CHAPTER I

PRELIMINARIES

In this chapter we collect some definitions and theorems for
later chapters of this thesis, However, we will not prove the theorems

that can be found in references [1], [2], [3] and [k].

Semicontinuous Functions

1.1 Definition. Let u be an extended real-valued function with
domain D= R". For each /e R!1 let Jf; be the collection of

neighborhood of y. If x is any point of D, we define

2im  inf u(y) sup {inf u(y)}
rex e 70
: x

2im  sup u(y) inf {sup  u(y)} .
y*x U e/V' yeUnD
X

We can show that 2im inf u(y) £ u(x) § 2im sup u(y).
y* x y+x
1.2 Definition. The function u is upper semicontinuous at x € D

if u(x) = 2im  sup u(y) and lower semicontinuous at x € D if
y* Xx

u(x) = gim  inf u(y).
y-=+Xx

1.3 Definition. The function u is upper semicontinuous on D if u is
upper semicontinuous at each point of D and lower semicontinucus on D

if it is lower semicontinuous at each point of D.




A

We can conclude that u is upper semicontinuous at x if

2im  sup u(y) 5 u(x). Likewisé, u is lower semicontinuous at x
Y- X

if 2im  inf u(y) 2 u(x).
y+x
1.4 Definition. The support of an extended real-valued function

u with domain DC R" is defined by

support of u = closure of {x ¢ D Tu(x) # 0}.

The support of u is compact, then u is said to be of compact support.

We now turn to some elementary properties of semicontinuous
functions :

(i) If u and v are upper semicontinuous on D and ¢ ¢ R, then
cu is upper semicontinuous or lower semicontinuous on D according
a8 ¢ 20o0orc <0, In particular, -u is lower semicontinuous if u
is upper semicontinuous. The function max (u, v) is upper semicontinuous
on D and the function u + v is upper semicontinuous on D if it is
defined on D.

(ii) A function u is upper semicontinuous at x, if and only if
for each a € [-®, »] such that a > u(xo) then there exists a neighborhood

V of X, such that a > u(x) for all x e V,

(14i) A necessary and sufficient condition that u be upper
semicontinuous on D that is, for each ¢ € Ry the set {x|u(x) <« ¢} D is
relatively open in D.

(iv) 1t U is o nonempty collection of upper semicontinuous
f_u.nctiomwith common domain D, then u* = inf u is upper semicontinuous

ued
on D,



(v) If u is any extended real-valued function on D Rn,
we define for x € D by

Alx) = gim  sup u(y).
y -+ X

Then @ is upper semicontinuous on D,

(vi) If u is upper semicontinuous on the compact set D, then u
attains its maximum on D.

(vii) If u is upper semicontinuous on DC R" and there is a
continuous function f on R° such that u € f on D, then there is a
decreasing sequence of continuous functions {f J} on R® such that

£im f, =uon D.
Jom I

Note that a function which is both lower semicontinuous and

upper semicontinuous at x is continuous there.

Measure and Integral

1.5 Definition. Suppose that X is a locally compact Hausdorff
space, and let B be the class of Borel subsets of X; that is,
suppose that 8 is the smallest family of subsets of X such that
(a) Xel8
(v) IfBe-@ g thenX\BeB .

(¢) If Bie3 (1 =1,2,...), then \J B, ¢B .
i=1

(d) If GC X is open, then G 5(8 o
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1.6 Definition. A mapping u : 19 +R* 15 said to be Radon measure
on X if

(1) u(B) 20 for 211 B ELB
(11) 1r B e B (i =1,2,...) and B; are disjoint then

AR
Heap 4 g=1 1

(111) u(B) = inf {u(G)|GD B and G is open}

(iv) If KC X is compact, then p(K) < + =,

1.7 Definition. A function f : X » R is said to be Borel measurable

if for every A ¢ R the sct {x ¢ X|2(x) > A} e & .

It follows that semicontinuous functions are Borel measurable.

1.8 Definition. Given a measure M, a property is said to hold almost
everywhere in X if it holds in a set X \ N vhere N is a set such that

u(N) = o.

For any measurable function f we define its integral with respect
to a measure y as follows :
First suppose that f is non-negative on X. Then say that the

n
sets{Ak}kzl’...’n are a partition of X if (_J

=X, A,NA, =¢
el 1

J

ifig) andAi&:(B. Let

§ = 1 int 2u(n,) .

k=1 xeAk

Then the integral of f over X with respect to y, ff(x)du(x), is

defined by



Sf(x)au(x) = sup S,
the supremum being taken over all partitions of X. Natually, we
allow the integral to have value « ,

Next if f may have arbitrary sign over X, we define
£,(x) = max {£(x),0} ; £ (x) = -min {£(x),0},
so that f+, f_ are non-negative. Furthermore, f+ and £ are

measurable, and so the integral of each with respect to y is defined.
If not both ff (x)du(x) and ff (x)du(x) have the value » , we define

the integral of f by

L)

s£(x)an(x) s£ (x)au(x) - s£_(x)au(x),

and if both are finite, we say that f is integrable with respect to u.

Since now that X is a locally compact Hausdorff Space.
Let Yio(x) denote the set of all real-valued functions each of which
has compact support and is continuous on X, Then Yio(x) is a linear
space over R.

Given any Radon measure p on X, we define a linear functional
@ on \@O(X) by
g(f) = [f(x)adu(x).
It is clear that § is a positive linear functional, that is, if
f > 0, then #(f) > 0. Thus, with each Radon measure we may associate

a positive linear functional on Wﬂo(x).

It is an extremely important result that the converse of

this is true. Thus we have




)
1.9 Theorem. (The Riesz Repr“esentation Theorem), Let X be a
locally compact Hausdorff space and let @ be a positive linear
functional on KO(X). Then there is one, and only one, Radon
measure M such that

#(f) = re(x)au(x)
for all f ¢ ﬂo(x).

Proof : See [3] page LO-kT.

Given two locally compact Hausdorff spaces X and Y, and given
that A and u are Radon measure defined on X and Y respectively,
the product measure A X 1 on X X Y is defined in the following way:
Suppose that K(C X and L Y are compact and that f(x,y) is
continuous on X X Y and sunport of f¢ K x L, Then it may be shown
that
h(y) = re(x,y)ax(x)
is continuous in Y and that support of h(C L.
Thus we define @ as a linear functional on \GQ(X x Y) by
#(£) = s n(y)au(y).
Since it is a positive functional, it has,by Theorem 1.9, a measure
a;sociated with it, and this is the product measure A X p of A and u,
Furthermore, we have Fubini's Theorem, that
Ie(x,y)a(axu) [(x,7)] = JSre(x,y)ar(x)anly).

for any function integrable in X x Y.




The Space R-.

R” is a “locally compact Hausdorff space and, a set is compact in
R" if and only if it is closed and bounded. Among all the measures

on R® one has special importance. This is Lebesgue measure,

1.10 Definition.  Given any £ e § (R%),. the Riemann integral
fnf(x)dx is vell-defined. There is thus definéd on tL(Rn) a
gositive linear functional. By Theorem 1.9 this gives rise to a
Radon measure, and this measure is said to be Lebesgue measure,
vhich we usually denote by m. %e shall simply denote the integral

Sf(x)am(x) by sf(x)ax.

By repeated application of Fubini's Theorem we may show that,

for any f which is Lebesgue integrable over Rn,
ff(x)d-x = -‘{’ L ] {m f(xlgcot,xn)dx]‘-oc dxn .

The feollowing theorem is fundamental for any discussion of

change of variable,

1.11 Theoren. Let GC R? pe open and let h : G + R" be a mapping

which has continuous first partial derivatives. Suppose that

h(z) = (hl(z),..., hn(z))
Bhi
and that J(z) = det[sg— (z)] #0 in G. Then the function £(x) is
i
integrable over h(G) if and only if £(h(z)) J(z) is integrable over

G and



;oflx)ax = 5 £(n(2))|3(z)|az.
h(G) G

Let, in particular

G’ = {(D -glgaao’ gn-l)lo <p < @, 0 < gi< m and 0 < On-l < 2'},

and let x = h(p, 8 seees On—l) be given by

x, =psine

4 oo BN Qi_lcos 0i (i =1,2,00.4n=1)

1

- L 0 -
(1-1) x =psin@...sn0 .

n-2

Then h(G) = R®\ {x ¢ R"| x 1= 0 and x =0} and J(z) = """ sin Opeee

1

sin on-2° So, using Fubini's Theorem, we have

o oo o 2 -1 -
I eand f(xl,...,xn)dxl...dxn = f fowf“...f; F(plol""’gn-l)pn sin” 291

Ves sin@n_ dOl...don_ldp .

2

where F(p,el,..., Gn_l) = f(n(z)).

We now define two other particular measures vhich we shall be

using constantly in later chapters.

" :
1.12 Definition. Ity = (yl,..., yn) € R and r > 0, then 9Hy,r

is the surface defined by the eaquation

R R I L

Given a function f defined on Rn, let the restriction of f to

aBy,r be denoted by f.» end define the function F(p.gl.--o, °n-1) by

F(p, 01,..., On-l) = fr(xl,..., xn)

where p, 9 4} and X)5+++5 X are related by the variant of (1-1)

1,-«-, n-l

used a moment ago.
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Let ¢ be defined on ZL(Fn) by

a2
_ T ™ n-1l . n-2
(1'_2) ‘P(f) —_ -ro Iolla.ro F(r,gl’.--’gn—l)r Sin gllO-

L singn—edel. . don-l .

Then § is a positive linear functional on Eo(Rn), R" is locally
conpact Hausdorff space and so, by Theorem 1.9, V¥ determines a

unique Radon measure 6 such that

W) = se(x)do(x)

This measure is called the surface area measure on any " and f is called
’

a function integrable relative to surface area measure on 3Bv i
v 9

If £ is a function integrable relative to surface area measure

on the boundary 9B of B = Ey o define

L(f: y,r) = ———%:T J £(x)do(x)
anr ap

where Un is the surface area measure of the unit btall center O in Pn

and

2n
o= f do(x) = f ST.. Msin™ 2

n
0 o
3130’1 0

... 8in6_ _d0 de
na—

1 -~ S S -

If f is integrable on B relative to Lebesgue measure, define

I £(x) ax

A(f: y,r) = 4

v
nr

where vn is the volume of the unit ball center O in Rn and



W W e W LT L S et e s
n ) & n-1 1
B2 00d o
LN .don-l “
g
-
n

There is a useful relation between A(f: y,r) and L(f: ¥,r). We have

A(f: y,r) = __lﬁ- / f(x)dx

v r B
remm ¥ n-l .  n-2
_rr‘ f f f el A F(p,ol.-oogon-l)p sin 01""

ses Binon-adol s odon-ldp

r 21r ” n
3 n-1 . n=1l . n-2
- g 0 ——pn fo on‘fo F(p,olg...,on_l)ﬂ ain 01...

“ew Bingn-ad%- LN ] don-l )d.p .

Using Fubini's Theorem and (1-2), we get

(1-3) A(f: y,r) = -—99— Iy L(r: Y.p)dp .
LONGO

¢

. Harmonic Functions

1.13 Definition. A real-velued function u defined on R® and heving
continuous second partial derivatives is called a harmonic function if
2

ar
=

|

n
ag s f
i=1

-
= o

b 4

on R,
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F §
If h is harmonic on a neighborhood of the closure of the ball
B = By p? then by using Green's identity, we get
] :
(i) the value of h at the centre of the ball is equal to the

average of h over the boundary of the ball and

nly) = —2—= J n(z)ao(z),
anp oB

(ii) the value of h at the center of the ball is equal to the

average of h on the ball itself and

h(y) =

J h(Z)dZs
vV_p B

(iii) for x € B,

2 2
h(x) - 1 f P -!y-xli
an p 9B liz=x|

h(z)do(z).

If £ is Borel measurable on 3B = 3B 3 and integrable relative

2

to surface area, then we introduce the Poisson Integral Formula as
follows :

2 2
PI(f,B)(x) = - L. I8 ‘"Xiﬁﬂ—- £(z)do(z)
n ? 3B jz-xi

where x € B and it has the following properties :

(1) P1(1,8) = 1
(ii) PI(f,B) is harmonic on B.

(i1i) If £ is continuous on 3B, then PI(f,B) is continuous on B.
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1.14 Theorem. If h 3 is a monotone increasing sequence of

harmonic functions on an open'connected set G, then h(x) = gim hJ(x)
J+=
is either identically + «»or harmonic on G.

Proof : See [2] page 33.

1.15 Definition. A family ? of functions defined on G is left-directed

if for each pair u, v € Jthere is a v ¢ ‘} such that w £ u and w 5 v,

There is similar definition of right-directed obtained by reversing

the inequalities.

1.16 Theorem. If {h |ieI} is a left-directed femily of functions
harmonic on an open connected set G, then h = inf h, is either

iel 3
identically-<« or harmonic on G.

Proof : See [2] page 34-35.
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