## CHAPTER IV



## CONSTRUCTION OF SETS OF MUTUALLY ORTHOGONAL LATIN SQUARES FROM ORTHOGONAL ARRAYS

4.1 Characterization of Set of Mutually Orthogonal Latin Squares by Orthogonal Array

4.1.1 Definition. Let  $v_1 = (x_1, \dots, x_2)$ ,  $v_2 = (y_1, \dots, y_2)$  be any two vectors whose components  $x_i$ ,  $y_i$  are taken from any sets of n objects. The two vectors  $v_1$  and  $v_2$  are said to be orthogonal if theordered pairs  $(x_i, y_i)$ ,  $i = 1, \dots, n^2$  include all pairs (a, b) from  $S \times S$ .

4.1.2 <u>Definition</u>. An <u>orthogonal array</u> OA(n,s) of order n and length s is a matrix with s rows and n<sup>2</sup> columns with entries taken from any set of n objects such that every two distinct rows are orthogonal.

Usually we shall denote the objects by 1,2,..., n.

4.1.3 Theorem. The existence of k mutually orthogonal Latin squares of order n is equivalent to the existence of OA(n,k+2).

<u>Proof</u> Let  $L_1, \dots, L_k$  be a set of mutually orthogonal Latin squares of order n. Let  $r_{ij}$  denote the  $j^{th}$  row of  $L_i$ ,  $i = 1, \dots, k$ ,  $j = 1, \dots, n$ . Construct a matrix A as follows:

$$A = \begin{bmatrix} 7 & 2 & ... & n \\ x & x & ... & x \\ r_{11} & r_{12} & ... & r_{1n} \\ ... & ... & ... \\ ... & ... & ... \\ r_{k1} & r_{k2} & ... & r_{kn} \end{bmatrix}$$

where  $x = (1,2,\ldots,n)$ ,  $k = (k,k,\ldots,k)$ ,  $k = 1,\ldots,n$ , are vectors of length n. We shall show that A is an OA(n,k+2). Since A is a matrix with k+2 rows and  $n^2$  columns. The ordered pair (i,j),  $i = 1,\ldots,n$  from the first row,  $j = 1,\ldots,n$  from the second represents the  $i^{th}$  row and  $j^{th}$  column of Latin square. The third row and so on are the element in the corresponding cell. Hence any two rows of A are orthogonal by the properties of orthogonal Latin squares. On the other hand if A = OA(n, k+2), we can permute columns of A so that the first and second rows are

because of orthogonality of any two rows. Then reverse the process of the first part. We can get k mutually orthogonal Latin squares of order n.

Q.E.D.

## 4.2 Construction of Orthogonal Arrays from Smaller Orthogonal Arrays

4.2.1 Theorem. If  $OA(n_1,s)$  and  $OA(n_2,s)$  exist, then  $OA(n_1n_2,s)$  exists.

Proof Let  $A = (a_{ij})$ ,  $B = (b_{ij})$  be  $OA(n_1,s)$ ,  $OA(n_2,s)$  respectively. Assume that the objects  $a_{ij}$ ,  $b_{ij}$  are positive integers,  $1 \le a_{ij} \le n_1$ .  $1 \le b_{ij} \le n_2$ .

Form a new matrix  $D = (d_{ij})$ , i = 1, ..., s,  $j = 1, ..., n_1^2 n_2^2$ , by replacing  $a_{ij}$  in A by the row vector

where  $m_{ij} = (a_{ij} - 1)n_2$  for every i, j.

As the numbers a ij run from 1 to n and the number b ij from 1 to n<sub>2</sub>, the numbers b it mij run from 1 to n<sub>1</sub>n<sub>2</sub>, hence every d ij is one of the numbers 1,2,..., n<sub>1</sub>n<sub>2</sub>.

Consider any two rows of D, say the h<sup>th</sup> row and the i<sup>th</sup> row.

Let u, v be any two numbers in the range 1,..., n<sub>1</sub>n<sub>2</sub>. Then we can write

$$u = u_1 + (u_2 - 1)n_2$$
,  $v = v_1 + (v_2 - 1)n_2$ 

with  $1 \le u_1$ ,  $v_1 \le n_2$ ,  $1 \le u_2$ ,  $v_2 \le n_1$  uniquely.

In A, let us determine j as that column in which

$$a_{hj} = u_2$$
,  $a_{ij} = v_2$ 

In B, let us determine t as that column in which

Then in D, in column  $g = t + n_2^2(j-1)$ , we have

$$d_{hg} = b_{ht} + (a_{hj} - 1)n_2 = u_1 + (u_2 - 1)n_2 = u$$

and  $d_{ig} = b_{it} + (a_{ij} - 1)n_2 = v_1 + (v_2 - 1)n_2 = v_0$ 

Hence any u, v is paired at least once in any pair of rows. Since there are  $(n_1n_2)^2$  columns and  $(n_1n_2)^2$  possible pairs (u,v), hence each u, v are paired exactly once in any two rows. This shows that D is an  $OA(n_1n_2,s)$ 

Q.E.D.

4.2.2 Theorem. If  $N(m) \ge 2$ , then  $N(3m+1) \ge 2$ .

Proof Since  $N(m) \ge 2$ , hence, by Theorem 4.1.3, OA(m,4) exists. Let E be an OA(m,4) with the letters  $x_1, \dots, x_m$  as objects.

Define following vectors of length m of residues modulo 2m+1, for  $i=0,1,\ldots, 2m$ 

$$a_i = (i, i, ..., i),$$
 $b_i = (i+1, i+2, ..., i+m),$ 
 $c_i = (i-1, i-2, ..., i-m).$ 

Let

$$d_{1} = a_{i} - b_{i} = (2m, 2m-1, ..., m+1),$$

$$d'_{1} = b_{i} - a_{i} = (1, 2, ..., m),$$

$$d_{2} = a_{i} - c_{i} = (1, 2, ..., m),$$

$$d'_{2} = c_{i} - a_{i} = (2m, 2m-1, ..., m+1),$$

$$d_{3} = b_{i} - c_{i} = (2, 4, ..., 2m),$$

$$d'_{3} = c_{i} - b_{i} = (2m-1, 2m-3, ..., 1).$$

Here  $d_j$  and  $d_j'$  for j=1,2,3 together contain all nonzero residues modulo 2m+1. Now construct three vectors of length m(2m+1) as follows:

$$A = (a_0, a_1, a_2, \dots, a_{2m}),$$

$$B = (b_0, b_1, b_2, \dots, b_{2m}),$$

$$C = (c_0, c_1, c_2, \dots, c_{2m}).$$

We take the m letters  $\mathbf{x_1},\dots,\mathbf{x_m}$  and form a vector K of length m(2m+1):

$$\bar{x}_{i} = (\bar{x}_{0}, \bar{x}_{1}, \dots, \bar{x}_{2m})$$
 $\bar{x}_{i} = (x_{1}, x_{2}, \dots, x_{m}).$ 

where

Now we form a  $4 \times 4m(2m+1)$  matrix D:

$$D = \left(\begin{array}{cccc} A & B & C & X \\ B & A & X & C \\ C & X & A & B \\ X & C & B & A \end{array}\right).$$

Let

$$F = \left[ G D E \right],$$

where

$$G = \begin{bmatrix} 0 & 1 & 2 & \dots & 2m \\ 0 & 1 & 2 & \dots & 2m \\ 0 & 1 & 2 & \dots & 2m \\ 0 & 1 & 2 & \dots & 2m \end{bmatrix}.$$

We claim that F is an OA(3m+1,4). We shall verify that for any objects u, v in  $\left\{0,1,\ldots,2m\right\}$  U  $\left\{x_1,\ldots,x_m\right\}$ , the pair  $\binom{u}{v}$  occurs exactly once in every two rows of F.

Since the submatrix E of F is an orthogonal array, hence each of the pairs  $\binom{u}{v}$  of the form  $\binom{x_i}{x_j}$  occurs in every two rows of E. Thus each of the pairs  $\binom{u}{v}$  of the form  $\binom{x_i}{x_j}$  occurs in every two rows of F.

Note also that each of the pairs  $\binom{u}{v}$  of the form  $\binom{i}{i}$  where  $i=0,1,\ldots,2m$  occurs in every two rows of the submatrix G of F. Hence each of such pairs occurs in every two rows of F.

It remains to be shown that

- (1) Each pair  $\binom{u}{v}$  with u, v in  $\{0,1,\ldots, 2m\}, u \neq v,$  occurs in every two rows of F.
- (2) Each pair  $\binom{u}{v}$  with u in  $\{0,1,\ldots,2m\}$  and v in  $\{x_1,\ldots,x_m\}$  occurs in every two rows of F.
- (3) Each pair  $\binom{u}{v}$  with u in  $\left\{x_1, \dots, x_m\right\}$  and v in  $\left\{0, 1, \dots, 2m\right\}$  occurs in every two rows of F.

For convenience, let us call the pairs  $\binom{u}{v}$  in (1),(2),(3) the pairs of types I,II,III respectively. We shall show that each of these pairs occurs in every two rows of the submatrix D. Observe that each pair of rows of D contains one of the following submatrices

$$\begin{pmatrix} A & B \\ B & A \end{pmatrix}$$
,  $\begin{pmatrix} A & C \\ C & A \end{pmatrix}$ ,  $\begin{pmatrix} B & C \\ C & B \end{pmatrix}$ .

To show that each pair  $\binom{u}{v}$  of type I occurs in every two rows of D, it suffices to show that each pair  $\binom{u}{v}$  of type I occurs in each of these submatrices. Since  $u \neq v$ , hence there exists a belonging to  $\{1,2,\ldots,2m\}$  such that

 $u - v \equiv e \pmod{2m+1}$ .

Thus e must occur in d1 or d1 .

If e belongs to  $d_1$ , let h = 2m+1-e and choose i from  $\{0,1,2,\ldots,2m\}$  such that

 $i + h \equiv v \pmod{2m+1}$ .

Since u - v = e = 2m + 1 - h,

u = 2m + 1 - h + v

hence u = 2m + 1 - h + i + h

u = 2m + 1 + i

so that  $u \equiv i \pmod{2m+1}$ .

Therefore the pair  $\binom{u}{v}$  occurs in the  $h^{th}$  column of the submatrix

 $\begin{pmatrix} a_i \\ b_i \end{pmatrix}$  . Hence  $\begin{pmatrix} u \\ v \end{pmatrix}$  occurs in  $\begin{pmatrix} A \\ B \end{pmatrix}$ .

If e belongs to  $d_1'$ , let h = e and choose i from  $\{0,1,\ldots,2m\}$  such that

 $i \equiv v \pmod{2m+1}$ 

Since u - v = e = h,

 $u = h + v_{,}$ 

hence u = h + i,

so that  $u \equiv i + h \pmod{2m+1}$ .

Therefore the pair  $\binom{u}{v}$  occurs in the h<sup>th</sup> column of the submatrix  $\binom{b_i}{a_i}$ . Hence  $\binom{u}{v}$  occurs in  $\binom{B}{A}$ . Thus, each pair  $\binom{u}{v}$  of type I occurs in  $\binom{A}{B}$ .

Similarly we can show that each pair  $\left(\begin{smallmatrix}u\\v\end{smallmatrix}\right)$  of type I occurs in submatrix  $\left(\begin{smallmatrix}A&C\\C&A\end{smallmatrix}\right)$  .

It remains to be shown that each pair  $\binom{u}{v}$  of type I occurs in submatrix  $\binom{B}{C}$   $\binom{C}{B}$ . Observe that e must occur in  $d_3$  or  $d_3$ .

If e belongs to  $d_3$ , let  $h = \frac{e}{2}$ . Clearly h belongs to  $\{1, \dots, m\}$ . Choose i from  $\{0, 1, \dots, 2m\}$  such that

 $i - h \equiv v \pmod{2m+1}$ .

Since u - v = e = 2h,

u = v + 2h,

hence u = i - h + 2h.

u = i + h,

so that

 $u \equiv i + h \pmod{2m+1}$ .

Therefore the pair  $\binom{u}{v}$  occurs in the h<sup>th</sup> column of the submatrix  $\binom{bi}{c_i}$ . Hence  $\binom{u}{v}$  occurs in  $\binom{B}{C}$ .

If e belongs to  $d_3'$ , let  $h = \frac{2m+1-e}{2}$ . Clearly h belongs to  $\{1,\ldots,m\}$ . Choose i from  $\{0,1,2,\ldots,2m\}$  such that

 $i + h \equiv v \pmod{2m+1}$ 

Since u - v = e = 2m + 1 - 2h,

u = v + 2m + 1 - 2h

hence u = i + h + 2m + 1 - 2h

u = 2m + 1 + i - h

so that  $u \equiv i - h \pmod{2m+1}$ .

Therefore the pair  $\binom{u}{v}$  occurs in the h<sup>th</sup> column of the submatrix  $\binom{c_i}{b_i}$ . Hence  $\binom{u}{v}$  occurs in  $\binom{C}{B}$ . Thus each pair  $\binom{u}{v}$  of type I occurs in  $\binom{B}{C}$ .

Next, we shall show that each pair  $\binom{u}{v}$  of type II occurs in every two rows of D. Observe that each pair of rows of D contains one of the following submatrices

$$\begin{pmatrix} A \\ X \end{pmatrix}$$
 ,  $\begin{pmatrix} B \\ X \end{pmatrix}$  ,  $\begin{pmatrix} C \\ X \end{pmatrix}$  .

To show that each pair  $\binom{u}{v}$  of type II occurs in every two rows of D, it suffices to show that each pair  $\binom{u}{v}$  of type II occurs in each of these submatrices. Since v belongs to  $\{x_1, \dots, x_m\}$ . Hence  $v = x_h$ , for some  $h = 1, \dots, m$ . Choose i from  $\{0,1,\dots, 2m\}$  such that

 $u \equiv i \pmod{2m+1}$ .

It can be seen that the pair  $\binom{u}{v}$  occurs in the h<sup>th</sup> column of the submatrix  $\binom{a_i}{\bar{x}_i}$ . Hence  $\binom{u}{v}$  occurs in  $\binom{A}{X}$ . Choose i from  $\left\{0,1,\ldots,2m\right\}$  such that  $u\equiv i+h\pmod{2m+1}$ .

Then the pair  $\binom{u}{v}$  occurs in the h<sup>th</sup> column of the submatrix  $\binom{b}{\bar{x}_i}$ . Hence  $\binom{u}{v}$  occurs in  $\binom{B}{X}$ .

Choose i from  $\{0,1,\ldots,2m\}$  such that  $u \equiv i-h \pmod{2m+1}$ .

Then the pair  $\binom{u}{v}$  occurs in the h<sup>th</sup> column of the submatrix  $\binom{c}{x_i}$ . Hence  $\binom{u}{v}$  occurs in  $\binom{C}{X}$ .

Finally, we shall show that each pair  $\binom{u}{v}$  of type III occurs in every two rows of D. Observe that each pair of rows of D contains one of the following submatrices

$$\begin{pmatrix} X \\ A \end{pmatrix}$$
 ,  $\begin{pmatrix} X \\ B \end{pmatrix}$  ,  $\begin{pmatrix} X \\ C \end{pmatrix}$  .

By similar arguments it can be shown that each pair  $\binom{u}{v}$  of type III occurs in each of these submatrices.

Hence any u, v is paired at least once in any pair of rows. Since there are  $2m + 1 + 4m(2m+1) + m^2 = (3m+1)^2$  columns and there are  $(3m+1)^2$  possible pairs (u,v), hence each u, v are paired exactly once in any two rows of F. This shows that F is an OA(3m+1,4).

Q.E.D.

4.2.3 Corollary N(6t+4) > 2.

Proof By Remark 2.4.4, we have N(2t+1) > 2. Hence by Theorem 4.2.2

$$N(3(2t+1)+1) \ge 2$$

i.e. N(6t+4) > 2.

Q.E.D.

Example. Two superimposed 10 x 10 orthogonal Latin squares obtained by Theorem 4.2.2 are shown below:

Table I

| 0,0 | 6,7 | 5,8 | 4,9 | 9,1 | 8,3 | 7,5 | 1,2 | 2,4 | 3,6 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 7,6 | 1,1 | 0,7 | 6,8 | 5,9 | 9,2 | 8,4 | 2,3 | 3,5 | 4,0 |
| 8,5 | 7,0 | 2,2 | 1,7 | 0,8 | 6,9 | 9,3 | 3,4 | 4,6 | 5,1 |
| 9,4 | 8,6 | 7,1 | 3,3 | 2,7 | 1,8 | 0,9 | 4,5 | 5,0 | 6,2 |
| 1,9 | 9,5 | 8,0 | 7,2 | 4,4 | 3,7 | 2,8 | 5,6 | 6,1 | 0,3 |
| 3,8 | 2,9 | 9,6 | 8,1 | 7,3 | 5,5 | 4,7 | 6,0 | 0,2 | 1,4 |
| 5,7 | 4,8 | 3,9 | 9,0 | 8,2 | 7,4 | 6,6 | 0,1 | 1,3 | 2,5 |
| 2,1 | 3,2 | 4,3 | 5,4 | 6,5 | 0,6 | 1,0 | 7,7 | 8,8 | 9,9 |
| 4,2 | 5,3 | 6,4 | 0,5 | 1,6 | 2,0 | 3,1 | 8,9 | 9,7 | 7,8 |
| 6,3 | 0,4 | 1,5 | 2,6 | 3,0 | 4,1 | 5,2 | 9,8 | 7,9 | 8,7 |