EXISTENCE OF PAIRS OF ORTHOGONAL LATIN SQUARES

6.1 Existence of Pairs of Orthogonal Latin Squares of Order $n_{1} n=4 t+2,10 \leqslant n \leqslant 100$.

We shall show that $N(n) \Rightarrow 2$ for all $n=4 t+2$ in the range $10 \leqslant 4 t+2<100$. By Corollary 4.2.3, we have $N(n) \geqslant 2$ for all n of the form $n=6 t+4$. It follows that $N(n) \geqslant 2$ for $n=10,22$, $34,46,58,70,82,94$. Further, we have shown in Chapter IV that $N(18) \geqslant 2$. Hence it is left to be shown that $N(n) \geqslant 2$ for $n=14,26,30,38,42,50,54,62,66,74,78,86,90,98$. The cases $n=14$, 26,38 , need special consideration. First we shall show the existence of pairs of orthogonal Latin squares of order 14. Consider the matrix

$$
P_{0} \text { าลง }=0\left[\begin{array}{cccc}
0 & x_{1} & x_{2} & x_{3} \\
1 & 0 & 0 & 0 \\
4 & 4 & 6 & 9 \\
6 & 1 & 2 & 8
\end{array}\right]
$$

whose elements are residues modulo 11 and the three indeterminates x_{1}, x_{2}, x_{3}. Let P_{1}, P_{2}, P_{3} be obtained from P_{0} by cyclic permutation of the rows. Put $\Lambda_{0}=\left(P_{0}, P_{1}, P_{2}, P_{3}\right)$ and let A_{i} be obtained from A_{0} by adding i to every residue modulo 11 in A_{0}. Let

$$
D=\left(E, A_{0}, A_{1}, \ldots, A_{10}, A^{*}\right)
$$

where A^{*} is an $O A(3,4)$ on x_{1}, x_{2}, x_{3} and E is the 4×11 matrix whose $i^{\text {th }}$ column contains i in every place. It can be verified that D is $\mathrm{OA}(14,4)$. Hence $N(14) \geqslant 2$.
(2) Existence of a pair of orthogonal Latin squares of order 26 can be shown by the same construction starting with the matrix

$$
P_{0}=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & x_{1} & x_{2} & x_{3} \\
3 & 6 & 2 & 1 & 0 & 0 & 0 \\
8 & 20 & 12 & 16 & 20 & 17 & 8 \\
12 & 16 & 7 & 2 & 19 & 6 & 21
\end{array}\right)
$$

with objects taken from the residues modulo 23 and the indeterminates x_{1}, x_{2}, x_{3}.

Next, we shall show the existence of a pair of orthogonal Latin squares of order 38. Observe that if a pairwise balanced design $\operatorname{BIB}(41,5,1)$ exists, then by Theorem 5.1 .9 , we have

$$
N(41-3)=N(38) \geqslant \min \{N(3), N(4)-1, N(5)-1\}=2
$$

Hence, it suffices to show that a pairwise balanced design $\operatorname{BIB}(41,5,1)$ exists. We construct a pairwise balanced design $\operatorname{BIB}(41,5,1)$ as follows :

Take the elements of GF(41) as objects and our blocks are

$$
\begin{aligned}
& A_{t}=\{t, t+1, t+4, t+11, t+29\} \\
& B_{t}=\{t+1, t+10, t+16, t+18, t+37\}
\end{aligned}
$$

where $t=0,1, \ldots, 40$. Observe that the two sets $\{0,1,4,11,29\}$ and $\{1,10,16,18,37\}$ together have the property that every nonzero element d of $G F(41)$ is expressible in exactly one way as

$$
d=x_{i}-x_{j}
$$

where both x_{i} and x_{j} are either in the first set or both in the second set. Now, we shall verify that every pair of distinct objects occurs together in exactly one block of our design. Let u and v be distinct elements of (GF (41). Since $u-v \neq 0$ hence there exist x_{i}, x_{j} from the same set such that

Put

Then

$$
\begin{aligned}
u-v & =x_{i}-x_{j} . \\
t & =u-x_{i} .
\end{aligned}
$$

Hence both u and v are in A_{t} or B_{t}.
Thus every pair of distinct objects occurs together in exactly one block. Hence the design is a pairwise balanced design $\operatorname{BIB}(41,5,1)$.

Now, we consider the cases $n=30,42,50,66,78,98$.
By Theorem 4.2.1, we have

$$
N(30) \geqslant \min \{N(3), N(10)\}
$$

Since $N(3) \geqslant 2$ and $N(10) \geqslant 2$, hence $N(30) \geqslant 2$.

By the same argument we see that

$$
\begin{aligned}
& N(42)=N(3.14) \geqslant \min \{N(3), N(14)\} \geqslant 2 \\
& N(50)=N(5.10) \geqslant \min \{N(5), N(10)\} \geqslant 2 \\
& N(66)=N(3.22) \geqslant \min \{N(3), N(22)\} \geqslant 2 \\
& N(78)=N(3.26) \geqslant \min \{N(3), N(26)\} \geqslant 2 \\
& N(98)=N(7.14) \geqslant \min \{N(7), N(14)\} \geqslant 2 .
\end{aligned}
$$

Finally, we shall show that $N(m) \geqslant 2$ for $n=54,62,74,86,90$. By Theorem 5.2.6, we have

$$
N(54)=N(4.11+10) \geqslant \min \{N(11), N(10), N(4)-1, N(4+1)-1\} .
$$

Since $N(11)=10, N(10) \geqslant 2, N(4)=3, N(5)=4$, hence

$$
r_{\min }\{N(11), N(10), N(4)-1, N(4+1)-1\} \geqslant \min \{10,2,3-1,4-1\}=2
$$

Therefore $N(54) \geqslant 2$. By the same argument, we see that

$$
\begin{aligned}
& N(62)=N(4 \cdot 13+10) \geqslant \min \{N(13), N(10), N(4)-1, N(4+1)-1\} \geqslant 2 . \\
& N(74)=N(4.16+10) \geqslant \min \{N(16), N(10), N(4)-1, N(4+1)-1\} \geqslant 2 . \\
& N(86)=N(4.19+10) \geqslant \min \{N(19), N(10), N(4)-1, N(4+1)-1\} \geqslant 2 . \\
& N(90)=N(4.19+14) \geqslant \min \{N(19), N(14), N(4)-1, N(4+1)-1\} \geqslant 2 .
\end{aligned}
$$

6.2 Existence of Pairs of Orthogonal Latin Squares of Order n,
$n>6$.

We shall show that $N(n) \geqslant 2$ for all $n=4 t+2$ in the range $100<4 t+2 \leqslant 726$. Observe that if n can be written in the form $n=4 m+x$, where $N(m) \geqslant 3$ and $N(x) \geqslant 2$, then Theorem 5.2 .6 can be
applied with $k=4$ and we have

$$
N(n)=N(4 m+x) \geqslant \min \{N(m), N(x), N(4)-1, N(5)-1\} \geqslant 2
$$

Hence it suffices to demonstrate that each $n=4 t+2$ in the above range can be represented in this form. This can be shown by choosing suitable values of m and x. Note that for each n the choice of m determines the value of x. The following table shows how m should be chosen to guarantee that $N(m) \geqslant 3$ and $N(x) \geqslant 2$.

Table VI

n		
$102 \leqslant n \leqslant 114$	m	$10 \leqslant x \leqslant 22$
$118 \leqslant n \leqslant 134$	23	$10 \leqslant x \leqslant 26$
$138 \leqslant n \leqslant 154$	31	$14 \leqslant x \leqslant 30$
$158 \leqslant n \leqslant 182$	37	$10 \leqslant x \leqslant 34$
$186 \leqslant n \leqslant 218$	44	$10 \leqslant x \leqslant 42$
$222 \leqslant n \leqslant 262$	53	$10 \leqslant x \leqslant 50$
$266 \leqslant n \leqslant 318$	77	$10 \leqslant x \leqslant 62$
$322 \leqslant n \leqslant 382$	92	$14 \leqslant x \leqslant 74$
$386 \leqslant n \leqslant 458$	113	$10 \leqslant x \leqslant 90$
$462 \leqslant n \leqslant 562$	139	$10 \leqslant x \leqslant 110$
$556 \leqslant n \leqslant 694$	$10 \leqslant x \leqslant 138$	
$698 \leqslant n \leqslant 726$	$10 \leqslant x \leqslant 38$	

6.2.1 Lemma. If $n=4 t+2, n \geqslant 730$, then there exist positive integers g, u such that

$$
n=4(36 g)+4 u+10,
$$

$$
\text { where } g \geqslant 5, \quad 0 \leqslant u \leqslant 35 \text {. }
$$

Proof Since $n=4 t+2 \geqslant 730$, hence $t \geqslant \frac{728}{4}=182$. Thus $n=4 t_{1}+10 \quad$ where $t_{1}=t-2 \geqslant 180$.

By division algorithm, there exist integers g and u such that
and

$$
t_{1}=36 g+u
$$

, $u \leq 35$
From $t_{1} \geqslant 180$, we have $g \geqslant \frac{180}{36}-\frac{u}{36}=5-\frac{u}{36}$.
Since g is an integer and $\frac{u}{36}<1$, hence $g \geqslant 5$.
Therefore, we have $n=4(36 \mathrm{~g}+\mathrm{u})+10$ where $g \geqslant 5,0 \leqslant u \leqslant 35$.
6.2.2 Theorem. For every $n>6$, there exists a pair of orthogonal Latin squares of order n.

Proof It suffices to prove that $\mathbb{N}(n) \geqslant 2$ for $n=4 t+2, n \geqslant 730$. Since $n \geqslant 730$, by Lemma 6.2 .1 , we have

$$
n=4(36 \mathrm{~g})+4 u+10,
$$

where $g \geqslant 5,0 \leqslant u \leqslant 35$.
By Corollary 2.3.4, it can be seen that $N(36 \mathrm{~g}) \geqslant 3$.

Since $0 \leqslant u \leqslant 35$, therefore $10 \leqslant 4 u+10 \leqslant 150$. Hence $N(4 u+10) \geqslant 2$. As $g \geqslant 5$, we have $36 g \geqslant 180$. Therefore $4 u+10<36 g$. Apply Theorem 5.2 .6 with $k=4, m=36 z, x=4 u+10$, we have

$$
\begin{aligned}
N(n) & \geqslant \min \{N(36 g), N(4 u+10), N(4)-1, N(5)-1\} \\
& \geqslant \min \{3,2,2,3\}=2 .
\end{aligned}
$$

Therefore there exists a pair of orthogonal Latin squares of order n, $n>6$

