CHAPTER I

PREPARATION

Thnis chapter gives all the prerequisites which are
necessary for chapter II which contains the results on hypergeodesic
equations.

If*; is an n-vector we shall always write its components

b,

using superscripts v ,...,vn, and thus we have y = (vl,...,vn)

The system of ordinary differential equations

8V A [l ¥ ©)

g.xe Fi f2( 1 n
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is equivalent to the vector ordinary differential equation

(1.2) %% = ¥3, t)

->
where f is an n-vector valued function whose components are functions

of the real variable t and the n-vector ?. The domain of ? is an

n+l

-

open set D& R



+
Definition 1.3 Let ? : D> Rn wvhere D is an open subset of Rn 1.

The vector valued function T is said to be contiggong at s ngig;

(? . to) € D if for any real number € > 0, there are two real

nunbers 8, > 0 and 6, > O such that |#(¥,t) - HE e de s

whenever (¥,t) e D, |t—t0| < 8 and IT_T0| <8, .

1
The vector-valued function ? is continuous in D if it is continuous
at each point of D. Also, it can be easily shown that ¥ is

continuous on D if and only if each of its components is continuous

on D.

Definition 1.4 Let T : U+ R® where U is a non-empty open

subset of R°. If ¥ has continuous partial derivatives of the

first order on U then we say that T is continuously differentiable

on U and we will denote this property by saying that ¥ is ¢t on U.
Also, for all k 2> 1, E3 is ck on U if ¢ has continuous partial
derivatives up to and including order k. T is infinitely

differentiable if F is ck;Vk € N

Definition 1.5 Let g be a differentiable function defined on an

open subset U of R into R. Let ?0 = (xé,..., xg) be any point

in U. Then the gradient vector of g at ?0 is denoted by Vg(%o}

and defined by the formula

] ] 9
Vg N (—Els--'s_ﬂn) = (Ll"“’_ﬂ) g
9x 9x 9x 9x

where each of the partials is evaluated at 30.



Definition 1.6 Let f be an infinitely differentiable function on

open subset U of R” into R. Letﬁ0 be a fixed point in U. Then
the Taylor series expansion of f at the point'ﬁ0 is the following

power series :

£(B) = £(Q)+[(BQ 1@, + 2 (B3 )% @) + ...
w, a3,

+ Tan [ (@Gt f(ﬁ)|a=_%+ e (CERD (@],

+olt.-c-ool

In order to fully understand the meaning of the formula,
write it in three dimensions by setting Qb = (a,b,c) and P = (x,y,z),

we get

£(x,3,2) = £(a,b,c)(x-a)d +(y-b)§; +(z-c)2-] £(a,b,c)
¥ 2 [onetiandaitiiia +(2-¢)212 £(a,b,c)
51 = y- p” Z=C 22 fla,b,e)+ ...

1 3 2 FRY
+ n![(x-a)3§-+ (y—b)ay +(z-c)az] f(a,b,e)+ ....
Expanding we get,

f(x,y,2z) = f(a,b,c)+(x-a}§; f(a,b,c)+(y-b}§; f(a,b,c}+(z-c)€§-f(a,b,c)

2 2 2
+ %,[(x—a)e L 2(a,b,c)+(y-b)? -?—ef(a,b,c)-l-(z-c)e -a-gf(a.,b,c)
ax g 3

g?

+ 2(x~a)(y-b)
Oxdy

2
f(a,b,c)+2(x-a)(z-c )sa@f(a,b,c)



2
+2(Y—b)(z-c) iTa b,c)]+.. .+ —-[(x-a) L f(a b,c)
ax

n-1
e (00" 2 £(a,0,0)((3-b) 2 a,v,0)
X"

3 o g
+ (z-c)gz-f(a,b,cNW...+ ncl(x-a)sg f(a,b,e)((y-b)*" ——E:if(a,b,c)

Ay
D=1
+ e o302 (ac)— #(a,b,c)
ay az
n=1
+...+’“'lcl(y-}3*)(z--c)m"2 2 — fla,b ,¢)+(z-c)™ f(a,b c))
dydz az"
n-1 9
+ (}"-b) ynf(a b C)+ (& _l(y-b) (Z"c) = f(a,b,c)
' oy 9z
n n
+...+ncl(y-b)(z—c)n-l —2——E:r f(a,b,c)+(z-c)? E-hf(&,b,c)]+...
dydz 3z

Definition 1.7 A real-valued infinitely differentiable function f

defined on an open connected set D of R® is said to be analytic in D,
+
if, for any point YO € D, the Taylor series expansion of the function
-

at the point YO converges to the function f in some neighbourhood

£Y
o 0 -
Definition 1.8 Let ? be a vector-valued function defined on open

subset D of R into Rn, T is said to be an analytic function on D

if each of its component function is analytic on D,



Theorem 1.9 If the n functions fi(?,t), i =1,...n are continuous
in a closed and bounded region G of Rn+l, then given any interior
point (¥6’t0) of this region there exists at least one continuously
differentiable curve ¥ = Y(t) which is defined in an interval

|t-t0I s & and satisfies the system of differentiable equations with

initial condition

ay
= = t(¥,t) ; T(to).—.?o

The proof is given in [2] pages 13-18.

+
Theorem 1.10 Let 2 be an open connected subset of R® 1. For each

i=1,2,...,n, let fl(f,t) be ck (analytic) = >k >21on Q. Then for
any point (¥,t))e 9, there exists neighbourhoods U of ?0 in R and

I to t0 in R such that for any Ti € U and all t € I there are unique

functions defined on I, &; thiu@, mf (t) such that
1 Yi
d i = i, i T
Ew‘f = f(l#?,t) and w? (t;) = ¥) s
1 1 1
writing @i (t) = ¢i(?i,t) we can also conclude that the functions
o
wi are of class ct't (analytic) in t and of class cf (analytic) in ¥

l'
This theorem is called The Fundamental Thcorem of Ordinary

Differential Equation and the proof for the ck case is shown in

references [2] pages 18-22 and [7] pages 372-373. The case where
+
fi(Y,t) are analytic for all i =1,..., n is given in reference [3]

pages 210-215,



$ N
We shall use notations d—Q; =y, ﬂ = $ , @and
dt 2
dat
a i
% 3
dt
Now we want to extend Theorem 1.10 to ordinary differential
equations of the third order. We want to show that whenever H is
& (analytic) k 3 1 in 3n+l real variables then the differential

equations 1p1 = Hi($ ,i,w,t) » 1 =1,2,...,n with initial conditions

-~ i R T e Lk — :
v (to) = Pos J (to) =u 9 (t,) = Vv, hes a unique solution.
Theorem 1.11 Let ﬁ be ck (analytic) k 2 1 on an open connected

+
subset 2 of RO then for all (EO ,—1’10 ,-17'0 ,to) € Q, thereexists

a neighbourhood U of'ﬁo, W of'ﬁo, v of'#o in B and an interval

I of to in R such that for any El E U, -ﬁl e W, -‘.;1 e V there are

unique functions \b_%_ 55 5oy \bf 29 ., (t) defined on I
Ppatys¥y P1ith "

such that

n 3 av
ﬁ(w-b-b-» 3 ) ’$++

- 5 ’ t)
v D, U, 4V D v
Pl’LL.I.’ l 19 1)1 l’u].’ 1

+ ™ o + - -’
Pl’ w—; -G_ ,‘_)r (to) = ull m_* &1 (to) = vl
B Y5V Pq oty sy

+ > &
= wfpl,ul ,Vl,t) we can also conclude that




+ k
the function § is of class c®'> (enalytic) in t and of class c

(enalytic) with respect to (p,d o)

Proof et ¥ ve o~ (anelytic) k > 1 on a subset Q of R3n+l.

> > > :
Let (po,uo,vo,to) be any point in Q.
We shall prove that there exists a unique solution
P = (ﬁl,..., $”) which satisfies the system of third order

ordinary differential equations with initial conditions.

> >3+ 3 3
¥ = H(¥, ¥, ¥, t)

> > > -
1) w(p,u,z,to) = p (where p is & point in some neighbourhood of P)
3 >
w(p,ﬁ,ﬁ,to) =1 (where u is a point in some neighbourhood of ﬁb)
?(E,ﬁ,¢,to) =y (where v is a point in some neighbourhood of 30)
i B 1 2 2 n n
Let V' = Y gk gyl ., =y
e] n+l .2 n+2 on 2n
"’ g ¥ s ’p <y ,-.o,‘p =Y
1 2n+l =2 2n+2 n 3n
o= s ¥ = seens =y
1
.. e n+l d n+l sell: +
Hencegz-- ] = y : E;:-y = =y2n1
Qx? = eg n+2 d _n+2 v on+2
dt . q’ . s E‘E’y =¢' =2 Y
dy” _ en 2n d 2n n 3
- » n
dat v = 1 ’ E‘.Ey =y =



d ! B Lz & +1 2n 2n+l 3n

at il & By and s bl Gy asses¥ » 6)
d 2n+2 o 21

E{Y =Y = H(y LR ) ysn: t)
d _3n ko o n, 1 3n

Ey = . H(y srers ¥ st)

This is a system of ordinary differential equation of the first order

which we shall denote by

d. i n
L = 7 (yl,...,y3 ,t) - G F W
dt
) s
(2)  where for each i ='1,,..,m, £ (3%, ...,7°",¢) = y°*1
i ) 2n+
and for each i = ol c50een, fl(yl,...,y3n,t] =Y ¥

and for each i = 2n+l,...,3n, fi(yl,...,yan,t) = Hi-en(yl,...ysn,t),

This system of differential equetions has initial conditions

1 1 1
_Y’(to) = (P ,-..,pn,u ,---’un’v’,..’v'n)

-
The n-vector valued function f defined above is continuous, hence

theorem 1.10 implies that there exists at least one solution of (2).

1

Lemma 1.12  If § = (¢%,...,8") is a solution of (1), then

o= (0,000 L 0P) i & solution of (2).
Ze _ (ol 3n, . .
Conversely, if ¢* = (¢~,...,¢”) is a solution of (2), then the

first n components Gl,..., ¢" are solutions of (1).



Proof  Assume that @ is a solution of

M Y =

conditionswl(to

Hence for each

e

@i

and

ﬁi(to)

we shall prove

‘iYi
dat

-5

Y(to)
1
Since Qﬂ

dt

by assumption,

Since Qi(to)

Hence 3*(t0)

Thus, o*

i, 1 n .1 on -1 “n L .
H1(¢ seeesy sU seees® sY seeasP 5 t) with initial

)

pis ’I’i(to) - ui ’ ‘l;!i(to) - Vi

i

1,2,..., n, ve have

it 4}

ol C PR S o L L)

Pi, ai(t ) = ui, ai(to) = vi

that % = (wl,...,ﬁn,él,...,an,al,...,an) satisfies

i
f (yl,...,an,t) with initial condition

( 1 n 1 n 1 n

p’llI’P ,u,OIC,u ’v’tnogv)
n

o] dg n

@ 3 teny d‘t = a

we get

B (gt 0%, ph, L0, gy, +)

O L U R

b, éi(to) =u?, ai(to) 2 ¥

(B (tg) . %t0), 3 t), . (), B (8)5000,8%(t,))

1 n 1 A E
= (D gwengP g U TP .y V)

(ﬁl,...,ﬂn,al,...,6n,al,...,an) is a solution of (2).
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n o on ul
Uniqueness We shall prove that o = (ﬁ}...,ﬂ ,Gl,...,ﬁ N}

’...’gn)
is the unique solution of (2).

Fa ™. 2L, B2, B (2,t)) is  (analytic)

k > 1. By Theorem 1.10, we conclude that
a* - (gl,l-ngn’gl,tlo’gn‘al’.lo’gn) iS the llniq_ue 501uti0n Of (2)0

1
Conversely, we assume that 9% = (¢ ,...,G3n) is a solution of (2).
We shall show that a - (Gl,...,ﬂn) is a solution of (1).

By the assumption we have that

o

¢l o ¢n+1’_..’ an ", g2n

Bl

n
]

PG 2 g3n

Differentiate the above equations with respect to t and using the

fact that Gi s 1 =1,...,3n satisfy (2), we obtain
# (3,9.9,)
H(9,8,,¢)

(L

ot = wiel, ... 030 )

o = Ha(ﬁl,...,GBn,t)

A=
B
|

g%gt,...,03%,¢) Hn(ﬁ,é,a,t)

Therefore, for each i = Lyiowuspli

i T
G = Hl(asasGSt)
Since 3* satisfies the initial condition.

1
a*(to) = U yenad s ul,...,un, vl,...,vn) [
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Hence Ui(to) = pi for 1 = J,..i4n
¢n+i(to) = ot for 1 =1,...n
¢2n+i(to)= o for 1 =%,.:5.4m

Since ai = ¢n+i for 1= 1;iiin

Then éi(to) = ¢n+i(t0) = ul for 1 = deieett

=1 2n+i i i
@1(t0) = g 1(t0)= v’ for i p B

1

Hence ¢ = (¢ seess B°) satisfies the equation (1).

Therefore, § = (ﬁl,...,@n) is a solution of (1).

Uniqueness

Suppose ¢ 1is snother solution of (1) such that for some

TS T R B )

In the same way, we can prove that o* = (@l,...,¢n,$l,...

- n s i
oo e, 0) e R . 1 . satisfies the given

initial condition.

<>
So o* # g% wyhich contradicts Theorem 1.10. Hence for all

i=1,..., 0, vehave g% = o', That 153 =3, Thus, § is the
unique solution of (1).

Lemma 1.12 is proved.

: XL * L +
Since (po,uo,vo,to) be any point in 0 ¢ R+l . By Theorem 1.10,

there exist neighbourhoods U of 50, W of s Vof ;O and an interval

-+

Y
3 - -+

L .of tU in R such that for all pl e U ul eV, Vl € V, there exists a
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unique function a* = (Gl,...,¢3n) defined on I such that for each

i=1,...,3n, wltﬁi,ﬁl,¢l,t) satisfies

i
9 - s, )

dt
i~ i
¢ (Plo-‘;ls_‘;] sto) s Pl for i = l,...,n
91‘51’31*$1'to’ - ui for i = n+l,.,.,2n

i~ ] _
g (Plsﬁls$lst0) > v;‘ fOl" 1 2ﬂ+1,oao’3n

The functious Gi are of class o1 (analytic) in t and of
k

class ¢ (analytic) in (ﬁ,ﬁ,;) For abhi = 1,...,n.

By Lemma 1.12, § = (ﬁl,...,ﬂn) is the unique solution of (1) such

thet for each i = 1,...,n, ¢ = 1% (#,8,8,t) ana Gi(ﬁl,ﬁl,¢i,t0J =,

i/> > > . *
g (Pl’lll’vl’to) o ul ?

i 1
/] (5i,ﬁi,$l,t) = vi
n+
Since @ i = ﬁi for 1 =12,,.,...n
onti -4
" = ¢t Tor i > X i..sh
hence
nti » > o 23 , s
0 Bpus¥yt) = 3R 0.7, ,8) = W
2n+i > > o 3% g i
¢ (pl’u]_?vl’to) = ¢ (pls-ﬁls-‘;l,tu) = V;: for i = l,...,n

3 3 +i
For each i = 1,...,n, #* = ¢"* nich is.of class e~ 2 (analytic)

in t (by Theorem 1.10), ¢i = ¢2n+1 » 1 =1,,..,n which is e
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i k+3 ;
(analytic) in t, Hence ¢ is of class ¢ (analytic) in t for
each i = 1,...,n

The proof is complete,

Definition 1.13 Let fl,...,fn be n ot real-valued functions defined

on an open set U in R" and let ¥ = (fl,...,fn). By the Jacobian of T
at ibs U we mean the real-valued function J whose values are given

by the determinant

1 E
af f
SR L - & ()
ax ax
J (X.) = : '
¥ i" : )
> af"
';"'l(ﬁo) NS VRGECR B (io)
X 9X

n

1 n
The notation AF ,...,F ) is also used for J (¥) where X = (xl,...,xn),
a(x ,...,X ) ?

Theorem 1.1% (The Inverse Function Theorem)

Let ¥ : U Rn, ios U vhere U is an open subset of R".
Ir ¥ is ot function on U and J (KO) # 0, then there exists open sets
V of §0 and W of ?(ﬁo) which are subsets of U and F[U] respectively
and a unique function g : W - V such that

(1) F[vl=w

(2) ¥ is a one to one function on V.

(3) elil =Vveana2(3%) =% wviev

(%) E ig ot function on W.

The proof is in reference [1] pages 14L-1L6.
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Theorem 1.15 The set S of all convergent power series in n

variables over the field of real numbers is an integral domain.

The proof is in reference [8] pages 129-130.

This theorem says that if the product fg of two real-valued
analytic functions f and g is identically zero in some neighbourhood
of ib € Rn, then at least one of the functions f and g is

identically zero in a neighbourhood of ib.

Theorem 1.146 Let V = (vl,...,vn). Let h be a function of n
variables vl, ve,...,vn which is analytie. If h is identically

zero, then all of the coefficients of the power series are zero.

Proof Since h is analytic in vl,ve,...,vn. By the definition

of analytic function we get,

n(v',..,v®) = n@)+lvt 24, e V0 fin]h(a)%l[vl-$1+. ..w“;i—n]e n(3)

avl oV v
k
+c . o+ %! Vli]_*. . -wn_a"n] h(3)+ TN
v v

For simplicity, we shall use the following notations,

J n J J J n n J
1) cJ v 1 = I cJ v 1 5 cJ j v %..v k B Dol L v 1..v
1 571 % 100 Jg 37 871
: o
2) cJ j 1is the coefficient of v ~...v where k = 1,2,.,..
l...k
D, h = -9-% » 3y =l m
3 P i |
%
D'jl“-’kh= ; g, 3 3™ dpeeey @ 3 KRB0
v 1..9v k
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Let c

Hence

h(vl,...,vn) = ¢t

By the assumption, h = 0,

Therefore, we have h(B) =0 and DJ j h(ﬁ) =0 k= 1.2
l... k

Thus, ¢y = 0, ch..jk = 0 where Jk 8 1,2550030 § K= ] . 2oaue

The proof is complete. 004282

Theorem 1.17 Let f and g be two analytic functions in the

n variables vl,...,vn in the same region such that f and g are

identically equal. Let

n J n n J J
f('\"l,..-,vn) = a0+ z a v 1+-..+ z . z a J v 1...V k+.l.
a1 h 3 3 dyeeedyg

n o n n j 3
and g(Vl,...,vn) = bo+ Zb, v 1+...+ L sow L bJ 3.V v k+...
31 % 3= g e

Then a. = Db

0 0’ for each k = 1,2,...,3J

=D forlgj < n.
W B k S

Proof Let h = f-g. Hence h = 0. Since f, g are analytic

functions of vl,...vn. Hence f-g is analytic in vl,...,vn, so is h.

n Jl n n Jl J
Thus, h = (ao-b0)+ L(a, =b, Jv +...+ L., I (a -b 5. A k+...
1 N 30 g decd dieed

By Theorem 1.15, implies that a -b_ =0, a, - b, = Oyeee
0 0 J J
B i3
a - b = 0
Jl..-Jk Jlttcjk

3 "



=b
1

Hence a =>b

o 0? aJ Jl,..., aJl"Jk = bjl"Jk for k= 1,..4

and Jk = lyssas R
Then Theorem 1.1Y is proved.

1

Theorem 1,18 Let b = (b",...,b")e R® be such that bl # 0 for

1 ¢ i< n and that the series I «ss L C
o m=0 m =0 o gk

Then for any ri, 0 < ric [bi| for 1 < i < n, the power series

-] m
iis ¥ (zl)ml...(z“) &
0 m=0 cml"mn

is absolutely convergent for

Il ™~ 8

™1

all z*, |Zi| <r' and it can be rearranged.
The proof is given in reference [4] pages 199-200.
Introduction to Theorem 1.19 which contains the main results

in reference [9].

n+ +
Define Hl(xl,...,xn,xn l,...,xan,xgn 1) = (xl,...,xn)
1 n _n+l 2n 2n+l n+l 2n
HQ(JC 300X :x a0 eeyX X ) = (x yeEey )
+ 2 + +
HB(xl,...,xn,xn 1,...,x n’xEn l) = gentl ’

Let Q be a connected open set of R2n+1 such that if 3 € Hl(ﬁ),
then (53390) e Q V-Vb 4 Rn.
Let H: Q + R® be analytic. Then H determines a second order

differential equation

Gi = Hi(%@,t) i= Lywang H

By Fundemental Theorem of Ordinary Differential Equation, given

initial point ; = (p%...,pn)e nl(n) and initial vector

m
Y LY .

_16
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3 = (vl,...,vn)e Rn, there exists an open subset Up - of 0
’

in n3(9) and there exists a unique function

E i

satisfying the differential equation and the initial conditions

3
v, 00 =3, %.(0) = ¥,
P,V P,V
+
Write o(3,v,t) = y _ _(t)
p,v
. 2n+l

This determines an open set V C R and a map

® :V+Hﬂm

which is analytic by the Fundamental Theorem.

Theorem 1.19 Suppose there exists a neighbourhood W of (0,0) in R°
and an analytic function f : W+ R such that
3(D,av,t) = 3(;,¢,f(a,t)) whenever (B,aV,t) ¢ V 5

(®,t) € W. Furthermore, assume that f(a,0) = O, £(0,t) = 0

whenever defined. Then the differential equation must have the form

. n n
¢i s E = ij(W)@J@k + cii 5 ¢ # 0 where
J=1 k=1
f . (8,0)
1 ct y 70 it
£ ot e = —
(a,t) < (l-atae™) , ¢ 8 (1)
Y(B,0) ew, B# 0,1
- n n .
or Wi = I I le(_vr)@'j@k... vhere f(a,t) = at
3=1 k=1 J

5 T AN
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Theorem 1.20 (Converse to Theorem 1.19)

For each i =1,2,...,n if.wl satisfies the second order

- n °
ordinary differential equation of the type wi z E ij(¢)¢ ¥ +c¢1
J=1 k=1
where the function ij is c' on open subset D of R® for J,k =1,2,...,n,

then for all 3 € D, ; € Rn, o € R, the solution wl must satisfy the

functional equation

v (Bav,t) = wxi('ﬁ,?,f(a,t)) V't e J(0) which is an open
interval of zero in R and f(a,t) = %-nn(1~a+ae0t) vhen ¢ # 0 or
v (5,0v,t) exists if and only if ¥i(3,3.at) exists and

v (D,av,t) = wi(5,3,qt) when ¢ = 0 and G;k is analytic on D.

Geometric properties of geodesics, for proof see reference [9]

pages TO-T6.

Property 1 Given to in R, ;0 in D. Then there exists a
neighbourhood U of the zero vector at -130 such that Vv in u,

= A
$(P0 sv’to) eXiStS .

Property 2 Given any compact neighbourhood U of the zero vector
S
at Py» there exists a neighbourhood V of zero in R such that

> > >
YteV,¥veu, w(po,‘{r,t) exists.,

Property 3 (Exponential property) Given initial point 50 € D and

0
vV € V then the map v » $(p0,v t)) is a bidifferential map of some

ty€ R-{0}, let V be a neighbourhood of 3 such that $(p0.v t.) exists

open subset of V onto an open set W.
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Property L Given 503 D, 30 at ;0 and any real number ®y» then
: > > X +> >

the solution curve ;(po,vo,t) with initial condition Pgy» vo agree

as points set with the solution curve w(ﬁo,c0¢0,t) having initial

dition p.,a.v
condition po,aovb.

In chapter II we shall prove properties 1), 2) and 4) for
the solution to hypergeodesic differential equations and shall
prove a property similar to property 3).

Let ¥ = B (§:¥:052) Be smalytic third order differemtial

equation with initial conditions wi(to) = ps s &i(to) = u; s

;i(to) = vé. We are concerned with the first and second derivatives
because they are part of the initial conditions. In particular,
we are interested in the way that the first and second derivatives
transform when we change coordinates.

Suppose X(t) = (xl(t),..., x"(t)) are the equations of a

curve with respect to the coordinate system (xl,...,xn). Then the

i
components of the first derivative at t_ are ax for 1 = 1, ..:.n
0 dt t=t0
and the components of the second derivative at to are
2 i
2 x2| for 1 = 1,.ieesti
dt t=t0

Let ¥ = (yl,..., ¥") be a different coordinate system,
[+3
let y = fu(xl,...,xn) for @ =1,...,n be the equation determining

the change of coordinates.,
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a n
Then QI-| = I o’ (X(t )) dx which is a linear function
dt o im 33 at to

of the components of the first derivative with respect to X and

2 a n 2.1 n
d d
(1.21) Q~§¢ = 3 fi (to)) e IR z z i f J(i(to))g’t‘]t at |t
at® 't i=1 ax at® t, 1=l =1 ax ax 0

0
which is not a linear function of the components of the second and
first derivatives with respect to X.

This example motivates us to use the following concepts.

Definition 1.22 An action of a semigroup S on a set X is a map

® : 8xXX > X such that 9(st,x) = ¢(s,8(t,x)) and we shall denote

¢(s,x) by sx .
Definition 1.23 The triple (8,X,0) is called a semigeometry.

Definition 1.24  Let (S,X,9) be & semigeometry and ¢ : RxX -+ X
an action of the semigroup (R,x) and we shall denote v(a,x) by a.x.
¥ is said to be invariant with respect to the semigeometry

(5,X,0) if

s(a.x) = a.(sx) VseS, Vxe X, Ya € R,

Remark : We call a set with an action of (R,x) on it a cone.




n k k n n
Notations : akbk X akbk o aklk X bklb 2..b g E % e
20 .. k1=1 k. =1
2

n k. k k
oo, Bt o o BT R whnre w2000
kh=1ak1 2° %y,

n n n Q. &
akb: L © I I % akb: i 1.2
1% k=l £=1 2,1 1%

]

n k
akbtcz 5z akb &~ oy Klb 2

2=1 k=1 2 l 2
g ? g n klbk2 21 22
k=1 k=1 =1 2, Sk 2
Consider RZ® = '{(ul,...,un,vl,...,vn)}
S = {(ail,ajléz)lajlj2= aiejl, 1549535 = 1,...,0}

S is a semigroup if we define

(a i ) (bi‘ bi )= (ci ,c§ 3 ) where ot

= b and

1

2

kl k
3132 "kibala “klk 3%
To show that S is semigroup,

[(a} a1 |, ).ed i i i
h* 0, ® J1 3132)] (ch 3132) (d31’ 3132) £ Jl’clez)
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where dj = a; bg
i 1

. k k

di - i bk i b 1 b 2

+
d1dz *k 3y, aklk'z J d

S0
i
[(a3 oy , )40} 6% )].(ct ) = (alck
UL YRR R O J;’ J132 dk 132 dklk J1
X fo  Bidies s
= (agblc® .&ib ey gt ibg kl %a i g b b 2 kl %)
LR PR A S I e s i T 1% 1 Ky 4y 35

i 1 i .4 il i i £ 4
(a7 ;a ).[(bv, ,b ).(c, ,c )] = (a, ,a ).(h, ,h )
J17 939, 9179977 7 60, J177913,7 7 97 5,9,

1 iy
where th = b£c31
. 533(7)
i i - ¢ S 2
s B
h31'32 303132+ bﬂlzecjl c32

then

1 i 4 . (alpk LK R
(a3, 023 5,)- (%) RRAC RGBT CriP i, L Tl Ty

2
= (alvhct Lalpk 0 R i A TR B 2
b 32K 8 Jlj oy 242, Jl % aklka 21 Jl 22 3

Hence S is a semigroup.

S acts on R2n as follows :

J J J Jy J
(a ,a J ) (u g'e ..,un,vl,...,v )=(a l , cesB U 1, ar v l+al u Ty 2,..‘

l 1 ‘jl ‘11 31‘12

J |
covs BT Vel Ly i 2)
Jq d1do
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To show that S acts on R°". That is, we want to show that
(st).a = s(t.a) for all s, t € S and o eRQn.
!
Let s (a; , a )
317 939,
i i
t = (b, , 0 )
3* T8,
a = (ul,...,un, vl,...,vn)
(st).a = [(a ). (b} TS AR R
Jlj 3’ 3132
= (et e (u /4 ,un,vl,...,vn) where ¢t = al pE
3’ Jldg T
i ik i 1b 2
e + b
R " X3 ke
J J J P .| J J
=(c3‘ul,...,cnul, clvl+c1 u Ty 2, ..,cnvl-!-c Jl 2)
1 3 ) 3 h Ty
J 3 J; d k b |
- lbk 1 i IR} 1. V2 2 1 2
(Bk Jlu s--osa'k l s lb +&i;b|jl.12u u +3k1k J 3.
k
nb +a.knb u u + kbl“]’b2 Jl
Jy 95 LN N
s(t.a) = ( O ).(ul,...,un,vl,...,vn)]

a.
Jp’ J132 Jy’ J1 2

i 1 1 J
8J ,j 3 ). (x ,...,xn,:,r ,...,yn) where xm=bmu1
1 9192 3

(

J J3y

m 1.m 19
& b

: lev : i ©

form=1,...,n



J J J Jy J dy J
1x1,...,anxl,aly1+ a.l xlx 2,...,anyl+ aanlxz
9 i T 192 1 J1dp

s(t.a) = (a

J J J J k
luk,...,an bkluk, al bklvk+ a% bklk uklu £
9 ) 1 51k

(al b
Jp k

ds & 3. K J J k
+ al 3 bklu lbkeu 2,...,an bklvk+ a? bklk uklu 8
didp K 2 Jy 1 %%

s Bs J.o Kk
Dop 1y L2 u 2)

+ a
dido k" Tk

Hence S acts on R2n as defined. Notice that the semigroup action comes
from composition of functions and the action comes from the egquation
on page 20. R acts on REn as follows :

g 1 n 1 2 1 . 2
(N (T RN e R seeesV ) = (au,...,0u" oy B )

1

To show this is an action, let a, B ¢ R, (ul,...,un,v sassa¥ )E gD

(a.B).(ul,...,un,vl,...,vn)

(aBul,...,aBun,azﬁavl,...,aeﬁavn}

a-[B.(ul,...,un,vl,...,vn)] a.(Bul,...,Bun,Bevl,...,Ba?n)

(aBul,...,uBun,ugﬁgvl,...,angvn)

Hence we see the map is an action,

2°s®

Thus we see that equation (1.20) gives an action of S ={{2£13 i
axt axiaxd

e i1=1,,.,0

o 2 a

2 9 i
on R“® (denote ~£i by aj and 2 i j by a; . ) and we define
ox 1 axtag J1dz

ook 1 a_2-i 2n > > n -+
a.(u,v) = (au,...,0u",a% 524450 V) where a € R, U, v e R where u

aX

% and v represents —El .
0 dt to

represents

&6y



Claim that this scalar product is invariant under change of

coordinates.

That is, we want to show that s(a.x) = a.(s x) for all

8§ €8, x¢ R2n, a e R

n_1

s(a.x) = (adl 313 )Ma.(ul yosugh 5V seasa¥o )]

= (a.‘,J J.j )(aul,...,uun,azvl,...,uevn}
1 “1°2

Jy J
(uaiuJ,...,aaguJ,a ale+a2 j ju lu 2,...

J

Jdy J
s a2a.nv‘j+ agan u lu 2)

3 LE

a.(sx) = a, [(a ,ar )(u WA T vl,...,vn)]

5 313

I J
= a.(ajuj,...,aguj, avis gt S 2,...

—
i i

coey I A4-aD 2)

yas

ds:
W, ..., Ga?u'j, aZalvds o2l 1, 2

3 A
3 5,
u )

(aal

q2anv,j » u2an

U JlJeu

Thus the scalar multiplication defined above is invariant.



Since the change of coordinates is not a linear change,
we cannot define a.(u,v) = (aul,...,aun,avl,...,avn) as one would
do in linear algebra because this definition would not be invariant
with respect to the semigroup action. This explains why we use this

definition of u.(ﬁ.?) which may have seemed strange when first

given in the abstract.
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