IV. RESULTS

I. PHYSICAL CALIBRATION OF THE MEASURING EQUIPMENT

1. Calibration of the Auto Gamma Well Counter:

Fig. 5 (Table II) shows the setting of the pulse height analyzer for the optimal operation of autogamma well counter to measure the gamma energy radiation emissions from ⁵⁹Fe, i.e. the base of 200 volts and the window width of 300 volts. The gamma energy of ⁵⁹Fe falls within the operating base of 200 to 500 volts the band of which efficient countings of ⁵⁹Fe by gamma well counter may be operated; otherwise the background and emissions from other source of energy may be included. The gamma measurement by means of such operating pulse height analyzer will hold true for any other gamma sources and offer the advantages of reducing the background and other detrimental counts, thus increasing the efficiency of gamma counting by means of combined scaler-spectrometer.

2. Calibration of Liquid Scintillation Counter:

Setting operations of liquid scintillation counter for simultaneous counting of 55 Fe and 59 Fe source are shown in Fig. 6 (Table III). The settings were started for 55 Fe first by varying the

maximal efficiency of ⁵⁵Fe and ⁵⁹Fe was 5.2 % and 86.2 % respectively, and the cross counting ratio of ⁵⁹Fe were moderately sensitive to varying the strength of HCl⁽¹⁴⁾. The normality of the acid was chosen at 1.2 due to rapid and complete dissolution of the precipitate with an acceptable degree of quenching. Sufficient amount of ascorbic acid was used to produce complete reduction (and hence decolourisation) of ferric iron with little effect of counting rates. The amount of added iron as carrier in the sample was also adequate and optimal. However, some quenching still occured and the method of internal standardisation for quenching correction has to be used.

Quenching correction by internal standard was carried as fol lows: Adding a specific activity of 0.18 μ Ci in both the sample vials and the standard 55 Fe scintillant vials. A series of counts were obtained from the measurement in 55 Fe region. Now the procedures were repeated using instead 0.0105 μ Ci 59 Fe and recounting in 59 Fe region. The real count rates of each sample will be the difference of the recounting rates from the initial ones which were not internally standardised.

Measurements of iron absorption were obtained after such quenching correction by multiplying the added activities by a factor to normalise the values of the countings of administered doses and by this means all values were corrected for quenching.

TABLE II. COUNT RATES FROM AUTO-GAMMA WELL AT POSITION SENSITIVE FOR $^{59}\mathrm{Fe}$

•	Base(v) 170	Count Rate	Base(v) 370	Count Rate 8275	Base(v) 580	Count Rate	•
	190	7299	390	7542	590	1180	
	210	7257	410	7017	600	1016	
	230	6910	430	6028	620	848	
	250	6864	450	5088	640	717	
	270	6577	480	3552	650	861	
	290	6792	500	2794	660	1830	
	310	7461	530	2139	670	1576	
	330	8149	550	1722	680	167	
	350	8493	570	1287			

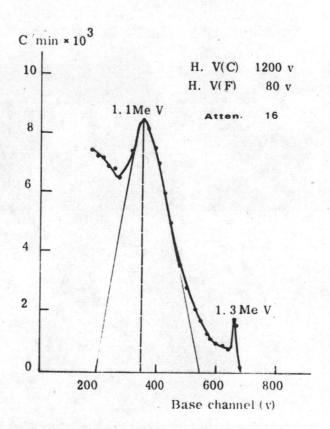


Fig. 5. The optimal operating voltage for gamma counting of ⁵⁹Fe.

H.V. of the data photomultiplier at the knob labelled "data photo" scale (between L_3 - L_5 or 0.5-9.9 volts) the maximal cpm was obtained at 10 volts (an optimal operating level for data photomultiplier) at which the high voltage supplied with that level will give the most efficient counting of 55 Fe. Now for the optimal working of the gate high voltage supply, the gate was varied for its voltage until the maximal cpm was again obtained, i.e. at about 15 volts. With the combined operating settings of both high voltage supplies and with minimal attenuation, the countings were set for 55 Fe.

Now for ⁵⁹Fe, the same high voltages were applied while the attenuation was varied until maximal cpm for ⁵⁹Fe was obtained, i.e. in the spectral region of 0.5-9.9 volts. The equipment was made ready in good operating condition.

II. MEASUREMENT OF SAMPLE ACTIVITIES

1. Background or Blank Counting:

The background countings should be run first. This blank measurement has had a tendency to be erroneously high for about two hours when the blank sample consists of newly prepared emulsion which may create initial autofluorescence. The background countings will be stabilised after this period. These measurements

TABLE III. COUNT RATE AT VARIOUS DATA HIGH VOLTAGE

HIGH VOLTAGE	COUNT RATE
c ₇	133762
C ₈	200663
c ₉	233508
clo	250687
c _{ll}	245928
c ₁₂	203573
C ₁₃	146622
c ₁₄	101715

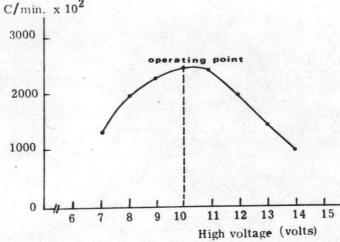


Fig. 6. The operating point of Data H.V.

TABLE IV. COUNT RATES OF VARYING GATES OF HIGH VOLTAGE

CAME HICH VOLUME	COUNT DAME
GATE HIGH VOLTAGE	COUNT RATE
c ₆	125551
c ₇	203157
C ₈	290398
c ₉	329674
c ₁₀	349097
c ₁₁	402883
c ₁₂	430906
c ₁₃	452818
C ₁₄	467759
c ₁₅	481054
c ₁₆	496358

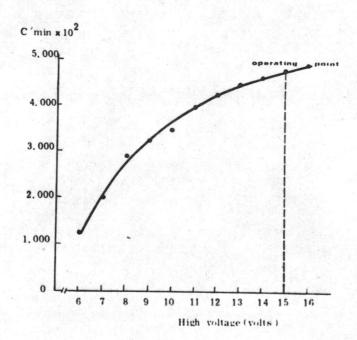


Fig. 7. The operating point of Gate H.V.

were made in both channels and the results were almost the same (57 and 61 cpm in ⁵⁹Fe and ⁵⁵Fe channels respectively).

2. Sample Counting, Quenching Effects and the Correction:

From I-2), roughly speaking, the settings for ⁵⁵Fe will be at data H.V. 10 and gate H.V. at 15 with minimum attenuation. For ⁵⁹Fe the attenuation was varied to 16.1.

Fig. 8 (Table V) shows the count rates of both ⁵⁹Fe and ⁵⁵Fe in the spectral region of ⁵⁹Fe, i.e. H.V. settings 10.1 and 15.16, and data attenuation at 16.1, it can be seen that at the pulse height of 2-9.9 volts, the activity of ⁵⁹Fe only (and none of ⁵⁵Fe) was measured solely and completely. Now from Fig. 9 (Table VI), when the attenuation was reduced down to 1 in the spectral region of ⁵⁵Fe, the sample containing both ⁵⁵Fe and ⁵⁹Fe will give activities of ⁵⁹Fe in the ⁵⁵Fe region. To obtain only ⁵⁵Fe countings, one has to determine a common factor (k) which is the ratio of ⁵⁹Fe counted in ⁵⁵Fe region over that in ⁵⁹Fe region. The real counts for ⁵⁵Fe will be (cpm)_A- k(cpm)_B⁽¹⁴⁾.

The Quenching Effect of the System and Its Correction:

The iron precipitate in the form yellowish powder has to be dissolved in different kinds of solvents creating several factors to be carefully studied for the resulting quenching effects.

3. Calculations:

per cent efficiency =
$$cpm/dpm \times 100$$

per cent absorption = $\frac{cpm/10 \text{ ml } \times BV \times 100}{cpm \text{ administered dose}}$

where the corresponding blood volume (BV) can be obtained from the Table XI.

4. Reproducibility of Countings:

Table VII. shows the good reproducibility of the countings. The duplicate values give the critical value of degree of freedom at 7 and at level of 5 per cent significance ($X_{0.95}^2 = 14.1$). All of the X^2 of the individual pairs of measurements appear very much smaller indicating the stability of the measuring equipment.

TABLE V . COUNT RATES OF ⁵⁹Fe AND ⁵⁵Fe AT OPTIMUM POSITION FOR ⁵⁹Fe

PULSE HEIGHT	COUNT RATE	COUNT RATE
(v)	OF ⁵⁹ Fe	OF ⁵⁵ Fe
0.5	57620	600
1.0	44538	53422
1.5	37084	2409
2.0	30666	193
2.5	25437	20
3.0	21444	
3.5	17353	
4.0	14547	
4.5	11933	
5.0	9752	
5.5	7892	
6.0	6308	
6.5	4848	
7.0	3764	
7.5	2733	
8.0	2025	
8.5	1164	
9.0	498	
9.5		

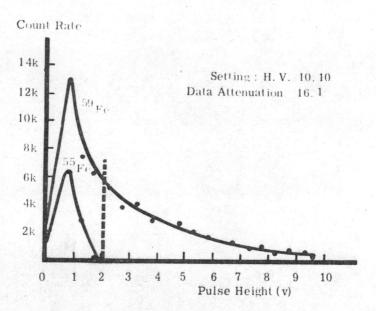


Fig. 8. Spectrum of ⁵⁹Fe and of ⁵⁵Fe in the position sensitive for ⁵⁹Fe.

TABLE VI . COUNT RATE OF ⁵⁹Fe AT OPTIMUM POSITION FOR Fe-59 AND AT OPTI-MUM POSITION FOR Fe-55

PULSE HEIGHT	COUNT RATE	COUNT RATE
(v)	AT ⁵⁹ Fe REGION	AT ⁵⁵ Fe REGION
0.5	57620	14088
1.0	44538	13093
1.5	37084	12432
2.0	30666	11789
2.5	25437	11028
3.0	21444	10214
3.5	17353	9370
4.0	14547	8512
4.5	11933	7475
5.0	9752	6684
5.5	7892	5756
6.0	6308	5240
6.5	4848	4312
7.0	3764	3571
7.5	2733	2662
8.0	2025	2032
8.5	1164	1302
9.0	498	593
9.5		10

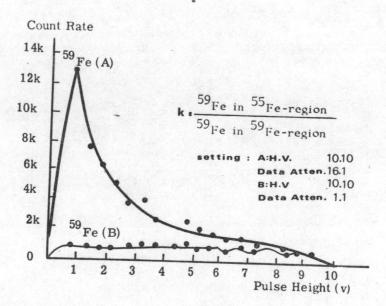


Fig. 9. Spectrum of ⁵⁹Fe in the position sensitive for ⁵⁹Fe and that for ⁵⁵Fe.

TABLE VII . REPRODUCIBILITY OF THE METHOD

No.	COUNT RATE x ₁	COUNT RATE ×2	x^2
1	11689	12489	0.0756
2	7637	6230	0.0019
3	1229	1377	0.1174
4	10457	11396	0.0521
5	6860	5336	0.0229
6	2899	2802	0.1222
7	500	750	0.2535
8	6022	4027	0.2465

Reproducibility by using Chi-square Test

Level of significance = 5 %

Critical value of $X_{0.95}^2 = 14.1$

TABLE VIII.COUNT RATE OF DIGESTED BLOOD SAMPLES AFTER
INTERNAL STADARDIZATION

Subject	Count	Rate o	f ⁵⁹ Fe	Count	Rate	of	55 _{Fe}
Basal 5:							
J 1		21401			1000	-0	
J 2					12936		
J 3		20205			12178		
J 4		21058			13840		
		20647			14509		
D 5		27097			23239		
D 6		22099			14092		
P _n 7		20183			23947		
P ⁿ 8		19568			9875	59	
Basal Asc:							
J 1		05400			1001		
		25128			16910		
J 2		22063			14006		
P _n 3		23586			15087	6	
Basal 100:							
N 1		27349			19934	7	
N 2		28842			23285		
N 3		31826					
N 4		28843			18933		
J 5		28883			20749		
J 6					20663		
J 7		29579			15624		
P 8		27335			19169		
Png		25571			15804		
P_10		26824			23063		
n		27583			18841	.2	
B 100:							
N 1		25918			20267	8	
N 2		26975			22182	9	
J 3		27376			19947	1	
J 4		28437	ě.		20114	4	
P_5		24842	4		18234	1	
P ⁿ 6		20209			17439	5	
n							
C 100:							
N 1		27732			18768		
N 2		27363			16249	2	
J 3		27197			21739	2	
J 4		28643			20407	4	
P _n 5		18654			21597		
n							

TABLE IX, PER CENT ABSORPTION OF IRON FROM REFERENCE DOSE OF 181 SUBJECTS

% absorption	No.	subjects	consisting of
0 - 10	33	J(0.2),N(1.7),J(1.9),J(2.1),D(2.4),D(2.8),J(2.9),N(3.0),N(4.9)	4D . 3Pn
		J(5.4),J(5.5),J(5.8),J(6.0),J(6.2),J(6.4),N(6.4),J(6.7),J(7.1)	10N , 16J
		N(7.4),N(8.1),N(8.5),J(8.5),P(8.5),D(8.5),J(8.6),J(8.7),Pn(8.7)	
		N(8.8),P(9.2),J(9.3),D(9.3),N(9.6),N(9.7),	
10 - 20	48 -	J(10.2),J(10.5),J(10.6),J(11.1),J(11.2),J(11.3),J(11.4),N(11.6)	4D , 11N
		J(11.7),J(11.9),J(12.5),J(12.7),N(12.7),D(12.9),P(13.1),J(13.5)	11P _n , 22J
		J(13.5),J(13.7),J(13.9),J(14.0),J(14.3),J(14.4),J(14.4),N(14.6)	
		P(14.6),P(14.8),N(15.1),N(15.2),J(15.3),N(15.6),D(15.6),N(15.8)	
		N(15.9),P(16.2),P(16.3),J(16.4),D(16.5),J(16.8),N(16.9),P(16.9)	
		P(18.0),N(19.1),N(19.2),D(19.3),J(19.3),P(19.5),P(19.7),P(19.9).	
20 - 30	34	N(20.1),P(20.3),N(20.6),N(20.8),J(21.1),N(21.4),D(21.4),P(21.7)	5D , 8J
		N(22.3),P(22.4),J(22.7),D(23.1),P(23.6),N(23.9),N(24.2),J(24.3)	8P _n ,13N
•		J(24.7),P(24.8),D(25.0),N(25.5),P(25.6),D(25.7),J(26.1),D(26.2)	
		J(26.4),N(26.8),N(27.3),P(27.3),N(27.5),J(27.8),J(28.3),N(28.8)	
		N(28.9),P(29.3).	
30 - 40	24	P _n (30.3),D(30.7),P _n (31.7),J(31.9),D(31.9),D(32.1),J(32.2),J(32.9)	3N , 5D
		N(32.9),P(33.1),P(33.7),P(33.7),D(33.8),P(35.3),P(36.0),D(36.1)	5J ,11P _n
		N(37.2),J(37.2),P(37.3),N(37.5),P(38.0),J(38.8),P(38.9),P(39.2).	
	••	N(40.8),N(41.3),N(41.7),P(43.6),N(44.6),D(44.9),P(45.8),J(46.2)	1D , 2J
40 - 50	13		4P _n , 6N
		N(46.8),P(47.8),N(48.3),P(48.5),J(49.2).	n'
50 - 60	6	D(51.8),P(52.3),D(55.6),D(55.9),D(55.9),D(59.4).	1P _n , 5D
60 - 70	8	P(60.6),D(60.9),P(61.3),P(61.7),P(63.3),J(63.9),P(66.4),P(69.8).	10,1J,6P _n
70 - 80	3	D(74.1),D(74.3),P _n (77.9).	2D , 1P _n
80 - 90	5	D(80.3),P _n (83.9),D(86.5),D(89.2),P _n (89.5).	2P _n , 3D
90 - 100	7	D(90.7),N(91.3),P _n (92.7),D(93.3),D(94.2),D(98.8),D(99.6).	1N, 1P, 5D

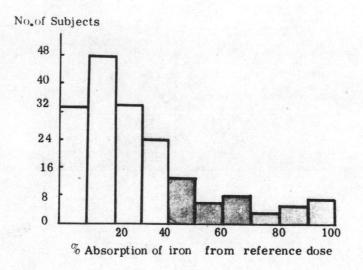


Fig. 10. Distribution of iron absorption from reference dose of 181 subjects.

TABLE X . ABSORPTION OF IRON FROM REFERENCE DOSE

	%Absorption	%Absorption		%Absorption	%Absorption	
No.	from Auto-Gamma	from liq. scint.	No.	from Auto-Gamma	from liq. scint.	
	well	counter		well	counter	
1	8.49	20.94	16	5.41	13.40	
2	20.82	20.90	17	32.96	36.01	
3	15.58	26.37	18	14.00	23.44	
4	26.10	26.15	19	24.80	37,24	
5	15.38	19.80	20	14.36	11.13	
6	6.36	8.70	21	8.55	8.84	
7	60.66	59.84	22	38.76	28.33	
8	8.53	5.98	23	15.58	9.83	
9	33.09	26.25	24	13.98	15.98	
10	41.26	55.26	25	13.70	14.93	
11	4.92	12.60	26	32.24	37.14	
12	0.22	3.37	27	16.84	19.17	
13	11.87	26.24	28	6.66	6.44	
14	37.23	55.09	29	38.93	21.28	
15	1.74	7.81	30	19.51	23,86	
		Mean value		19.62	22.74	
		S.D.		14.76	19,11	
		Standard error		2.53	3.28	

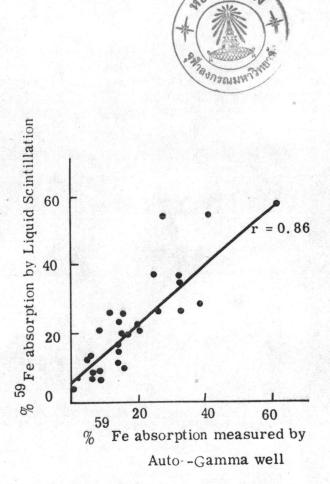


Fig. 11. Comparison of per cent absorption ⁵⁹Fe ferrous sulfate dose between measurement by Auto-Gamma Well and that by Liquid Scintillation system.

KEYS TO TABLES ON CLINICAL RESULTS

FOOD

Basal 5	=	Basal diet (rice, vegetable, spice)
Basal Asc	=	Basal diet plus 50 mg ascorbic acid
Basal 100	=	Basal diet plus 100 mg ferrous sulphate
В 100	-	Diet B (rice, vegetable, spice, fish) plus 100 mg ferrous sulphate
C 100	=	Diet C (rice, veg., spice, fish, fruits) plus 100 mg ferrous sulphate

SUBJECTS

'n		Nurses
P _n	=	Practical nurses
J		Janitors
D	=	Blood donors

TABLE XI . COUNT RATE OF DIGESTED BLOOD BY LIQUID SCINTILLATION SYSTEM

	Count Rate	Count Rate	Predicted
Subject	of ⁵⁹ Fe	55	
Basal 5:	of Fe	of ⁵⁵ Fe	B.V.
J 1	2242	142	4073
J 2	4799	268	4468
J 3	2825	233	5183
J 4	897	98	4232
D 5	1540	151	4944
D 6	2180	229	4628
P_7	3457	435	3550
P _n 8	3758	291	3550
Basal Asc:			
J 1	1420	105	1.1.00
J 2	3500	167	4468
P _n 3	2250	126	5102
n	2200	120	3332
Basal 100:			
N 1	12089	92	3185
N 2	5542	152	3113
N 3	6458	19	2943
N 4	6934	268	3477
J 5	5077	27	4310
J 6	3343	35	3994
J 7	1303	86	5183
P ₈	10926	274	3915
P ⁿ 9	1318	181	3477
P _n 10	6098	136	3404
B 100:			
N 1	13240	312	3477
N 2	2851	198	3770
J 3	625	150	4628
J 4	5025	231	3624
P_5	14976	458	3697
Pn6	11249	166	2828
C 100:			
N 1	19126	733	3550
N 2	1922	125	3477
J 3	2515	77	4547
J 4	5120	284	4073
P _n 5	8219	268	3843

TABLE XII . SHOWING THE CLINICAL RESULTS OF IRON ABSORPTION FROM REFERENCE DOSE AND FROM FOOD

1		' Auto-Gamma	Liquid Scintillation	
		Well Counter	Counter	
Subject	Hct. (%)	%absorption	%absorption	%dietary
		Ref. dose	Ref. dose	absorption
Basal5:				
J 1	46.50	13.696	14.934	5.63
J 2	50.50	32.236	37.143	12,93
J 3	46.50	16.841	19.169	10.99
J 4	35.50	6.655	6.435	3.39
D 5	37.35	15.580	9.830	4.05
D 6	48.75	13.980	15.980	9.48
P 7	43.50	38.930	21.280	8.13
P ⁿ _n 8	42.50	19.510	23.860	10.65
Basal Asc:				
J 1	50.50	8.550	8.840	4.12
J 2	54.50	38.760	28.330	7.18
P _n 3	38.50	14.360	11.130	3.92
Basal 100:				
N 1	40.50	27.500	47.650	1.86
N 2	43.00	8.490	20.940	3.33
N 3	46.50	20.820	20.900	0.46
N 4	40.80	15.580	26.370	7.25
J 5	48.00	26.100	26.150	0.91
J 6	48.50	15.380	19.800	1.29
J 7	53.50	6.360	8.700	2.99
P_8	40.75	60.660	59.840	9.14
P ⁿ 9	43.00	8.530	5.980	3.44
P _n 10	44.75	33.090	28.310	2.73
B 100:				
N 1	46.50	41.260	55.260	7 65
N 2	41.00	4.920	12.600	7.65
J 3	48.50	0.220	4.050	4.19
J 4	47.50	11.860	26.440	4.38 4.72
P 5	39.00	39.120	57.590	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P ⁿ 6	42.50	37.320	55.090	12.23
n C 100:		07.020	33.090	3.28
N 1	110 EO	110 040	F0 05-	
N 2	42.50 45.50	48.310	78.660	17.47
J 3	49.30	1.740	7.810	3.91
J 4	49.00	5.410	13.400	2,60
	42.50	13.990 24.800	23.440	5.27
P _n 5	72.50	24.000	37.240	7.74

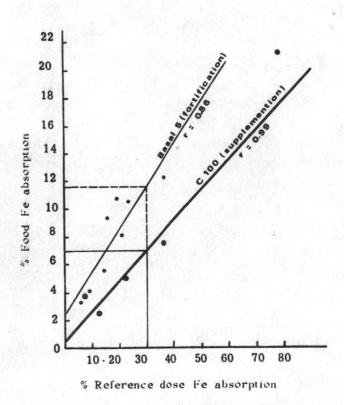


Fig. 12. Relation of per cent iron absorption from reference dose ferrous sulfate and that from food containing 5 and 100 mg Fe the amounts of iron from food absorption were identified at 30 % iron absorption of the reference dose.

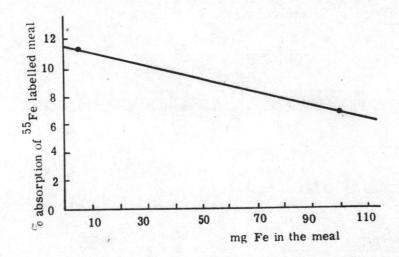


Fig. 13. Per cent absorption of iron from food of 5 and 100 mg Fe contents at 30 % iron absorption of the reference dose.

Clinical data

Absorption of iron from the reference dose:

Despite normal hematological findings, some of the subjects particularly those of blood donors and women with hypermenorrhea showed varying values higher than 20 which is the mean per cent absorption of iron from the reference dose, reflecting deficits of body iron store (Fig. 10).

The results of measurement (Fig. 11) by well counter agreed favourably with those by liquid scintillation counter (r = 0.86).

Absorption of iron from food:

Each of the values had to be related always to its individual absorption of iron from reference dose and both values were expressed as per cent of the administered dose and of the total amount of iron in the food in which extrinsic iron was added at 5 mg (fortification) and 100 mg (supplementation) levels respectively (Fig. 12)

The amounts of iron absorbed from the food at (chosen) 30 per cent absorption of iron from the reference dose were plotted at 5 and 100 mg iron content in food. This is the most wanted data most valuable for operation research for iron fortification and iron supplementation for specific areas of the country (Fig. 13).