CONSTRUCTION OF SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES FROM ORTHOGONAL ARRAYS

4.1 Characterization of Set of Mutually Orthogonal Latin

Squares by Orthogonal Array

4.1.1 Definition. Let $v_{1}=\left(x_{1} \ldots \ldots, x_{n}{ }^{2}\right), v_{2}=\left(y_{1}, \ldots, y_{n}\right)$ be any two vectors whose components x_{i}, y_{i} are taken from any sets of n objects. The two vectors v_{1} and v_{2} are said to be orthogonal if the ordered pairs $\left(x_{i}, y_{i}\right), i=1, \ldots, n^{2}$ include all pairs (a, b) from $S \times S$.
4.1.2 Definition. An orthogonal array $O A(n, s)$ of order n and length s is a matrix with s rows and n^{2} columns with entries taken from any set of n objects such that every two distinct rows are orthogonal.

Usually we shall denote the objects by 1,2,..., n.
4.1.3 Theorem. The existence of k mutually orthogonal Latin squares of order n is equivalent to the existence of $O A(n, k+2)$.

Proof Let L_{1}, \ldots, L_{k} be a set of mutually orthogonal Latin squares of order n. Let $r_{i j}$ denote the $j^{\text {th }}$ row of $L_{i}, i=1, \ldots, k$, $j=1, \ldots \ldots$, n. Construct a matrix A as follows :

where $x=(1,2, \ldots, n), \bar{k}=(k, k, \ldots, k), k=1, \ldots, n$, are vectors of length n. We shall show that A is an $O A(n, k+2)$. Since A is a matrix with $k+2$ rows and n columns. The ordered pair (i, j), $i=1, \ldots, n$ from the first row, $j=1, \ldots, n$ from the second represents the $i^{\text {th }}$ row and $j^{\text {th }}$ column of Latin square. The third row and so on are the element in the corresponding cell. Hence any two rows of A are orthogonal by the properties of orthogonal Latin squares. On the other hand if $A=O A(n, k+2)$, we can permute columns of A so that the first and second rows are

$$
\begin{aligned}
& 1 \text { 1... } 1 \text { 2 } \ldots 2 \ldots \text { n } . . . \text { n } \\
& 12 \ldots . n 1 \ldots n \ldots 1 \ldots n
\end{aligned}
$$

because of orthogonality of any two rows. Then reverse the process of the first part. We can get k mutually orthogonal Latin squares of order n.
Q.E.D.
4.2 Construction of Orthogonal Arrays from Smaller

Orthogonal Arrays
4.2.1 Theorem. If $O A\left(n_{1}, s\right)$ and $O A\left(n_{2}, s\right)$ exist, then $O A\left(n_{1} n_{2}, s\right)$ exists.

Proof Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ be $O A\left(n_{1}, s\right)$, DA($\left.n_{2}, s\right)$ respectively. Assume that the objects $a_{i j}, b_{i j}$ are positive integers, $1 \leqslant a_{i j} \leqslant n_{1}$, $1 \leqslant b_{i j} \leqslant n_{2}$.

Form a new matrix $D=\left(d_{i j}\right), i=1, \ldots, s, j=1, \ldots, n_{1}^{2} n_{2}^{2}$, by replacing $a_{i j}$ in A by the row vector
where

$$
\left(b_{i 1}+m_{i j}, b_{i 2}+m_{i j}, \ldots, b_{i n_{2}}^{2^{+} m_{i j}}\right)
$$

$$
m_{i j}=\left(a_{i j}-1\right) n_{2} \quad \text { for every } i, j .
$$

As the numbers $a_{i j}$ sun from 1 to n_{1} and the number $b_{i j}$ from 1 to n_{2}, the numbers $b_{i t^{*}} m_{i j}$ run from 1 to $n_{1} n_{2}$, hence every $d_{i j}$ is one of the numbers $1,2, \ldots, n_{1} n_{2}$.

Consider any two rows of D, say the $h^{\text {th }}$ row and the $i^{\text {th }}$ row. Let u, v be any two numbers in the range $1, \ldots, n_{1} n_{2}$. Then we can write

$$
u=u_{1}+\left(u_{2}-1\right) n_{2}, \quad v=v_{1}+\left(v_{2}-1\right) n_{2}
$$

with $1 \leqslant u_{1}, \quad v_{1} \leqslant n_{2}$,
$1 \leqslant u_{2}, v_{2} \leqslant n_{1}$ uniquely.
In A, let us determine j as that column in which

$$
a_{h j}=u_{2}, \quad a_{i j}=v_{2}
$$

In B, let us determine t as that column in which

$$
b_{h t}=u_{1}, \quad b_{i t}=v_{1}
$$

Then in D, in column $g=t+n_{2}^{2}(j-1)$, we have

$$
d_{h E}=b_{h t}+\left(a_{h j}-1\right) n_{2}=u_{1}+\left(u_{2}-1\right) n_{2}=u
$$

and

$$
d_{i g}=b_{i t}+\left(a_{i j}-1\right) n_{2}=v_{1}+\left(v_{2}-1\right) n_{2}=v_{\bullet}
$$

Hence any u, v is paired at least once in any pair of rows.
Since there are $\left(n_{1} n_{2}\right)^{2}$ columns and $\left(n_{1} n_{2}\right)^{2}$ possible pairs (u, v), hence each u, v are paired exactly once in any two rows. This shows that D is an $O A\left(n_{1} n_{2}, s\right)$

Q.E.D.

4.2.2 Theorem. If $N(m) \geqslant 2$, then $N(3 m+1) \geqslant 2$.

Proof Since $N(m) \geqslant 2$, hence, by Theorem 4.1.3, $O A(m, 4)$ exists. Let E be an $O A(m, 4)$ with the letters x_{1}, \ldots, x_{m} as objects.

Define following vectors of length m of residues modulo $2 m+1$, for $i=0,1, \ldots, 2 m$

$$
\begin{aligned}
& a_{i}=(i, i, \ldots, i), \\
& b_{i}=(i+1, i+2, \ldots, i+m), \\
& c_{i}=(i-1, i-2, \ldots, i-m) .
\end{aligned}
$$

Let

$$
\begin{aligned}
& d_{1}=a_{i}-b_{i}=(2 m, 2 m-1, \ldots, m+1) \\
& d_{1}^{\prime}=b_{i}-a_{i}=(1,2, \ldots, m), \\
& d_{2}=a_{i}-c_{i}=(1,2, \ldots, m), \\
& d_{2}^{\prime}=c_{i}-a_{i}=(2 m, 2 m-1, \ldots, m+1), \\
& d_{3}=b_{i}-c_{i}=(2,4, \ldots, 2 m), \\
& d_{3}^{\prime}=c_{i}-b_{i}=(2 m-1,2 m-3, \ldots, 1)
\end{aligned}
$$

Here d_{j} and d_{j}^{\prime} for $j=1,2,3$ together contain all nonzero residues modulo $2 m+1$. Now construct three vectors of length $m(2 m+1)$ as follows :

$$
\begin{aligned}
& A=\left(a_{0}, a_{1}, a_{2}, \ldots, a_{2 m}\right), \\
& B=\left(b_{0}, b_{1}, b_{2}, \ldots, b_{2 m}\right), \\
& C=\left(c_{0}, c_{1}, c_{2}, \ldots, c_{2 m}\right) .
\end{aligned}
$$

We take the m letters x_{1}, \ldots, x_{m} and form a vector x of length $m(2 m+1)$:
where

$$
\begin{aligned}
& x=\left(\bar{x}_{0}, \bar{x}_{1}, \ldots, \bar{x}_{2 m}\right) \\
& \bar{x}_{i}=\left(x_{1}, x_{2}, \ldots, x_{m}\right) .
\end{aligned}
$$

Now we form a $4 \times 4 m(2 m+1)$ matrix D :
$D=\left(\begin{array}{cccc}A & B & C & X \\ B & A & X & C \\ C & X & A & B \\ X & C & B & A\end{array}\right)$.

Let

$$
\text { Ghulf on }=k(G \cup D \in E) \text {, }
$$

where

$$
G=\left(\begin{array}{ccccc}
0 & 1 & 2 & \ldots & 2 m \\
0 & 1 & 2 & \ldots & 2 m \\
0 & 1 & 2 & \ldots & 2 m \\
0 & 1 & 2 & \ldots & 2 m
\end{array}\right]
$$

We claim that F is an $O A(3 m+1,4)$. We shall verify that for any objects u, v in $\{0,1, \ldots, 2 m\} U\left\{x_{1}, \ldots, x_{m}\right\}$, the pair $\binom{u}{v}$ occurs exactly once in every two rows of F.

Since the submatrix E of F is an orthogonal array, hence each of the pairs $\binom{u}{v}$ of the form $\binom{x_{j}}{x_{j}}$ occurs in every two rows of \mathbb{D}. Thus each of the pairs $\binom{u}{v}$ of the form $\binom{x_{i}}{x_{j}}$ occurs in every two rows of F .

Note also that each of the pairs $\binom{u}{v}$ of the form $\binom{i}{i}$ where $i=0,1, \ldots, 2 \mathrm{~m}$ occurs in every two rows of the submatrix G of F. Hence each of such pairs pecurs in every two rows of F.

It remains to be shown that
(1) Each pair $\binom{u}{v}$ with u, v in $\{0,1, \ldots, 2 m\}, u \neq v$, occurs in every two rows of P.
(2) Each pair $\binom{u}{v}$ with u in $\{0,1, \ldots, 2 m\}$ and v in $\left\{x_{1}, \ldots, x_{m}\right\}$ occurs in every two rows of F.
(3) Each pair $\binom{u}{v}$ with u in $\left\{x_{1}, \ldots, x_{m}\right\}$ and v in $\{0,1, \ldots, 2 m\}$ occurs in every two rows of F.

For convenience, let us call the pairs $\binom{u}{v}$ in (1), (2), (3) the pairs of types I, II, III respectively. We shall show that each of these pairs occurs in every two rows of the submatrix D. Observe that each pair of rows of D contains one of the following submatrices

$$
\left(\begin{array}{ll}
A & B \\
B & A
\end{array}\right),\left(\begin{array}{ll}
A & C \\
C & A
\end{array}\right),\left(\begin{array}{ll}
B & C \\
C & B
\end{array}\right)
$$

To show that each pair $\binom{u}{v}$ of type I occurs in every two rows of D, it suffices to show that each pair $\binom{u}{v}$ of type I occurs in each of these submatrices. Since $u \neq v$, hence there exists o belonging to $\{1,2, \ldots, 2 m\}$ such that

$$
u-v \equiv e \quad(\bmod 2 m+1)
$$

Thus e must occur in d_{1} or d_{1}^{\prime}.
If e belongs to d_{1}, let $h=2 m+1 \ldots e$ and choose i. from $\{0,1,2, \ldots, 2 m\}$ such that

Since

$$
i+h \equiv \pi(\bmod 2 m+1)
$$

$$
u-v=e=2 m+1-h,
$$

$$
\begin{aligned}
& u=2 m+1-h+v, \\
& u=2 m+1-h+i+h \\
& u=2 m+1+i,
\end{aligned}
$$

so that

$$
u \equiv i \quad(\bmod 2 m+1)
$$

Therefore the pair $\binom{u}{v}$ occurs in the $h^{\text {th }}$ column of the submatrix
$\binom{a_{i}}{b_{i}}$. Hence $\binom{u}{v}$ occurs in $\binom{A}{B}$.
If e belongs to d_{1}^{\prime}, let $h=e$ and choose i from $\{0,1, \ldots, 2 m\}$
such that

Since

$$
u-v=e=h
$$

$$
u=h+v
$$

hence $u=h+i$,
so that

$$
u \equiv i+h \quad(\bmod 2 m+1)
$$

Therefore the pair $\binom{u}{v}$ occurs in the $h^{\text {th }}$ column of the submatrix $\binom{b_{i}}{a_{i}}$. Hence $\binom{u}{v}$ occurs in $\binom{B}{A}$. Thus, each pair $\binom{u}{v}$ of type I occurs in $\left(\begin{array}{ll}A & B \\ B & A\end{array}\right)$.

Similarly we can show that each pair $\binom{u}{v}$ of type I occurs in submatrix $\left(\begin{array}{ll}A & C \\ C & A\end{array}\right)$.

It remains to be shown that each pair $\binom{u}{v}$ of type I occurs in submatrix $\left(\begin{array}{ll}B & C \\ C & B\end{array}\right)$. Observe that e must occur in d_{3} or a_{3}^{\prime}.

If e belongs to d_{3}, let $h=\frac{e}{2}$. Clearly h belongs to $\{1, \ldots, m\}$. Choose i from $\{0,1, \ldots, 2 m\}$ such that

$$
i-h \equiv v \quad(\bmod 2 m+1)
$$

Since
hence

$$
\begin{aligned}
u-v & =e=2 h, \\
u & =v+2 h, \\
u & =i-h+2 h,
\end{aligned}
$$

so that

$$
u=i+h
$$

$$
u \equiv i+h \quad(\bmod 2 m+1)
$$

Therefore the pair $\binom{u}{v}$ occurs in the $h^{\text {th }}$ column of the submatrix $\binom{b_{i}}{c_{i}}$. Hence $\binom{u}{v}$ occurs in $\binom{B}{c}$.

If e belongs to d_{3}^{\prime}, let $h=\frac{2 m+1-e}{2}$. Clearly h belongs to $\{1, \ldots, m\}$. Choose i from $\{0,1,2, \ldots, 2 m\}$ such that

Since

$$
i+h \equiv v \quad(\bmod 2 m+1)
$$

$$
\begin{aligned}
u-v & =e=2 m+1-2 h, \\
u & =v+2 m+1-2 h, \\
u & =i+h+2 m+1-2 h, \\
u & =2 m+1+i-h,
\end{aligned}
$$

so that

$$
u \equiv i-h \quad(\bmod 2 m+1)
$$

Therefore the pair $\binom{u}{v}$ occurs in the $h^{\text {th }}$ column of the submatrix $\binom{c_{i}}{b_{i}}$. Hence $\binom{u}{v}$ occurs in $\binom{C}{B}$. Thus each pair $\binom{u}{v}$ of type I occurs in $\left(\begin{array}{ll}B & C \\ C & B\end{array}\right)$.

Next, we shall show that each pair $\binom{u}{v}$ of type II occurs in every two rows of D. Observe that each pair of rows of D contains one of the following submatrices

$$
\binom{\Lambda}{x},\binom{B}{x},\binom{C}{x}
$$

To show that each pair $\binom{u}{v}$ of type II occurs in every two rows of D, it suffices to show that each pair $\binom{u}{v}$ of type II occurs in each of these submatrices. Since v belongs to $\left\{x_{1}, \ldots, x_{m}\right\}$. Hence $v=x_{h}$, for some $h=1, \ldots, m_{\text {. }}$ Choose i from $\{0,1, \ldots ., 2 \mathrm{~m}\}$ such that

$$
u \equiv i \quad(\bmod 2 m+1)
$$

It can be seen that the pair $\binom{u}{v}$ occurs in the $h^{\text {th }}$ column of the submatrix $\binom{a_{i}}{\bar{x}_{i}}$. Hence $\binom{u}{v}$ occurs in $\binom{A}{x}$.
Choose i from $\{0,1, \ldots, 2 m\}$ such that

$$
u \equiv i+h \quad(\bmod 2 m+1)
$$

Then the pair $\binom{u}{v}$ occurs in the $h^{\text {th }}$ column of the submatrix $\binom{b_{i}}{\bar{x}_{i}}$. Hence $\binom{u}{v}$ occurs in $\binom{B}{X}$.
Choose i from $\{0,1, \ldots, 2 m\}$ such that

$$
u \equiv i-h \quad(\bmod 2 m+1)
$$

Then the pair $\binom{u}{v}$ occurs in the $h^{\text {th }}$ column of the submatrix $\binom{c_{i}}{\vec{x}_{i}}$. Hence $\binom{u}{v}$ occurs in $\binom{C}{X}$.

Finally, we shall show that each pair $\binom{u}{v}$ of type III occurs in every two rows of D. Observe that each pair of rows of D contains one of the following submatrices

$$
\binom{X}{A},\binom{X}{B},\binom{X}{C}
$$

By similar arguments it can be shown that each pair $\binom{u}{v}$, of type III occurs in each of these submatrices.

Hence any u, v is paired at least once in any pair of rows. Since there are $2 m+1+4 m(2 m+1)+m^{2}=(3 n+1)^{2}$ columns and there are $(3 m+1)^{2}$ possible pairs (u, v), hence each u, v are paired exactly once in any two rows of F. This shows that F is an $O A(3 m+1,4)$.

4.2.3 Corollary $N(6 t+4) \geqslant 2$.

Proof By Remark 2.4.4, we have $N(2 t+1) \geqslant 2$. Hence by Theorem 4.2 .2

$$
N(3(2 t+1)+1) \geqslant 2
$$

i.e. $N(6 t+4) \geqslant 2$.

Example. Two superimposed 10×10 orthogonal Latin squares obtained by Theorem 4.2.2 are shown below:

Table I

0,0	6,7	5,8	4,9	9,1	8,3	7,5	1,2	2,4	3,6
7,6	1,1	0,7	6,8	5,9	9,2	8,4	2,3	3,5	4,0
8,5	7,0	2,2	1,7	0,8	6,9	9,3	3,4	4,6	5,1
9,4	8,6	7,1	3,3	2,7	1,8	0,9	4,5	5,0	6,2
1,9	9,5	8,0	7,2	4,4	3,7	2,8	5,6	6,1	0,3
3,8	2,9	9,6	8,7	7,3	5,5	4,7	6,0	0,2	1,4
5,7	4,8	3,9	9,0	8,2	7,4	6,6	0,1	1,3	2,5
2,1	3,2	4,3	5,4	6,5	0,6	1,0	7,7	8,8	9,9
4,2	5,3	6,4	0,5	1,6	2,0	3,1	8,9	9,7	7,8
6,3	0,4	1,5	2,6	3,0	4,1	5,2	9,8	7,9	8,7

