CHAPTER I

PRELIMINARIES

In this chapter we collect some definitions and theorems for later chapters of this thesis. However, we will not prove the theorems that can be found in references [1], [2], [3] and [4].

Semicontinuous Functions

1.1 <u>Definition</u>. Let u be an extended real-valued function with domain $D \subset \mathbb{R}^n$. For each $y \in \mathbb{R}^n$ let \mathscr{N}_y be the collection of neighborhood of y. If x is any point of \overline{D} , we define

$$\lim_{y \to x} \inf_{u(y)} = \sup_{u(y)} \{\inf_{u(y)} u(y)\}$$

$$\lim_{y \to x} \sup u(y) = \inf \{ \sup_{y \in U \cap D} u(y) \}.$$

We can show that $\lim_{y \to x} \inf u(y) \le u(x) \le \lim_{y \to x} \sup u(y)$.

- 1.2 <u>Definition</u>. The function u is <u>upper semicontinuous</u> at x & D

 if u(x) = lim sup u(y) and <u>lower semicontinuous</u> at x & D if
 y + x

 u(x) = lim inf u(y).
- 1.3 <u>Definition</u>. The function u is upper semicontinuous on D if u is upper semicontinuous at each point of D and lower semicontinuous on D if it is lower semicontinuous at each point of D.

We can conclude that u is upper semicontinuous at x if $\lim_{x \to x} \sup u(y) \le u(x)$. Likewise, u is lower semicontinuous at x y $\to x$ if $\lim_{x \to x} \inf u(y) \ge u(x)$.

1.4 <u>Definition</u>. The <u>support</u> of an extended real-valued function u with domain $D \subseteq \mathbb{R}^n$ is defined by

support of u = closure of $\{x \in D | u(x) \neq 0\}$.

The support of u is compact, then u is said to be of compact support.

We now turn to some elementary properties of semicontinuous functions :

- (i) If u and v are upper semicontinuous on D and c ϵ R, then cu is upper semicontinuous or lower semicontinuous on D according as $c \ge 0$ or $c \le 0$. In particular, -u is lower semicontinuous if u is upper semicontinuous. The function max (u, v) is upper semicontinuous on D and the function u + v is upper semicontinuous on D if it is defined on D.
- (ii) A function u is upper semicontinuous at x_0 if and only if for each $\alpha \in [-\infty, \infty]$ such that $\alpha > u(x_0)$ then there exists a neighborhood V of x_0 such that $\alpha > u(x)$ for all $x \in V$.
- (iii) A necessary and sufficient condition that u be upper semicontinuous on D that is, for each c ϵ R, the set $\{x | u(x) < c\}$ D is relatively open in D.
- (iv) If $\mathcal U$ is a nonempty collection of upper semicontinuous functions with common domain D, then $u^*=\inf u$ is upper semicontinuous on D.

(v) If u is any extended real-valued function on D \subset Rⁿ, we define for x \in \overline{D} by

$$\hat{u}(x) = \lim_{y \to x} \sup u(y).$$

Then $\hat{\mathbf{u}}$ is upper semicontinuous on $\bar{\mathbf{D}}$.

- (vi) If u is upper semicontinuous on the compact set D, then u attains its maximum on D.
- (vii) If u is upper semicontinuous on $D \subset \mathbb{R}^n$ and there is a continuous function f on \mathbb{R}^n such that $u \leq f$ on D, then there is a decreasing sequence of continuous functions $\{f_j\}$ on \mathbb{R}^n such that $\lim_{j \to \infty} f_j = u$ on D.

Note that a function which is both lower semicontinuous and upper semicontinuous at x is continuous there.

Measure and Integral

- 1.5 <u>Definition</u>. Suppose that X is a locally compact Hausdorff space, and let $\widehat{\mathcal{B}}$ be the class of Borel subsets of X; that is, suppose that $\widehat{\mathcal{B}}$ is the smallest family of subsets of X such that
 - (a) XEB
 - (b) If $B \in \mathcal{B}$, then $X \setminus B \in \mathcal{B}$.
 - (c) If $B_i \in \mathcal{B}$ (i = 1,2,...), then $\bigcup_{i=1}^{\infty} B_i \in \mathcal{B}$.
 - (d) If G⊂ X is open, then GεB.

- 1.6 <u>Definition</u>. A mapping $\mu : \mathcal{B} \to \mathbb{R}^+$ is said to be <u>Radon measure</u> on X if
 - (i) µ(B) ≥ 0 for all B ε B
- (ii) If $B_i \in \mathcal{B}$ (i = 1,2,...) and B_i are disjoint then $\mu(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} \mu(B_i)$
 - (iii) $\mu(B) = \inf \{ \mu(G) | G \supset B \text{ and G is open} \}$
 - (iv) If $K \subset X$ is compact, then $\mu(K) < +\infty$.
- 1.7 <u>Definition</u>. A function $f: X \to R$ is said to be <u>Borel measurable</u> if for every $\lambda \in R$ the set $\{x \in X | f(x) > \lambda\} \in \mathcal{B}$.

It follows that semicontinuous functions are Borel measurable.

1.8 <u>Definition</u>. Given a measure μ , a property is said to hold almost everywhere in X if it holds in a set X \ N where N is a set such that $\mu(N) = 0$.

For any measurable function f we define its integral with respect to a measure μ as follows :

First suppose that f is non-negative on X. Then say that the sets $\{A_k\}_{k=1,\ldots,n}$ are a partition of X if $\bigcup_{k=1}^n A_k = X$, $A_i \cap A_j = \emptyset$ if $i \neq j$ and $A_i \in \mathcal{B}$. Let

$$S = \sum_{k=1}^{n} \inf_{x \in A_{k}} f(x) \mu(A_{k}).$$

Then the integral of f over X with respect to μ , $ff(x)d\mu(x)$, is defined by

$$ff(x)d\mu(x) = \sup S,$$

the supremum being taken over all partitions of X. Natually, we allow the integral to have value ∞ .

Next if f may have arbitrary sign over X, we define

$$f_{\perp}(x) = \max \{f(x), 0\}; f_{\perp}(x) = -\min \{f(x), 0\},$$

so that f_+ , f_- are non-negative. Furthermore, f_+ and f_- are measurable, and so the integral of each with respect to μ is defined. If not both $ff_+(x)d\mu(x)$ and $ff_-(x)d\mu(x)$ have the value ∞ , we define the integral of f by

$$ff(x)d\mu(x) = ff_{+}(x)d\mu(x) - ff_{-}(x)d\mu(x),$$

and if both are finite, we say that f is integrable with respect to u.

Since now that X is a locally compact Hausdorff Space. Let $\mathcal{C}_{o}(X)$ denote the set of all real-valued functions each of which has compact support and is continuous on X. Then $\mathcal{C}_{o}(X)$ is a linear space over R.

Given any Radon measure μ on X, we define a linear functional \emptyset on $\mathcal{C}_{O}(X)$ by

$$\phi(f) = ff(x)d\mu(x).$$

It is clear that \emptyset is a positive linear functional, that is, if $f \ge 0$, then $\emptyset(f) \ge 0$. Thus, with each Radon measure we may associate a positive linear functional on $\mathcal{C}_{\mathbb{Q}}(X)$.

It is an extremely important result that the converse of this is true. Thus we have

1.9 <u>Theorem</u>. (The Riesz Representation Theorem). Let X be a locally compact Hausdorff space and let \emptyset be a positive linear functional on $\mathcal{C}_{\mathbb{Q}}(X)$. Then there is one, and only one, Radon measure μ such that

$$\emptyset(f) = \int f(x) d\mu(x)$$

for all $f \in \mathcal{C}_0(x)$.

<u>Proof</u>: See [3] page 40-47.

Given two locally compact Hausdorff spaces X and Y, and given that λ and μ are Radon measure defined on X and Y respectively, the product measure $\lambda \times \mu$ on X \times Y is defined in the following way:

Suppose that $K \subset X$ and $L \subset Y$ are compact and that f(x,y) is continuous on $X \times Y$ and support of $f \subset K \times L$. Then it may be shown that

$$h(y) = \int f(x,y) d\lambda(x)$$

is continuous in Y and that support of h C L.

Thus we define \emptyset as a linear functional on $\mathcal{C}_{0}(\mathbf{X} \times \mathbf{Y})$ by $\emptyset(\mathbf{f}) = \int h(\mathbf{y}) d\mu(\mathbf{y})$.

Since it is a positive functional, it has, by Theorem 1.9, a measure associated with it, and this is the product measure $\lambda \times \mu$ of λ and μ . Furthermore, we have Fubini's Theorem, that

$$ff(x,y)d(\lambda \times \mu)[(x,y)] = fff(x,y)d\lambda(x)d\mu(y).$$

for any function integrable in $X \times Y$.

The Space Rn.

 R^n is a locally compact Hausdorff space and, a set is compact in R^n if and only if it is closed and bounded. Among all the measures on R^n one has special importance. This is Lebesgue measure.

1.10 <u>Definition</u>. Given any $f \in C_0(\mathbb{R}^n)$, the Riemann integral f(x)dx is well-defined. There is thus defined on $C_0(\mathbb{R}^n)$ a \mathbb{R}^n positive linear functional. By Theorem 1.9 this gives rise to a Radon measure, and this measure is said to be <u>Lebesgue measure</u>, which we usually denote by m. We shall simply denote the integral f(x)dm(x) by f(x)dx.

By repeated application of Fubini's Theorem we may show that, for any f which is Lebesgue integrable over Rⁿ,

$$ff(x)dx = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, \dots, x_n)dx_1 \dots dx_n$$

The following theorem is fundamental for any discussion of change of variable.

1.11 Theorem. Let $G \subset \mathbb{R}^n$ be open and let $h : G \to \mathbb{R}^n$ be a mapping which has continuous first partial derivatives. Suppose that

$$h(z) = (h_1(z), ..., h_n(z))$$

and that $J(z) = \det[\frac{\partial h_i}{\partial z_i}(z)] \neq 0$ in G. Then the function f(x) is

integrable over h(G) if and only if f(h(z)) J(z) is integrable over G and

$$\int_{h(G)} f(x) dx = \int_{G} f(h(z)) |J(z)| dz.$$

Let, in particular

 $G = \{(\rho, \theta_1, \dots, \theta_{n-1}) | 0 < \rho < \infty, 0 < \theta_i < \pi \text{ and } 0 < \theta_{n-1} < 2\pi\},$ and let $x = h(\rho, \theta_1, \dots, \theta_{n-1})$ be given by

$$x_{i} = \rho \sin \theta_{1} \dots \sin \theta_{i-1} \cos \theta_{i} \qquad (i = 1, 2, \dots, n-1)$$

$$(1-1) \qquad x_{n} = \rho \sin \theta_{1} \dots \sin \theta_{n-1}.$$

Then $h(G) = \mathbb{R}^n \setminus \{x \in \mathbb{R}^n | x_{n-1} = 0 \text{ and } x_n = 0\} \text{ and } J(z) = \rho^{n-1} \sin^{n-2} \theta_1 \cdots$ $\sin \theta_{n-2}$. So, using Fubini's Theorem, we have

$$\int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \mathbf{f}(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}) d\mathbf{x}_{1} \dots d\mathbf{x}_{n} = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{0}^{\pi} \dots \int_{0}^{\pi} \mathbf{F}(\rho_{1} \theta_{1}, \dots, \theta_{n-1}) \rho^{n-1} \sin^{n-2}\theta_{1} \dots \sin^{n-2}\theta_{n-1} d\rho,$$

where $F(\rho, \theta_1, \ldots, \theta_{n-1}) = f(h(z))$.

We now define two other particular measures which we shall be using constantly in later chapters.

1.12 <u>Definition</u>. If $y = (y_1, ..., y_n) \in \mathbb{R}^n$ and r > 0, then $\partial B_{y,r}$ is the surface defined by the equation

$$(x_1 - y_1)^2 + \dots + (x_n - y_n)^2 = r^2$$

Given a function f defined on R^n , let the restriction of f to $\partial B_{y,r}$ be denoted by f_r , and define the function $F(\rho,\theta_1,\ldots,\theta_{n-1})$ by

$$F(\rho, \theta_1, ..., \theta_{n-1}) = f_r(x_1, ..., x_n)$$

where ρ , $\theta_1, \ldots, \theta_{n-1}$ and x_1, \ldots, x_n are related by the variant of (1-1) used a moment ago.

Let ψ be defined on $\zeta(\mathbb{R}^n)$ by

(1-2)
$$\psi(f) = \int_{0}^{2\pi} \int_{0}^{\pi} \dots \int_{0}^{\pi} F(r, \theta_{1}, \dots, \theta_{n-1}) r^{n-1} \sin^{n-2} \theta_{1} \dots$$

$$\dots \sin \theta_{n-2} d\theta_{1} \dots d\theta_{n-1} .$$

Then ψ is a positive linear functional on $\mathcal{E}_0(\mathbb{R}^n)$, \mathbb{R}^n is locally compact Hausdorff space and so, by Theorem 1.9, ψ determines a unique Radon measure 6 such that

$$\psi(f) = \int f(x) d\sigma(x)$$

This measure is called the surface area measure on $\partial B_{y,r}$ and f is called a function integrable relative to surface area measure on $\partial B_{y,r}$.

If f is a function integrable relative to surface area measure on the boundary ∂B of $B = B_{y,r}$, define

$$L(f: y,r) = \frac{1}{\sigma_n r^{n-1}} \int_{\partial B} f(x) d\sigma(x)$$

where σ is the surface area measure of the unit ball center 0 in P^n and

$$\sigma_{n} = \int_{\partial B_{0,1}} d\sigma(x) = \int_{0}^{2\pi} \int_{0}^{\pi} ... \int_{0}^{\pi} \sin^{n-2}\theta_{1} ... \sin\theta_{n-2} d\theta_{1} ... d\theta_{n-1}.$$

If f is integrable on B relative to Lebesgue measure, define

And the comment

$$A(f: y,r) = \frac{1}{v_n r^n} \int_B f(x) dx$$

where v_n is the volume of the unit ball center 0 in \mathbb{R}^n and

$$v_{n} = \int_{B_{0,1}}^{\infty} dx = \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi} \dots \int_{0}^{\pi} \rho^{n-1} \sin^{n-2}\theta_{1} \dots \sin^{n}\theta_{n-1} d\theta_{1} \dots$$

$$\dots d\theta_{n-1} d\rho$$

$$= \frac{\sigma_{n}}{n}.$$

There is a useful relation between A(f: y,r) and L(f: y,r). We have

$$A(f; y,r) = \frac{1}{\nu_{n}r^{n}} \int_{B}^{f} f(x)dx$$

$$= \frac{1}{\nu_{n}r^{n}} \int_{0}^{r} \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} F(\rho,\theta_{1},\dots,\theta_{n-1}) \rho^{n-1} \sin^{n-2}\theta_{1} \cdots$$

$$\cdots \sin\theta_{n-2} d\theta_{1} \cdots d\theta_{n-1} d\rho$$

$$= \frac{1}{\nu_{n}r^{n}} \int_{0}^{r} \rho^{n-1} \sigma_{n} (\frac{1}{\sigma_{n}} \rho^{n-1}) \int_{0}^{2\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} F(\rho,\theta_{1},\dots,\theta_{n-1}) \rho^{n-1} \sin^{n-2}\theta_{1} \cdots$$

$$\cdots \sin\theta_{n-2} d\theta_{1} \cdots d\theta_{n-1}) d\rho$$

$$\cdots \sin\theta_{n-2} d\theta_{1} \cdots d\theta_{n-1}) d\rho$$

Using Fubini's Theorem and (1-2), we get

(1-3)
$$A(f: y,r) = \frac{a_n}{v_n r^n} \int_0^r \rho^{n-1} L(f: y,\rho) d\rho$$
.

Harmonic Functions

1.13 <u>Definition</u>. A real-valued function u defined on Rⁿ and having continuous second partial derivatives is called a harmonic function if

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}} = 0$$

on Rn.

If h is harmonic on a neighborhood of the closure of the ball $B=B_{y,\rho}$, then by using Green's identity, we get

(i) the value of h at the centre of the ball is equal to the average of h over the boundary of the ball and

$$h(y) = \frac{1}{\sigma_n \rho^{n-1}} \int_{\partial B} h(z) d\sigma(z),$$

(ii) the value of h at the center of the ball is equal to the average of h on the ball itself and

$$h(y) = \frac{1}{v_n \rho^n} \int_B h(z)dz,$$

(iii) for x ε B,

$$h(x) = \frac{1}{\sigma_n \rho} \int \frac{\rho^2 - \|y - x\|^2}{\|z - x\|^n} h(z) d\sigma(z).$$

If f is Borel measurable on $\partial B = \partial B$ and integrable relative to surface area, then we introduce the <u>Poisson Integral Formula</u> as follows:

$$PI(f,B)(x) = \frac{1}{\sigma_n \rho} \int_{\partial B} \frac{\rho^2 - \|y-x\|^2}{\|z-x\|^n} f(z) d\sigma(z)$$

where $x \in B$ and it has the following properties:

- (i) PI(1,B) = 1
- (ii) PI(f,B) is harmonic on B.
- (iii) If f is continuous on ∂B , then PI(f,B) is continuous on \overline{B} .

1.14 Theorem. If h_j is a monotone increasing sequence of harmonic functions on an open connected set G, then $h(x) = \lim_{j \to \infty} h_j(x)$ is either identically $+\infty$ or harmonic on G.

Proof: See [2] page 33.

1.15 <u>Definition</u>. A family f of functions defined on G is <u>left-directed</u> if for each pair u, $v \in f$ there is a $w \in f$ such that $w \leq u$ and $w \leq v$. There is similar definition of <u>right-directed</u> obtained by reversing the inequalities.

1.16 Theorem. If $\{h_i \mid i \in I\}$ is a left-directed family of functions harmonic on an open connected set G, then $h = \inf_i h_i$ is either identically- ∞ or harmonic on G.

Proof: See [2] page 34-35.