <u; s<u on (GGJ)GJ , and ((u6

J 3 J J

((ug ) )y < (ug ) suw on((Gy ), ), . xe VeV and a(x,nG) > 36
657658, 8578, 6578,"6,

> 353. Since {(GG )6 )ls ) (G6 )263:3 G36 s Xe G Therefore

38 % 3 36,

J J

VC((G, ) ). . Letting v, = ((u,. ). ). on ((G. ). ) . Vo k8
6,8, 3 5,',’s, §,%8,%8, * )

superharmonic and has continuous second partials on V. Since us

J
increases to u as 63 tends to zero, U, £ u, on G6 for any
J J+l J
superharmonic function u on G. We have
v, * ((ue )i Jo = difuy D)
J 63 GJ GJ 53+1 63 63
< ((u, ) )
Sy01° %5417 8y
€ Qo dan. ) = v
63+1 63+1 53+1 J+1
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on ((Gg ). ). O V and the sequence {v,} is monotone increasing on V.
% %Y 2

Since U < u6 on G for any superharmonic function u on G and

3 6

J+k J

positive integers j, k,

((ug  Dgds < ((u, ) ) ® Vi

34k 8378y © 34k Sguc Oyax

on ((G ). ). . Since u + uon G as k + » by the preceding
8,’s, T

§34x 5

theorem, ((u )6 )6 - (u.6 )6 on ((G6 )6 as k + », Therefore

J+k °J 3 J J J

(ug )y < 2im v
GJ GJ ke k

8

on (GG )5 - Repeating the argument twice, we
JJ

obtain u < 2im v, on G. Since v, = ((uy ). ). on ((R, ), )
e - k Gk Gk Gk Gk Gk 5k 3

£im vk fu onG ; that is, u = 2im vk on G, Restricting the
K+ k +w

function vJ to V, we obtain the desired sequence.

The Kelvin Transformation.

2.17 Definition. Let B, , be aball and x ¢ R", Consider the radial
]

line joining y to x. For y # x, choose x* on the radial line so that

Hx*-yﬂﬂx—y" = 92. x* is called the inverse of x relative to the

sphere 3B ¥
pher -~

k]

2.18 Definition. The mapping x = x*, wvhere x* is the inverse of x

relative to agy » defined by

P
2
x* = y+ 5 (x-y) (x #y)
fx=y{
is known as an inversion relative to 3B 5

Ysp
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2.19 Definition. Let G be an open subset of R®\ {y} and let G*
be the image of G under the inversion. If u* is a function defined
on G*, the equation

n-2

u(x) = =B e ()
n=-2
[| =i
where "x—y“n'2 =1 if n = 2, defines a function u on G. The mapping

u* » u defined in this way is called the Kelvin transformation.

2.20 Lemma, If u* is superharmonic and has continuous second
partials on G*, where G* is the inversion image of G, then u is

superharmonic on G.

Proof : It follows immediately from the fact that

bu(x) = |[|x*- Y"n+2 A% y*(x#)

where A* denotes the Laplacian with respect to the coordinate x*.

2.21 Theorenm. The Kelvin transformation preserves positivity and

superharmonicity,

Proof : That positivity is preserved directly from the
definition. The superharmonicity of u on G whenever u* is superharmonic
on G* (but not necessarily have continuous second partials) follows

from Theorem 2.16 and Lemma 2,20,
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Polar sets

2.22 Definition. A set Z CR” is said to be a polar set if there is
an open set U 32 and a function u superharmonic on U such that u = + »

on Z.

Some properties of polar sets are given as follows :
(i) 1f 2C R® is & poler set, then Z has Lebesgue measure zero.
(ii) IfZCR is a polar set, then there is a superharmonic
function u on R® (n > 2) such that u = + on Z.
(iii) 1If {ZJ} is a sequence of polar sets, then JUZJ iﬁ a polar set.
(iv) The polarity of a set is invariant under translation and
rotation.

The proof of (i), (ii) and (iii) can be found in [2] page 127-130.

2.23 Theorenm. If the inversion image of a set Z C 1’{n is a polar set,

then Z is a polar set.

Proof : Let y € R® and a set ZC R \{y}. Suppose that Z* is
the image of Z under the inversion relative to 9B and Z%C R*\{y}.
Since Z* is a polar set, there is an open set U¥ ) Z* and a function
u* superharmonic on U* such that u* = + « on U*¥, Let D* = U* N (Rn\{y}).
D*¥ 2 Z* and u* is superharmonic on D*, If D denotes the inverse image
of D* under the inversion mep and u denotes the Kelvin transformation

of u*, then by Theorem 2.21 u is superharmonic on the set D and u = + =

on Z. Therefore Z is a polar set.
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Examples of polar sets

(1) The singleton set of a point in R® is & polar set,

Proof : Let X, be a fixed Point of R". The function u,_ which

0
is defined by
+ o if Jto =y
u (y) =
%o - log lxn-y' if x, #y (n = 2)
and
+ = if JCO L
u (Y) =
*o & % ifx #y (n > 3)
= 0
xo-4
is called the fundamental harmonic function with pole y. u, is
0
harmonic on Rn\\{xb}, uxo > 0 and u is not identically + = on R" .
0
We see that
+o = u (x) > Llu :x., §)
Xo 0 X, 0
whenever B CR" and u_ (y) = L(u_ : ¥sp) whenerer B — R\({x.}CRr".
X428 X, Xg9 YsP 0
Therefore u_ is superharmonic on R" and u, = + @ on {x }.
X xO 0

(ii) A line segment in R™(n > 3) is a polar set.

1 17125640
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Proof : By the property (iv) of a polar set, it guffices to show

that the line segment I joining (a,0,...,0) to (b,0,...0) is a polar set

set, Let u be one dimensional Lebesgue measure on I. We define

du(z) x e R

vix) = 1
P

b
1
= az. .
& [(x. g )%+ +x2]"‘_n§2 e
xl 1 2 . e n n

Since v is the potential of a finite measure, v is superharmonic on Rn.

Let x e I. Then x = (xl,O,...,O) where a < x, < b and

b 1
vix) = S —=— a4z
a r‘a 4
|xl— Z)
e " B
¥ s ( -2 dz, ¥/ a2 429
a X\ 2, Zy (zl- xl)

(]
+
8
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Therefore v = + w on I and this shows that I is a polar set.

Note that a straight line in R" (n > 3) is a polar set since
it is a countable union of line segments in R™(n 2 3) which are polar

sets.

(11i) An intersection of a sphere and a hyperplane in R°(n > 3)

is a polar set.

Proof : It suffices to show that the intersection of the
sphere centre z with radius § and the hyperplane X " constant is a
polar set. Let S be this intersection and y ¢ S. The inversion image
of SN\ {y} is a straight line T* which is a polar set. By Theorem 2,21,

S \ {y} is a polar set., Since {r} is a polar set, S is a polar set.

2.2k Theorem. Let G be an open subset of Rn, let u be superharmonic
and bounded below on G, and suppose there is a number q such that

2im  inf u(y) > a except possibly for z in & polar subset Z of 3G.
Y-+z€edG

If n >2 and G is bounded, then u > o on G.

Proof : Let v be a superharmonic function such that v = + » on
Z C 3G. Since G is compact and v is bounded below on G, we can assume
that v > 0 on G by adding a constant to v if necessary. Consider the
function u + ev which is superharmonic on G for ¢ > 0. It is easily
seen that
£im inf (u +ev)(y) > @ ifz ¢ G\ 2

y*ZedG
YeG + ® if z ¢ 2.
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Therefore fim inf [(utev)(y)-a] > 0 for all z e 3G. Then
Y-+7gaG

(utev)(y)-a > 0 by Theorem 2.6, that is,(utev)(y) > a for all y e G.
Suppose 1-3x §€ G. Thus A(u: x,6)+ eAlv: x,8) > a. Letting € + 0
]

first and then letting § + 0 we obtain u(x) > @ for all x e G.

2.25 Theorem. Let G be an open set and let Z be a relatively closed
polar subset of G. If h is harmonic on G N\ Z, continuous and bounded

on G, then h is harmonic on G.

Proof : Consider h as a superharmonic on G\Z, any x € Z and

B ' C 6. Let {xj} be a sequence of distinct pointsin G\Z such that

X6

2im  x =x and 2im h(x,) = h(x). Since 2 is a polar set, there is
Jre J+ o J

& superharmonic function v such that v = + o on Z. We can assume that

v(x,j) is finite for each j. For y ¢ Z and By pC G, + » = (h+ev)(y)
L]

> L(h+ev: y,p). Since h is superharmonic on G\Z, continuous and

bounded on G, h + ev is superharmonic on G. Now h(xj)*- ev(xJ)
/,
> A(h: xJ,6)+ eA(v: xJ,G’) for every € > 0. Since v(xJ) is finite,

we can let € + 0 to obtain

h(x,) 2 A(n: x ) =L h(y)iy = 1n f\x}% ﬁfy)h(y)d.v-

3* n
vnﬁ Bx , 5 vnﬁ *J'
J -
Since h is bounded below on the compact closure of a neighborhood of x,

we can choose § so that all but finite number of the integrands on the

right are bounded below. With this in mind we can apply Fatou's lemma
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to obtain h(x) = 2im h(xJ) > A(h: x,8) for all sufficiently small 8.
This shows that hJi: :uperharmonic on Z. But since h is superharmonic
on G\Z, h is superharmonic on G. Consider h as a subharmonic on G\ Z,
we then have -h is superharmonic on G\Z. Therefore -h is superharmonic

on G and h is subharmonic on G. Clearly h(x) = A(h: x,8*) whenever

Ex g# C G. Since h is bounded and continuous on G, h is harmonic on G.
]
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