

LINEAR OPERATOR THEORY OVER THE QUATERNIONS

All LNLS (RNLS) and NLS are metric space. Hence if V is a LNLS (RNLS, NLS) and $A \subseteq V$. Then A is compact if and only if A has the BW property.

Definition 4.1 Let V,W be LNLS's (RNLS's) and T: V \longrightarrow W a left (right) linear map. Then T is said to be a completely continuous map if and only if $A \subseteq V$ bounded implies—that T(A) is relatively compact. We shall abbreviate "completely continuous" by "c.c." some mathematicians use the termilogy compact operator. Clearly a c.c. map is continuous.

Remarks: (i) If W is finite dimensional left (right) vector space over IH then continuous implies c.c. [5]

(ii) If V, W are ∞ -dimensional LNLS (RNLS). Then continuous does not implies c.c.

Example μ .2 Let V=W= \mathcal{L}_{eH}^2 and let I be the identity map which is continuous. Then $\overline{B(0,1)}$ is closed and bounded. However $\overline{B(0,1)}$ is not compact. To prove this we need only show that $\overline{B(0,1)}$ is not BW.

Consider the sequence $(e_n)_{n \in [N]}$ where $e_n = (0,0,\ldots,1,0,0,\ldots)$ for all $n \in [N]$. Then $(e_n)_{n \in [N]}$ is a sequence in $\overline{B(0,1)}$. Since $m \neq n$

implies $d(e_m, e_n) = (2)^{1/2}$, $(e_n)_{n \in \mathbb{N}}$ cannot have a convergent :. subsequence.

Let V be a LNLS (RNLS) and W a NLS then CC(V,W) will denote the set of all c.c. map from V to W which is a RNLS (LNLS). If V, W are LNLS's (RNLS's) then CC(V,W) is a LNLS (RNLS) over R.

Theorem 4.3 CC(V,W) is a (left) right linear subspace of C(V,W).

Proof: Let $T_1, T_2 \in CC(V, W)$ and λ , $\beta \in H$. Let $A \subseteq V$ be bounded. Must show that $(T_1\lambda)(A)$ is relatively compact. Since $x \mapsto x \alpha$ is a homeomorphism for all $\alpha \in H \setminus \{0\}$, $(T_1\lambda)(A)$ is relatively compact. Let $(w_n)_{n \in \mathbb{N}}$ be a sequence in T(A). Must show that $(w_n)_{n \in \mathbb{N}}$ has a convergent subsequence. For each $n \in \mathbb{N}$ there exists an $a_n \in A$ such that $w_n = T(a_n)$. Since $(T_1(a_n))_{n \in \mathbb{N}}$ is a sequence in $T_1(A)$ which is relative compact, there exists a convergent subsequence $(T_1(a_n^{(1)}))_{n \in \mathbb{N}}$ of $(T_1(a_n))_{n \in \mathbb{N}}$. Since $(T_2(a_n^{(1)}))_{n \in \mathbb{N}}$ is a sequence in $T_2(A)$ which is relative compact, there exists a convergent subsequence $(T_2(a_n^{(2)}))_{n \in \mathbb{N}}$ of $(T_2(a_n^{(1)}))_{n \in \mathbb{N}}$. Therefore $(T(a_n^{(2)}))_{n \in \mathbb{N}}$ converges since it is a sum of convergent sequence.

Remark: If V, W are LNLS's (RNLS's) then CC(V,W) is left (right) R-linear subspace of C(V,W).

Theorem 4.4 CC(V,W) is closed subspace of C(V,W) if W is a Banach space.

Proof: Let $(F_n)_{n\in\mathbb{N}}$ be a sequence in CC(V,W) such that $(F_n)_{n\in\mathbb{N}}$ converges to F. Must show that $F\in CC(V,W)$. Let $A\subseteq V$ be bounded.

Must show that F(A) is relative compact. Let $(w_n)_{n\in \mathbb{N}}$ be a sequence in F(A). For each $n \in \mathbb{N}$ we can write $w_n = F(x_n)$ for some $x_n \in A$. Hence we must show that $(F(x_n))_{n \in \mathbb{N}}$ has a convergent subsequence. Since $(F_1(x_n))_{n \in \mathbb{N}}$ is a sequence in $F_1(A)$ which is relatively compact, there exists a convergent subsequence $(F_1(x_n^{(1)}))_{n \in \mathbb{N}}$. Since $(F_2(x_n^{(1)}))_{n \in \mathbb{N}}$ is a sequence in $F_2(A)$ which is relatively compact, there exists a convergent subsequence $(F_2(x_n^{(2)}))_{n \in \mathbb{N}}$. By induction we get that for each $k \in \mathbb{N}$ there exists a sequence $(x_m^{(k)})_{n \in \mathbb{N}}$ such that $(F_k(x_n^{(k)}))_{n \in \mathbb{N}}$ converges and $(F_k(x_n^{(k)}))_{n \in \mathbb{N}}$ is a subsequence of $(F_k(x_n^{(k-1)}))_{n \in \mathbb{N}}$. Consider the diagonal sequence $(x_1^{(1)}, x_2^{(2)}, \dots)$. Then for each $m \in \mathbb{N}$ $(F_m(x_n^{(n)}))_{n \in \mathbb{N}}$ converges. Claim that $(F(x_n^{(n)}))_{n \in \mathbb{N}}$ converges. This claim finish the proof. Since W is a Banach space, must show that $(F(x_n^{(n)}))_{n\in\mathbb{N}}$ is a cauchy sequence. Since A is bounded, there exists a M > O such that \parallel a \parallel \leqslant M for all a \in A. Since F_n converges to F, given $\xi > 0$ there exists a N_c such that $n > N_{\xi}$ implies that $\|F_n - F\| < \frac{\xi}{3M}$. Fix $k > N_{\xi}$. Then $(F_k(x_n^{(n)}))_{n \in \mathbb{N}}$ is a convergent sequence. Hence $(F_k(x_n^{(n)}))_{n \in \mathbb{N}}$ is cauchy, so there exists a N_{ξ}' such that m, n > N_{ξ}' implies $\|F_k(x_m^{(m)}) - F_k(x_n^{(n)})\| < \xi/3$. Let

$$N_{\xi}'' = \max \left\{ N_{\xi}, N_{\xi}' \right\} . \text{ Therefore if m, n > N_{\xi}''} \text{ then}$$

$$\| F(\mathbf{x}_{m}^{(m)}) - F(\mathbf{x}_{n}^{(n)}) \| \leq \| F(\mathbf{x}_{m}^{(m)}) - F_{k}(\mathbf{x}_{m}^{(m)}) \| + \| F_{k}(\mathbf{x}_{m}^{(m)}) - F_{k}(\mathbf{x}_{n}^{(n)}) \| + \| F_{k}(\mathbf{x}_{n}^{(n)}) F$$

$$\leq \|F - F_{k}\| \|x_{m}^{(m)}\| + \|F_{k}(x_{m}^{(m)} - F_{k}(x_{n}^{(n)})\| + \|F_{k} - F\|\|x_{n}^{(n)}\| \leq \epsilon$$

Theorem 4.5 CC(V,V) is a two side ideal in C(V,V).

Proof: Let $F \in CC(V,V)$ and $G \in C(V,V)$. Let $A \subseteq V$ be bounded. Since G is continuous, G(A) is bounded. Therefore F(G(A)) is relatively compact. Since A is bounded and F is c.c., F(A) is relatively compact. Since G is continuous and F(A) is relatively compact, G(F(A)) is relatively compact. Hence $G \circ F$, $F \circ G$ are c.c. By Theorem 4.3, CC(V,V) is left linear subspace of C(V,V). Hence we have theorem.

Example 4.6 Let $V = L_H^2$ and $T(x_1, x_2, ...) = (\sum_{k=1}^{\infty} a_{1k} x_k, \sum_{k=1}^{\infty} a_{2k} x_k, ...)$ where $\sum_{j=1}^{\infty} \sum_{j=1}^{\infty} |a_{jj}|^2 < \infty$. Then T is c.c.

Proof: Let $\xi > 0$. Then there exists a number p_{ξ} such that $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} |a_{jk}|^2 < \xi^2$. We define T_{ξ} by $T_{\xi}(x) = T_{\xi}(x_1, x_2, \dots) = (\sum_{k=1}^{\infty} a_{jk} x_k, \dots, \sum_{k=1}^{\infty} a_{jk} x_k, 0, 0, 0, \dots)$. After the p_{ξ} -the term all entries are 0. Then, since the range of each operator T_{ξ} is finite

dimensional, each Ts is completely continuous. Now

$$\|T_{\xi}(\mathbf{x}) - T(\mathbf{x})\|^{2} = \sum_{\mathbf{j} = p_{\xi} + 1}^{\infty} \left| \sum_{\mathbf{k} = 1}^{\Sigma} a_{\mathbf{j} \mathbf{k}} x_{\mathbf{k}} \right|^{2} \leq \sum_{\mathbf{j} = p_{\xi} + 1}^{\infty} \left| \sum_{\mathbf{k} = 1}^{\infty} a_{\mathbf{j} \mathbf{k}} x_{\mathbf{k}} \right|^{2} \leq \sum_{\mathbf{j} = p_{\xi} + 1}^{\infty} \left| \sum_{\mathbf{k} = 1}^{\infty} a_{\mathbf{j} \mathbf{k}} x_{\mathbf{k}} \right|^{2}$$

$$\leq \varepsilon \|\mathbf{x}\|^{2}$$

or $\|T_{\xi}-T\|<\xi$. Thus T is c.c. by Theorem 3.4

Theorem 4.7 Let V be a ∞ -dimensional LNLS(RNLS) and T:V->V a c.c. map. Then T can not have a continuous inverse.

Proof: Suppose not. Then T has a continuous inverse T^{-1} . $I = TT^{-1}$ therefore $I: V \rightarrow V$ is c.c. The closed unit ball $\overline{B(0,1)}$ is bounded in V therefore $\overline{I(B(0,1))} = \overline{B(0,1)}$ is relative compact. Since V is ∞ -dimensional, there exists a sequence $(x_n)_{n \in \mathbb{N}}$ of left linear independent vectors. Let W_n be the left linear subspace generated by x_1, x_2, \dots, x_n . Then $x_{n+1} \notin W_n$ for all $n \in \mathbb{N}$, also W_n is closed for all $n \in \mathbb{N}$. Let $\alpha_n = d(x_{n+1}, W_n)$. Then $\alpha_n > 0$ for all $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ there exists a $x_n^* \in W_n$ such that $0 < d(x_n^*, x_{n+1}^*) < 2\alpha_n$. Now

$$d(x_{n+1} - x_n^*, W_n) = \inf_{w \in W_n} \left\{ ||x_{n+1} - x_n^* - w|| \right\} = \inf_{w \in W_n} \left\{ ||x_{n+1} - (x_n^* - w)|| \right\}$$
$$= \inf_{w \in W_n} \left\{ ||x_{n+1} - w|| \right\} = d(x_{n+1}, W_n) = \alpha_n.$$

Let
$$y_1 = \frac{x_1}{\|x_1\|}$$
 and if $n > 1$ let $y_n = \frac{x_n - x_{n-1}^*}{\|x_n - x_{n-1}^*\|}$. Then $\|y_n\| = 1$

for all $n \in \mathbb{N}$ therefore $(y_n)_{n \in \mathbb{N}}$ is a sequence in $\overline{B(0,1)}$.

$$\begin{split} d(y_{n+1}, W_n) &= \inf_{w \in W_n} \left\{ \|y_{n+1} - w\| \right\} = \inf_{w \in W_n} \left\{ \left\| \frac{x_{n+1} - x_n^*}{\|x_{n+1} - x_n^*\|} - w \right\| \right\} \\ &= \frac{1}{\|x_{n+1} - x_n^*\|} \inf_{w \in W_n} \left\{ \|x_{n+1} - x_n^* - w\| \right\} = \frac{1}{\|x_{n+1} - x_n^*\|} \inf_{w \in W_n} \left\{ \|x_{n+1} - w\| \right\} \\ &= \frac{1}{\|x_{n+1} - x_n^*\|} d(x_{n+1}, W_n) = \frac{\alpha_n}{\|x_{n+1} - x_n^*\|} > \frac{\alpha_n}{2\alpha_n} = \frac{1}{2} \end{split}$$

Therefore $d(y_{n+1}, W_n) > \frac{1}{2}$ for all $n \in \mathbb{N}$. Hence if m < n then $y_m \in W_m \subseteq W_{n-1}$. Therefore $d(y_m, y_n) > d(y_n, W_{n-1}) > \frac{1}{2}$, so $(y_n)_{n \in \mathbb{N}}$ cannot have a convergent subsequence since it is not cauchy, a contradiction.

Let V, W be LNLS (RNLS) and T: V—>W a continuous left (right) linear map. Then there exists a natural projection map $T^*: W^* \longrightarrow V^*$ called the adjoin map defined as follows: if $\varphi \in W^*$ defined $\left[T^*(\varphi)\right](x) = \varphi(T(x))$. Then T^* is continuous right (left) linear map. In fact

$$\|\mathbf{T}^*\| = \sup_{\|\boldsymbol{\varphi}\| = 1} \left\{ \|\mathbf{T}^*(\boldsymbol{\varphi})\| \right\} = \sup_{\|\boldsymbol{\varphi}\| = 1} \left\{ \|\boldsymbol{\varphi}_{\circ}\mathbf{T}\| \right\} \leq \sup_{\|\boldsymbol{\varphi}\| = 1} \left\{ \|\boldsymbol{\varphi}\| \|\mathbf{T}\| \right\} = \|\mathbf{T}\|$$

Remark: || T || = || T ||

Proof: Suppose that T = 0, then T = 0. Hence $\|T\| = \|T\|$. Assume that $T \neq 0$. Fix $x_0 \in V$ ker T and let $y_0 = \frac{1}{\|T(x_0)\|} \cdot T(x_0)$. Hence $\|y_0\| = 1$. Let U be the left linear subspace of W generated by y_0 . Define $F: U \rightarrow H$ by $F(\lambda y_0) = \lambda$. Clearly F is continuous a and left linear. In fact $\|F\| = 1$. By the Hahn-Banach Theorem there exists a continuous left linear map $\varphi: W \rightarrow H$ such that $\|\varphi\| = \|F\| = 1$ and $\varphi(x) = F(x)$ for all $x \in U$. Since $\varphi(T(x_0)) = (\|T(x_0)\|y_0) = \|T(x_0)\|$, we have that $\|T(x_0)\| = \|\varphi(T(x_0))\| = \|T(\varphi)\|(x_0)\| \le \|T(\varphi)\| \|x_0\| \le \|T^*\| \|x_0\|$. Hence $\|T(x_0)\| = \|T(\varphi)\| = \|T^*\|$. If $x_0 \in \ker T \setminus \{0\}$, then T(x) = 0. Therefore $\frac{\|T(x)\|}{\|x_0\|} = 0 \le \|T^*\|$. Hence $\|T\| = \|T^*\|$.

Theorem 4.8 Let V, W be LNLS's (RNLS's) and T:V \rightarrow W is a c.c. map. Then T: W \rightarrow V is a c.c. map.

Proof: We must show that if $A \subseteq W$ is bounded, then $T^*(A)$ is relatively compact in V^* . Since every bounded set is contained in a closed ball center at 0, it is sufficient to show that T^* of every closed ball center at 0 in W^* is relatively compact in V^* . Let $B^*(0,r)$ be the closed ball center at 0 radius r > 0 in W^* . Then $B^*(0,r) = B^*(0,1)r$ therefore $T^*(B^*(0,r)) = T^*(B^*(0,1)r) = T^*(B^*(0,1))r$. Since the map $x \mapsto xr$ is a homeomorphism then if we show that $T^*(B^*(0,1))$ is relatively compact in V^* we get that $T^*(B^*(0,r))$ is relatively compact. Let B(0,1) be the closed ball center at 0 in V therefore $T(\overline{B(0,1)})$ is relatively compact in W,

hence $\overline{T(B(0,1))}$ is compact in W. Define a metric ρ on $\overline{T(B(0,1))}$ as follows: if $\varphi_1, \varphi_2 \in \overline{\mathbb{W}}^*$, then $\rho(\varphi_1, \varphi_2) = \sup_{y \in \overline{T(B(0,1))}} \{|\varphi_1(y) - \varphi_2(y)|\}$.

Claim that $\overline{B^*(0,1)}$ is relatively compact with respect to the metric ρ . In order to prove the claim, we need only show that $\overline{B^*(0,1)}$ is uniformly bounded and equicontinuous by the Arzela - Asocili Theorem.

1. To show that $\overline{B^*(0,1)}$ is uniformly bounded. Note that if $\varphi \in \overline{B^*(0,1)}$ then $\|\varphi\| \leqslant 1$. Let $\varphi \in \overline{B^*(0,1)}$. Claim that

$$\sup_{\mathbf{x} \in \overline{\mathbf{T}(\overline{B(0,1)})}} \left\{ |\varphi(\mathbf{x})| \right\} = \sup_{\mathbf{x} \in \overline{\mathbf{T}(\overline{B(0,1)})}} \left\{ |\varphi(\mathbf{x})| \right\} \leqslant \sup_{\mathbf{x} \in \overline{\mathbf{T}(\overline{B(0,1)})}} \left\{ |\varphi(\mathbf{x})| \right\}.$$

Since φ is continuous on compact set $\overline{T(\overline{B(0,1)})}$, there exists an $z \in \overline{T(\overline{B(0,1)})}$ such that $|\varphi(z)| = \sup_{x \in \overline{T(\overline{B(0,1)})}} \{|\varphi(x)|\}$. If $z \in \overline{T(\overline{B(0,1)})}$,

then done. So assume that $z \notin T(\overline{B(0,1)})$. Then there exists a sequence $(y_n)_{n \in \mathbb{N}}$ in $T(\overline{B(0,1)})$ such that $(y_n)_{n \in \mathbb{N}}$ convergent to z. Since $|\varphi|$ is continuous function, $(|\varphi(y_n)|)_{n \in \mathbb{N}}$ converges to $|\varphi(z)|$, hence

$$\sup_{\mathbf{x} \in T(\overline{B(0,1)})} \frac{\{|\varphi(\mathbf{x})|\} \geqslant |\varphi(\mathbf{z})|. \text{ Clearly sup } \{|\varphi(\mathbf{x})|\} \leqslant \sup_{\mathbf{x} \in T(\overline{B(0,1)})} \frac{\{|\varphi(\mathbf{x})|\} \leqslant \sup_{\mathbf{x} \in T(\overline{B(0,1)})} \{|\varphi(\mathbf{x})|\}.$$

Hence we have the claim. Thus

$$\sup_{\mathbf{x} \in \overline{\mathbf{T}(\overline{B}(0,1))}} \frac{\{|\varphi(\mathbf{x})|\}}{\mathbf{x} \in \overline{\mathbf{T}(\overline{B}(0,1))}} \leq \sup_{\mathbf{x} \in \overline{\mathbf{T}(\overline{B}(0,1))}} \frac{\{|\mathbf{x}|\}}{\mathbf{x} \in \overline{\mathbf{T}(\overline{B}(0,1))}} =$$

$$\sup_{y \in \overline{B(0,1)}} \{ ||T(y)|| \} = \sup_{y \in \overline{B(0,1)}} \{ ||T(y)|| \} = ||T||.$$

Since $\varphi \in \overline{B^*(0,1)}$ is arbitrary, we have that $\sup_{x \in \overline{T(B(0,1))}} \{|\varphi(x)|\} \le ||T||$

for all $\varphi \in \mathbb{B}^*(0,1)$. Hence $\overline{\mathbb{B}^*(0,1)}$ is uniformly bounded with respect to φ .

2. To show $B^*(0,1)$ is equicontinuous. Let $\mathcal{E} > 0$ be given and let $\delta_{\mathcal{E}} = \mathcal{E}$. Then for all $\phi \in B^*(0,1)$ and for all $x_1, x_2 \in T(B(0,1))$ $\|x_1-x_2\| < \delta_{\mathcal{E}}$ implies that $|\phi(x_1)-\phi(x_2)| = |\phi(x_1-x_2)| \leq \|\phi\|\|x_1-x_2\| < \|x_1-x_2\| < \mathcal{E}$. Hence $B^*(0,1)$ is equicontinuous. Hence $B^*(0,1)$ is relatively compact with respect to the metric ρ . Claim that the map $T^*: B^*(0,1) \longrightarrow V^*$ is an isometry where $B^*(0,1)$ has the metric ρ and V^* has the norm metric. To prove this, let $\phi_1, \phi_2 \in B^*(0,1)$. Must show that $\|T^*(\phi_1)-T^*(\phi_2)\| = \rho(\phi_1,\phi_2)$

$$\|T^{*}(\varphi_{1})-T^{*}(\varphi_{2})\| = \sup_{\mathbf{x} \in \overline{B}(0,1)} \left\{ \left| [T^{*}(\varphi_{1})](\mathbf{x}) - [T^{*}(\varphi_{2})](\mathbf{x}) \right| \right\} \\ = \sup_{\mathbf{x} \in \overline{B}(0,1)} \left\{ \left| (\varphi_{1}(\mathbf{x})) - \varphi_{2}(\mathbf{x}) \right| \right\} \\ = \sup_{\mathbf{x} \in \overline{B}(0,1)} \left\{ \left| (\varphi_{1} - \varphi_{2})(\mathbf{x}) \right| \right\} \\ = \sup_{\mathbf{x} \in \overline{T}(\overline{B}(0,1))} \left\{ \left| (\varphi_{1} - \varphi_{2})(\mathbf{x}) \right| \right\} \\ = \sup_{\mathbf{x} \in \overline{T}(\overline{B}(0,1))} \left\{ \left| (\varphi_{1} - \varphi_{2})(\mathbf{x}) \right| \right\} \\ = \sup_{\mathbf{x} \in \overline{T}(\overline{B}(0,1))} \left\{ \left| (\varphi_{1} - \varphi_{2})(\mathbf{x}) \right| \right\} \\ = \sup_{\mathbf{x} \in \overline{T}(\overline{B}(0,1))} \left\{ \left| (\varphi_{1} - \varphi_{2})(\mathbf{x}) \right| \right\} \\ = \sup_{\mathbf{x} \in \overline{T}(\overline{B}(0,1))} \left\{ \left| (\varphi_{1} - \varphi_{2})(\mathbf{x}) \right| \right\}$$

Therefore T^* is an isometry. Hence T^* is a homeomorphism of $B^*(0,1)$ with the metric β onto $T^*(\overline{B^*(0,1)})$ with respect the norm metric. But

 $B^*(0,1)$ is relatively compact with respect to the metric ρ . Hence $T^*(B^*(0,1))$ is relatively compact with respect to the norm metric. Hence T^* is c.c. \swarrow

Theorem 4.9 Let V be a LNLS (RNLS) which is also a Banach space T: V->V a c.c.map. If I-T is onto then I-T is 1-1.

Suppose not. Therefore I-T = A is onto but A is not 1-1. Hence there exists an $x_1 \in V \setminus \{0\}$ such that $A(x_1) = 0$. Given $n \in \mathbb{N}$ let $\mathbb{W}_n = \ker A^n$. Then $\mathbb{W}_n \subseteq \mathbb{W}_{n+1}$ for all $n \in \mathbb{N}$. Claim that $W_n \subseteq W_{n+1}$ for all $n \in \mathbb{N}$. To prove this, note that since A is onto, there exists an x_2 such that $x_1 = A(x_2)$ and there exists an x_3 such that $A(x_3) = x_2$. By induction there exists an x_n such that $A^{n}(x_{n}) = x_{n-1}$ for all $n \in \mathbb{N} \setminus \{1\}$. Since $A^{n}(x_{n}) = A^{n-1}(A(x_{n}))$ $= A^{n-1}(x_{n-1}) = ... = A(x) = 0, x_n \in W_n.$ But $x_n \notin W_{n-1}$ since $A^{n-1}(x_n)$ = $A^{n-2}(A(x_n)) = \dots = A(x_2) = x_1 \neq 0$. Hence $W_{n-1} \subset W_n$ for all $n \in \mathbb{N}$. By the same argument as in Theorem 4.7 we can find in each W an element y_n such that $||y_n|| = 1$ and $||y_n - y|| > \frac{1}{2}$ for all $y \in W_{n-1}$. Then for all k < n $\| T(y_n) - T(y_k) \| = \| y_n - (I-T)(y_n) - y_k + (I-T(y_k)) \| \ge \frac{1}{2}$ because $-(I-T)(y_n)-y_k+(I-T)(y_k)$ lies in W_{n-1} . This show that the sequence $(T(y_n))_{n \in \mathbb{N}}$ can not have a convergent subsequence contra dicting the fact that T is c.c. ×

Definition 4.10 Let V be a LNLS (RNLS) and T: V a continuous left (right) linear map. Then $\lambda \in \mathbb{H}$ is said to be an eigenvalue of

T if and only if there exists an $v \in V \setminus \{0\}$ such that $T(v) = \lambda v$ $(T(v) = v\lambda)$.

Definition 4.11 Let V be a NLS and T: $V \longrightarrow V$ a continuous left (right) linear map. Then $\lambda \in IH$ is said to be a right (left) eigenvalue of T if and only if there exists an $v \in V \setminus \{0\}$ such that $T(v) = v\lambda$ $(T(v) = \lambda v)$.

Definition 4.12 Let V be a NLS and T: V \rightarrow V a continuous left linear map. Then $\lambda \in \mathbb{H}$ is said to be a right characteristic value of T if and only if the continuous left linear map T-I λ has no continuous inverse.

Left characteristic value is defined dually.

Remark: Let V be a LNLS (RNLS) and T: V \rightarrow V a continuous left (right) linear map. Then $\lambda \in \mathbb{R}$ is said to be a characteristic value of T if and only if the left (right) linear map T- λ I has no continuous inverse.

Remark: If V is a NLS which is also an ∞ -left(right) dimensional and $\lambda \in \mathbb{H}$ is a left (right) eigenvalue of T, then λ is a (right) left characteristic value of T. The converse is not true.

Proof: Suppose that λ is a left eigenvalue of T. Then there exists an $v \in V \setminus \{0\}$ such that $T(v) = \lambda v$ therefore $(T-\lambda I)(v)=0$, hence $T-\lambda I$ is not 1-1. Hence $T-\lambda I$ has no continuous inverse.

Example 4.13 Let $V = C_H[a,b]$ with respect the supporm. Fix a non constant function $f_0 \in C_H[a,b]$. Define T: $C_H[a,b] \rightarrow C_H[a,b]$ by T(f)

= f.fo therefore T is left linear. Let M > 0 be such that $|f_0(x)| \le M$ for all $x \in [a,b]$. Hence if $f \in C_H[a,b] \setminus \{0\}$, then $|(f.f_0)|(x) = |f(x)||f_0(x)| \le ||f||M$ therefore $||T|| \le M$. Hence T is continuous. Let $\lambda \in \text{Im } f_0$. Then $(T-I\lambda)f = (f \cdot f_0 - f\lambda) = f(f_0 - \lambda)$. Let W be a nonzero LNLS (RNLS) and F: W a continuous left (right) linear map. Claim that if F has a continuous inverse then there exists a m > 0 such that m $||x|| \le ||F(x)||$ for all $x \in W$. To prove this, let $x \in W$. Therefore $||x|| = ||I(x)|| = ||F^{-1}(F(x))|| \le ||F^{-1}|||F(x)||$. Let $m = \frac{1}{\|F^{-1}\|}$ therefore m > 0. Then $m \|x\| \le \|F(x)\|$. Thus we have the claim. To show that T-IA has no continuous inverse i.e. there does not exist m > 0 such that $\|f\| \le \|(T-I\lambda)(f)\| = \|f(f_0-\lambda)\|$ for all $f \in C_{H}[a,b]$. To prove this, suppose not. Then there exists m > 0such that $m \| f \| \le \| f(f_0 - \lambda) \|$ for all $f \in C_H[a,b]$. Since $\lambda \in Im f_0$, there exists an $t_0 \in [a,b]$ such that $f_0(t_0) = \lambda$. Choose $\epsilon > 0$ such that ϵ < m. Then there exists a δ > 0 such that $|\mathbf{t}-\mathbf{t}_0|<\delta_\epsilon$ implies $|f_0(t)-f_0(t_0)| = |f_0(t)-\lambda| < \varepsilon_0$. Let $x = \sup \{ a \le t < t_0 / t_0 \}$ $|t-t_0| \ge \delta_{\epsilon}$ and y = inf $\{t_0 < t \le b / |t-t_0| \ge \delta_{\epsilon} \}$. Choose a continuous nuous map $g \in C_H[a,b]$ such that

$$g(t) = \begin{cases} 0 & \text{if } |t-t_0| \geqslant \delta_{\xi} \\ \frac{x-t}{x-t_0} & \text{if } |t-t_0| < \delta_{\xi} \text{ and } x < t \leqslant t_0 \\ \frac{y-t}{y-t_0} & \text{if } |t-t_0| < \delta_{\xi} \text{ and } t_0 \leqslant t \leqslant b. \end{cases}$$

Then $\|g\| = 1$ and $\|g(f_0 - \lambda)\| = \sup_{t \in [a,b]} \{|g(t)(f_0(t) - \lambda)|\} < \varepsilon$. But $m = m \|g\| \le \|g(f_0 - \lambda)\| < \varepsilon$, so a contradiction. Hence we have the claim. Thus $T - I\lambda$ has no continuous inverse.

Theorem 4.14 Let V be a NLS and F:V V a c.c. left (right) linear map. Then if $\lambda \in \mathbb{H}$ is a nonzero right (left) eigenv lue of F the left (right) linear subspace. generated by the eigenvectors of λ is finite dimensional.

Let V be a LNLS (RNLS) and T: V = V a c.c. map. We want to show that if I-T is 1-1, then I-T is onto. In order to prove this we'll need some lemmas.

Lemma 4.15 Let V be a LNLS (RNLS) which is also a Banach space and T: $V \longrightarrow V$ a c.c. map. Then Im (I-T) is closed.

Proof: Let A = I-T and dim ker A be n (Use Theorem 3.14) Choose a basis e_1, e_2, \dots, e_n of ker A and let

$$(\varphi_{\lambda}(e_{\beta}) = \delta_{\lambda\beta} = \begin{cases} 0 & \text{if } \lambda = \beta \\ 1 & \text{if } \lambda \neq \beta \end{cases}$$

for all λ , $\beta \in \{1,2,\ldots,n\}$. Then $\{\varphi_1,\varphi_2,\ldots,\varphi_n\}$ is a basis of $(\ker A)^{\frac{1}{n}}$. Claim that there exists a closed left linear subspace W of V such that there exists a closed left linear subspace W of V such that $V = \ker A \oplus W$. To prove this note that by the Hahn-Banach Theorem we can extend $(\varphi_1, \varphi_2, \ldots, \varphi_n)$ to continuous left linear maps $(\varphi_1, \varphi_2, \ldots, \varphi_n)$ from V to H such that $\|\varphi_1\| = \|\varphi_1\|$ for all $1 = 1, 2, \ldots, n$. Let $\emptyset : V \to \mathbb{H}^n$ be defined by $\emptyset(x) = (\emptyset_1(x), \ldots, \emptyset_n(x))$. Clearly \emptyset is

continuous and left linear. Let W = ker \emptyset . Then W is closed. For each $x \in V$ let $U_x = \sum_{i=1}^n \emptyset_i(x)$ $e_i \in \ker A$. Choose $j \in \mathbb{N}$ such that $1 \leqslant j \leqslant n$. Then

$$\begin{aligned} \phi_{\mathbf{j}}(\mathbf{x} - \mathbf{U}_{\mathbf{x}}) &= \phi_{\mathbf{j}}(\mathbf{x} - \sum_{i=1}^{n} \phi_{i}(\mathbf{x}) \mathbf{e}_{i}) = \phi_{\mathbf{j}}(\mathbf{x}) - \sum_{i=1}^{n} \phi_{i}(\mathbf{x}) \varphi_{\mathbf{j}}(\mathbf{e}_{i}) \\ &= \phi_{\mathbf{j}}(\mathbf{x}) - \phi_{\mathbf{j}}(\mathbf{x}) = 0. \end{aligned}$$

Hence $\emptyset_j(x-U_x) = 0$ for all $j \le n$. Therefore $\emptyset(x-U_x) = 0$, so $x-U_x \in \ker \emptyset$. Now $x = x-U_x+U_x$. Therefore $V = \ker A+W$. To prove that this is a direct sum we must show that $W \cap \ker A = \{0\}$. Let $x \in W \cap \ker A$ therefore $x = \sum_{i=1}^{n} x_i e_i$ for some $x_i \in H$ and $\emptyset(x) = 0$ i.e. $\emptyset_j(x) = 0$ for all $j \le n$ therefore $0 = \emptyset_j(x) = \emptyset_j(\sum_{i=1}^n x_i e_i)$ $= \sum_{i=1}^{n} x_{i} (\phi_{i}) = x_{j}. \text{ Hence } x = 0. \text{ Therefore } W \cap \ker A = \{0\}.$ $V = \ker A \oplus W$. Since $\ker A \cap W = \{0\}$, A/W is 1-1. Claim that A(W) = Im(A). To prove this note that $W \subseteq V$ therefore $A(W) \subseteq A(V)$. Let $x \in A(V)$ therefore $x \in A(y)$ for some $y \in V$, so y = u+v for some $u \in \ker A$ and $v \in W$, so x = A(y) = A(u+v) = A(u)+A(v) = O+A(v); hence $x \in A(W)$. Hence Im A = A(W). To finish the proof we must show that A(W) is closed in V. Now $A/_W: W \longrightarrow A(W)$ and $A/_W$ is a 1-1, onto continuous left linear map. Claim that A/W is a homeomorphism ie. $(A/W)^{-1}$ is continuous. Since $(A/_W)^{-1}$ is left linear, we need only show that $(A/_W)^{-1}$ is continuous at 0. To prove this, suppose not. Therefore

there exists a sequence $(v_n)_{n \in \mathbb{N}}$ in A(W) such that $(v_n)_{n \in \mathbb{N}}$ converges to 0 and $((A/_W)^{-1}(v_n))_{n \in \mathbb{N}}$ does not converge to 0. For each $n \in \mathbb{N}$ there exists a unique $x_n \in W$ such that $v_n = A(x_n)$, so we have a sequence $(x_n)_{n \in [N]}$ in W such that $(x_n)_{n \in [N]}$ does not converge to 0. But $(A(x_n))_{n \in \mathbb{N}} = (v_n)_{n \in \mathbb{N}}$ converges to 0. There exists a $\varepsilon > 0$ for each m \in N there exists an $n_m \in$ N such that $n_m >$ m and $\|\mathbf{x}_n\| \geqslant \epsilon$. Hence there exists a subsequence $(x_n)_{k \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$ such that for each $k \in \mathbb{N}$ $\| \mathbf{x}_{n_k} \| \ge \epsilon$ ie. $\frac{1}{\|\mathbf{x}_{n_k}\|} < \frac{1}{\epsilon}$ for all $k \in \mathbb{N}$. Since $\frac{\|\mathbf{x}_{n_k}\|}{\|\mathbf{x}_{n_k}\|} = 1 \text{ and T is c.c.}, \begin{pmatrix} \mathbf{T}(\mathbf{x}_{n_k}) \\ \|\mathbf{x}_{n_k}\| \end{pmatrix} \text{ has a convergent subsequence.}$ Let $(\mathbf{x}_{n_{k_{1}}})$ be a subsequence of $(\mathbf{x}_{n_{k_{1}}})$ such that $\begin{pmatrix} \mathbf{T}(\mathbf{x}_{n_{k_{1}}}) \\ \|\mathbf{x}_{n_{k_{1}}}\| \end{pmatrix}_{k \in [\mathbb{N}]}$ converges. Since $\frac{\mathbf{A}(\mathbf{x}_{n_{k_{1}}}) \\ \|\mathbf{x}_{n_{k_{1}}}\| \\ \|\mathbf{x}_{n_{k_{$ converges. Let $z = \lim_{l \to \infty} \frac{x_{n_{k_1}}}{\|x_{n_{k_1}}\|} \in W$. So $0 = \lim_{l \to \infty} \frac{A(x_{n_k})}{\|x_{n_k}\|} = \frac{A(x_{n_k})}{\|x_{n_k}\|}$

 $\lim_{1\to\infty} \frac{(\mathbf{x}_{\mathbf{n}_{\mathbf{k}_{1}}})}{\|\mathbf{x}_{\mathbf{n}_{\mathbf{k}_{1}}}\|} - \lim_{1\to\infty} \frac{\mathbf{T}(\mathbf{x}_{\mathbf{n}_{\mathbf{k}_{1}}})}{\|\mathbf{x}_{\mathbf{n}_{\mathbf{k}_{1}}}\|} = \mathbf{z} - \mathbf{T}(\mathbf{z}) = \mathbf{A}(\mathbf{z}), \text{ hence } \mathbf{z} \in \ker \mathbf{A}$

therefore z=0, a contradiction since ||z||=1. Hence $(A/_W)^{-1}$ is continuous. Let $T'=(A/_W)^{-1}$. Claim that A(W) is complete in V.

To prove this let $(y_n)_{n \in \mathbb{N}}$ be a cauchy sequence in A(W). Then $(T'(y_n))_{n \in \mathbb{N}}$ is a cauchy sequence in W. Since W is closed in V and V is a Banach space, W is complete, hence $(T'(y_n))_{n \in \mathbb{N}}$ converges in W. Let $w_0 = \lim_{n \to \infty} T'(y_n)$ therefore $w_0 \in W$. Then $A(w_0) = A(\lim_{n \to \infty} T(y_n))$ $e^{-1} \lim_{n \to \infty} A(T'(y_n)) = \lim_{n \to \infty} y_n$. Hence A(W) is complete in V. Since V is a Banach space, A(W) is closed. Hence Im(I-T) is closed.

Lemma 4.16 Let V be a LNLS (RNLS) which is also a Banach space and T: V > V a c.c. map. Then $y \in Im(I-T)$ if and only $if(\phi(y) = 0)$ for all $\phi \in \ker(I-T)$.

Proof: Let $y \in Im(I-T)$ and $\varphi \in ker(I-T^*)$. Then there exists an $x \in V$ such that y = (I-T)(x) therefore $\varphi(y) = \varphi((I-T)(x)) = [(I-T^*)(\varphi](x) = 0.$

Conversely, suppose that $\varphi(y) = 0$ for all $\varphi \in \ker(I-T^*)$. Must show that y Im(I-T). Hence we must show that if $y \in \bigcap \ker \varphi$. $\varphi \in \ker(I-T)$

Then there exists an $x \in V$ such that y = x-T(x) ie. $y \in Im(I-T)$.

We shall prove the contradiction ie. if $y \notin Im(I-T)$, then $y \notin \bigcap_{x \in V} \ker \varphi$. $\varphi_{\ker}(I-T)$

Let $y \not\in Im(I-T)$. Let W be the left linear subspace of V generated by Im(I-T) and y. For each $z \in W$ z has unique representation in the form $z = \lambda y + u$ for some $\lambda \in H$ and $u \in Im(I-T)$. Define $\varphi(z) = \lambda$ so $\varphi: W \to H$ is left linear. Claim that φ is continuous. Let

 $z \in W \setminus \{0\}. \quad \text{Therefore } z = \lambda \text{ y+u for some } \lambda \in \mathbb{H} \text{ and } u \in \text{Im}(I-T).$ Then $\frac{|\varphi(z)|}{||z||} = \frac{|\varphi(\lambda \text{ y+u})|}{||z||} = \frac{|\lambda|}{||\lambda \text{ y+u}||}. \quad \text{If } \lambda = 0, \text{ then } \frac{|\varphi(z)|}{||z||} = 0.$ Assume $\lambda \neq 0$. Then

$$\frac{|\varphi(z)|}{\|z\|} = \frac{|\lambda|}{|\lambda|(\|y + \frac{1}{\lambda}u\|)} = \frac{1}{\|y + \frac{1}{\lambda}u\|} < \frac{1}{d(y, \text{Im}(I-T))} < \infty. \text{ Hence}$$

is continuous. By the Hanh-Banach theorem we can extend φ to a continuous left linear map $\emptyset \in V^*$ such that $\|\varphi\| = \|\emptyset\|$. Must show that $\emptyset \in \ker(I-T^*)$. To prove this note that $((I-T^*)\emptyset)(x) = \emptyset((I-T)(x)) = \emptyset((I-T)(x)) = 0$, hence $\emptyset \in \ker(I-T^*)$. Also $\emptyset(y) = \varphi(y) = 1 \neq 0$, so $y \notin \ker \emptyset$. Hence $y \notin \bigcap \ker \emptyset$. $\varphi \in \ker(I-T^*)$

Lemma 4.17 Let V, W be LNLS's (RNLS's) and F: V \rightarrow W a continuous left (right) linear. Then the natural map π : $V/_{\ker F} \rightarrow$ ImF is a left (right) linear isomorphic if V,W are Banach space and lmF is closed.

Proof: Since π is a 1-1 onto and left linear we shall show that π is continuous at 0. This shall finish the proof. Let $(\alpha_n)_{n\in\mathbb{N}}$ be a sequence in $\mathbb{V}/_{\ker F}$ converging to 0. Must show that $(\pi(\alpha_n))_{n\in\mathbb{N}}$ converges to 0. Since $(\alpha_n)_{n\in\mathbb{N}}$ converges to 0, $(\|\alpha_n\|)_{n\in\mathbb{N}}$ converges to 0. Given $\{0\}$ and $\{0\}$ there exists an $\{0\}$ such that $\|\pi(\alpha_n)\| = \|F(\mathbf{x}_n)\| \le \|F\|\| \|\mathbf{x}_n\| \le \|F\|\| \|\alpha_n\| + \|\alpha_n\|$ which converges to 0 therefore $(\|\pi(\alpha_n)\|)_{n\in\mathbb{N}}$ converges to 0, so $(\pi(\alpha_n))_{n\in\mathbb{N}}$.

Lemma 4.18 Let V be a LNLS (RNLS) which is also a Banach space and T: V—>V a c.d.map. Then $\psi \in \text{Im}(I-T^*)$ if and only if $\psi(x) = 0$ for all $x \in \text{ker}(I-T)$.

Proof: Let $\psi \in \text{Im}(I-T^*)$. Then there exists a $\psi \in V^*$ such that $\psi = (I-T^*)\psi$. Let $\mathbf{x} \in \text{ker}(I-T)$ therefore $\psi(\mathbf{x}) = ((I-T^*)\psi)(\mathbf{x}) = \psi((I-T)(\mathbf{x})) = \psi(0) = 0$.

Conversely, suppose that $\varphi(\mathbf{x})=0$ for all $\mathbf{x} \in \ker(\mathbf{I}-\mathbf{T})$. For each $\mathbf{y} \in \operatorname{Im}(\mathbf{I}-\mathbf{T})$ there exists an $\mathbf{x} \in \mathbf{V}$ such that $\mathbf{y}=(\mathbf{I}-\mathbf{T})(\mathbf{x})$. Define $\eta(\mathbf{y})=\varphi(\mathbf{x})$ this is well-defined since if $\mathbf{y} \in (\mathbf{I}-\mathbf{T})(\mathbf{x}')$ then $\mathbf{x}-\mathbf{x}' \in \ker(\mathbf{I}-\mathbf{T})$ therefore $0=\varphi(\mathbf{x}-\mathbf{x}')=\varphi(\mathbf{x})-\varphi(\mathbf{x}')$. So $\varphi(\mathbf{x})=\varphi(\mathbf{x}')$. Claim that η is left linear. Let $\mathbf{y}_1, \mathbf{y}_2 \in \operatorname{Im}(\mathbf{I}-\mathbf{T})$ and $\mathbf{x} \in \mathbb{H}$ there exist $\mathbf{x}_1, \mathbf{x}_2 \in \mathbf{V}$ such that $(\mathbf{I}-\mathbf{T})(\mathbf{x}_1)=\mathbf{y}_1$ and $(\mathbf{I}-\mathbf{T})(\mathbf{x}_2)=\mathbf{y}_2$ hence $\alpha \mathbf{y}_1=\alpha(\mathbf{I}-\mathbf{T})(\mathbf{x}_1)=(\mathbf{I}-\mathbf{T})(\alpha \mathbf{x}_1)$. Therefore $\eta(\alpha \mathbf{y}_1)=\varphi(\alpha \mathbf{x}_1)=\alpha(\alpha \mathbf{y}_1)=\alpha(\alpha \mathbf{y}_1)$ and $\eta(\mathbf{y}_1+\mathbf{y}_2)=\varphi(\mathbf{x}_1+\mathbf{x}_2)=\varphi(\mathbf{x}_1)+\varphi(\mathbf{x}_2)=\eta(\mathbf{x}_1)+\eta(\mathbf{x}_2)$. Hence we have the claim. Claim that η is continuous To prove this, consider the diagram

$$V \xrightarrow{P} V/_{\ker(I-T)} \xrightarrow{\pi} \operatorname{Im}(I-T) \xrightarrow{\eta} H$$

$$x \longrightarrow [x] \xrightarrow{} (I-T)(x) \longrightarrow \eta(I-T)(x) = \varphi(x)$$

Suppose that η is not continuous. Hence there exists an open set $U \subseteq H$ such that $\eta^{-1}(U)$ is not open in $\mathrm{Im}(I-T)$. Claim that $P^{-1}(\pi^{-1}(\eta^{-1}(U)))$ is open in V. By the open mapping theorem, P is open, so $P(P^{-1}(\pi^{-1}(\eta^{-1}(U))))$ is open in $V/_{\ker(I-T)}$. Since P is onto

 $P(P^{-1}(\pi^{-1}(\eta^{-1}(U)))) = \pi^{-1}(\eta^{-1}(U)) \text{ which is open in } V/_{\ker(I-T)^2}a$ contradiction. Hence $P^{-1}(\pi^{-1}(\eta^{-1}(U)))$ is not open in V. But $P^{-1}(\pi^{-1}(\eta^{-1}(U))) = \varphi^{-1}(U) \text{ and } \varphi^{-1}(U) \text{ is open since } \varphi \text{ is continuous,}$ a contradiction. Hence η is continuous. By the Hahn-Banach Theorem, there exists a $\psi \in V^*$ such that $\psi/_{\operatorname{Im}(I-T)} = \eta$ and $\|\psi\| = \|\eta\|$. Now for all $x \in V$, $[(I-T^*)\psi](x) = \psi((I-T)(x)) = \eta((I-T)(x)) = \varphi(x)$. Hence $(I-T^*)\psi = \varphi$. Thus $\psi = \operatorname{Im}(I-T^*)$.

Corollary 4.19 Let V be LNLSm(RNLS) which is also a Banach space and T: $V \longrightarrow V$ a c.c. map. If $I-T^*$ is a 1-1, then I-T is onto.

Proof: Since I-T* is 1-1, $\ker(I-T) = \{0\}$. Hence for all $y \in V$ $(\varphi(y) = 0)$ for all $\varphi \in \ker(I-T^*)$. Therefore : (I-T) is onto.

Corollary 4.20 Let V be a LNLS (RNLS) which is also a Banach space and T: V->V a c.c. map. If I-T is 1-1, then I-T is onto.

Proof: Since I-T is 1-1, $\ker(I-T) = \{0\}$. Hence for all $\psi \in V$ $\psi(x) = 0$ for all $x \in \ker(I-T)$. Hence I-T is onto.

Theorem 4.21 Let V be a LNLS (RNLS) which is also a Banach space and T: V—>V a c.c. map. If I-T is 1-1 then I-T is onto.

Proof: Since I-T is 1-1, I-T is onto, hence I-T is 1-1. Since I-T is 1-1, I-T is onto. \times

Theorem 4.22 Let V be a NLS which is also a Banach space and T: $V \longrightarrow V$ a left (right) linear map which is also c.c. If λ is nonzero right (left) characteristic value of T then λ is a right

(left) eigenvalue of T.

Proof: Since λ is a right characteristic value of T we get that T-I λ has no continuous inverse. We must show that λ is a right eigenvalue of T. Suppose not therefore T-I λ is 1-1. So $(T-I)(-\lambda^{-1})$ is 1-1, hence $I-T\lambda^{-1}$ is 1-1. Since T is c.c., $T\lambda^{-1}$ is c.c. also. Hence $I-T\lambda^{-1}$ is onto, so $I-T\lambda^{-1}$ is 1-1, onto, continuous and left linear map from the Banach space V onto itself. By the open mapping theorem $I-T\lambda^{-1}$ has a continuous left linear inverse. ie. $I-T\lambda^{-1}$ is a homeomorphism. Hence $(I-T\lambda^{-1})(-\lambda)$ is a homeomorphism also. So $T-I\lambda$ is a homeomorphism, hence $T-I\lambda$ has a continuous inverse a contradiction. Hence λ is a right eigenvalue of T.

Remarks: i) If V is a LNLS (RNLS) which is also a Banach space and T: V \rightarrow V is a left (right) linear map which is also c.c. and $\lambda \in \mathbb{R}$ is a nonzero characteristic value of T then λ is an eigenvalue of T.

ii) If V is a left (right) finite dimensional vector space over H which is also a NLS and T: V \rightarrow V is a NLS and T: V \rightarrow V is a continuous left (right) linear map and $\lambda \in$ H. is a nonzero right (left) characteristic value of T then λ is a right (left) eigenvalue of T.

Proof: Let $\lambda \in \mathbb{R}$ be such that $|\lambda| > \|T\|$. Since $T-I\lambda = (I-T, \frac{1}{\lambda})(-\lambda)$ if $(I-T\lambda)^{-1}$ exists then $(T-I\lambda)^{-1} = (I-T, \frac{1}{\lambda})^{-1}(-\frac{1}{\lambda}) = \sum_{k=0}^{\infty} (\frac{T}{\lambda})^k (-\frac{1}{\lambda})$. This series converges since $\|\frac{T}{\lambda}\| = \frac{1}{|\lambda|} \|T\| < \frac{1}{|\lambda|} \|\lambda\|_{1}$. Hence $(I-T\lambda)^{-1}$ exists.

Definition 4.24 Let V, W be LNLS's (RNLS's) which is also a Banach space, an element $T \in C(V,W)$ is called a Fredholm operator from V to W if and only if

- i) ker T is finite dimensional
- ii) Im T is closed and coker T is finite dimensional where $\tilde{\text{coker T}} = \text{W/}_{\text{Im T}}$

Theorem 4.25 Let V be a LNLS (RNLS) and T: $V \longrightarrow V$ is c.c. Then I-T is Fredholm.

Proof: By theorem #.14, ker I-T is finite dimensional. By Lemma #.15, Im (I-T) is closed. We shall show that coker (I-T) is finite dimensional. This shall finish the proof. If I-T is onto there is nothing to prove. Therefore we may assume that I-T is not onto. Suppose that coker (I-T) is not finite dimensional. Let $(x_{\alpha}+W)_{\alpha\in I}$ be algebraic an basis of coker (I-T). Choose $\alpha_1\in I$ and let H_1 be the left linear subspace generated by (I-T) and x_{α_1} . Choose $\alpha_2\in I\setminus\{\alpha_1\}$ and let H_2 be the left linear subspace generated by H_1 and H_2 . By induction we have H_1 is the left linear subspace

generated by H_{n-1} and α_n for all $n \in \mathbb{N}$. Hence we have $(I-T)(V) = H_0 \subset H_1 \subset H_2 \cdots$. By the same proof as in Theorem 2.10, H_n is closed for all $n \in \mathbb{N}$ and dim (H_n/H_{n-1}) is 1. By same argument as in Theorem 3.7 we can find in each H_n an element x_n such that $\|x_n\| = 1$ and $\|x_n - y\| > \frac{1}{2}$ for all $y \in H_{n-1}$. Then for all k < n $\|T(x_n) - T(x_k)\| = \|x_n - (I-T)(x_n) - x_k + (I-T)(x_k)\| \ge \frac{1}{2}$ because $-(I-T)(x_n) - x_k + (I-T)(x_k)$ lies in H_{n-1} . This show that the sequence $(T(x_n))_{n \in \mathbb{N}}$ can not have a convergent subsequence sontradicting the fact that T is c.c. Thus proving the lemma.

Definition 4.26 If T is a Fredholm operator, then we define the index of T to be ind T = dim ker T - dim coker T.

Let V be a LNLS (RNLS) over H which is also a Banach space and T: V \longrightarrow V is c.c. We want to show that ind (Id-T) = -ind(Id-T). In order to prove. This we'll need some lemmas.

Lemma 4.27 Let V,W be LNLS's (RNLS's) which are both Banach space and T: V \rightarrow W a continuous left (right) linear map, then ker (T*) = $\{f \in W^* / f/_{T(V)} = 0\}$. If in addition T(V) is closed in W, then $T^*(W^*) = \{f \in V^* / f/_{\ker T} = 0\}$. So, inparticular, $T^*(W^*)$ is closed in V.

Proof: $T^*(f) = 0 \iff [T^*(f)](x) = 0$ for all $x \in V \iff f(T(x)) = 0$ for all $x \in V \iff f \in \{f \in W^*/f/_{T(V)} = 0\}$. Hence $\ker T^* = \{f \in W^*/f/_{T(V)} = 0\}$.

Assume that T(V) is closed in W. For each $1 \in \{f \in V^*/f/_{ker} T = 0\}$ let $\widetilde{1}$: $V/_{\ker} \xrightarrow{T} H$ be defined by $\widetilde{1}([x]) = 1(x)$. By the same argument as in Lemma 4.17, $\widetilde{1} \in (V/_{\ker T})$. Let P: $V \rightarrow V/_{\ker T}$ be the natural map. Then $\widetilde{1} \circ P = 1$ for all $\ell \in \{f \in V^*/f_{\ker T} = 0\}$. Let \widetilde{T} : $V/_{\ker T} \longrightarrow (T(V))$ be the natural map. By lemma 4.17, T is a homeomorphism and we let S: $T(V) \longrightarrow V/_{\ker T}$ be its inverse. Since $\widetilde{1} \circ S \in (T(V))^*$, there exists $1 \in W^*$ such that $1/T(V) = \widetilde{1} \circ S$ by Hahn-Banach theorem. Since $\widetilde{T} \circ P = T$, $P = S \circ \widetilde{T} \circ P = S \circ T$. Hence $[T^*(1')](x) = 1'(T(x)) = \widetilde{1} \circ S(T(x)) = \widetilde{1}(S(T(x))) = \widetilde{1}([x]) = 1(x)$ for all $x \in V$ ie. $T^*(1') = 1$. Hence $\{f \in V^*/f|_{ker} T = 0\} \subseteq T^*(W^*)$. Let $1 \in T^*(W^*)$ there exists $1' \in W^*$ such that $1 = T^*(1')$. Let $x \in \ker T$. Then 1(x) = 1'(T(x)) = 1'(0) = 0, so $1 \in \{f \in V'/f|_{ker} = 0\}$. $T^*(W^*) \subseteq \{f \in V^*/f|_{ker T} = 0\}.$ Hence $\{f \in V^*/f|_{ker T} = 0\} = T^*(W^*).$ It follows that $T^*(W^*)$ is closed.

Corollary 4.28 If W is closed left (right) linear subspace of LNLS (RNLS) V, then P_W^* is a homeomorphism of $(V/_W)^*$ with $\{f \in V^*/f/_W = 0\}$ where $P_W \colon V \longrightarrow V/_W$ is the natural map.

Proof: Let f, g $(V/_W)^*$ be such that $P_W^*(f) = P_W^*(g)$ therefore $f(P_W(x)) = g(P_W(x))$ for all $x \in V$. Let $\alpha \in V/_W$. Since P_W is onto, there exists $x \in V$ such that $P_W(x) = \alpha$, so $f(\alpha) = f(P_W(x)) = g(P_W(x))$ = g(A). Hence P_W^* is 1-1. By lemma A.27, $P_W^*(V/_W)^* = \{f \in V^*/f/_{ker}, P_W^{*}=0\}$

= $\{f \in V^*/f/_W = 0\}$ which is closed in V^* , and hence space. By the open mapping theorem, P_W^* is open.

Corollary 4.29 If T(V) is closed in W, then

- i) ker $(T^*) \cong (W/_{T(V)})^* = (\operatorname{coker} T)^*$
- ii) $(\ker T)^* = V^*/_{T(W^*)} = \operatorname{coker} (T^*)$

Proof: By lemma 4.27 and Corollary 4.28, ker $(T^*) \cong (W/_{T(V)})^*$ = $(\operatorname{coker} T)^*$. Claim $(\ker T)^* \cong V^*/_{\Lambda}$ where $\Lambda = \{f \in V^*/_{Ker} T = 0\}$. To prove this, let $\varphi: V^*/_A \longrightarrow (\ker T)^*$ be defined by $\varphi([f+A]) = f/_{\ker T}$ Clearly (q is 1-1 and right linear. By the Hahn-Banach Theorem, for each $f \in (\ker T)^*$ there exists an $f' \in V'$ such that $f'/_{\ker T} = f$. Hence φ is onto. Claim that φ is continuous. Let $(\mathtt{F_n})_{\mathtt{n} \in \mathbb{N}}$ be a sequence in V^{\top}/A such that $(F_n)_{n \in \mathbb{N}}$ converges to 0. We must show that ($(\varphi(F_n))_{n\in\mathbb{N}}$ converges to 0. To prove this, given $\varepsilon>0$ for each $n \in \mathbb{N}$ there exists $f_n \in \mathbb{F}_n$ such that $\|f_n\| < \|F_n\| + \varepsilon/n$. Since $f_n \in \mathbb{F}_n$ for all $n \in \mathbb{N}$, $\varphi(\mathbb{F}_n) = f_{n/\ker T}$. Therefore $\|\varphi(\mathbb{F}_n)\| = \|f_{n/\ker T}\| \le \|f_n\|$ $\leq \|F_n\| + \mathcal{E}_n$ which converges to 0, so $(\|\phi(f_n)\|)_{n \in \mathbb{N}}$ converges to 0. Hence $(\phi(F_n))_{n\in\mathbb{N}}$ converges to 0. Hence we have the claim. By the open mapping theorem and lemma 4.27, (ker T) $= V^*/A = V^*/A = V^*/A$ coker (T).

Theorem 4.30 Let V be LNLS's (RNLS's) which are also Banach space. Then ind $(I-T) = -ind (I-T^*)$.

ind (I-T) = dim ker (I-T)-dim coker (I-T) $= \dim \operatorname{coker} (\operatorname{I-T}^{\times})-\dim \ker (\operatorname{I-T}^{\times})$ $= -\operatorname{ind} (\operatorname{I-T}^{\times}).$

Weak Topology Let $(V, \| \ \|)$ be LNLS (RNLS) over (H). The norm gives a metric d by defining $d(x,y) = \|x-y\|$ and the metric gives a topology by taking the open balls $B(x_0, E) = \{x \in V \mid d(x,x_0) < E\}$ as a base for the topology. We call this the strong topology hence a sequence $(x_n)_{n \in \mathbb{N}}$ converges to x in the strong topology if and only if $\lim_{n \to \infty} \|x_n - x\| = 0$.

Definition 4.31 The weak topology on V is the smallest topology on V which makes every $f \in V$ continuous. More precisely, given E > 0 and $f_1, f_2, \ldots, f_r \in V$ then $u = u_{f_1, f_2, \ldots, f_r, E} = \left\{ x \in V \middle/ f_\alpha(x) \middle/ f_\alpha$

Definition 4.32 The sequence $(x_n)_{n \in \mathbb{N}}$ converges weakly to $x \in V$ if and only if $\lim_{n \to \infty} x_n = x$ in the weakly topology of V.

Theorem 4.33 $\lim_{n\to\infty} x_n = x$ weakly if and only if $\lim_{n\to\infty} f(x_n) = f(x)$ for all $f \in V^*$.

Proof: Obvious.

Remark: Strong convergence \Longrightarrow weak convergence. Since if $\lim_{n\to\infty} x_n = x | \text{strongly and } f \in V^* \text{ then } |f(x_n) - f(x)| = |f(x_n - x)|$ $\leqslant ||f|| ||x_n - x|| \longrightarrow 0 \text{ as } n \longrightarrow \infty. \text{ However, it dim } V = \infty \text{ then weak}$ convergence \Longrightarrow strong convergence.

Example 4.34 Let $V = 1_{\mathbb{H}}^2$ $e_n = (0,0,...,1,0,0,...)$ for all $n \in \mathbb{N}$ and $\varphi \in V^*$. Let $\varphi(e_n) = \beta_n$ for all $n \in \mathbb{N}$. By the same proof as in the example 1.24 (i), $(\beta_n)_{n \in \mathbb{N}} \in \mathbb{N}^2$, so $\lim_{n \to \infty} \beta_n = 0$. Hence $\lim_{n \to \infty} \varphi(e_n) = \varphi(0)$. Thus $\lim_{n \to \infty} e_n = 0$ weakly. But $(e_n)_{n \in \mathbb{N}}$ is not strongly convergent because if $m \neq n$ $d(e_n, e_n) = \sqrt{2}$ therefore $(e_n)_{n \in \mathbb{N}}$ is not cauchy with respect to the norm metric.

Remarks: (i) In a finite dimensional left (right) vector space V over IH weak convergence is equivalent to strong convergence.

Proof: Let $\lim_{n\to\infty} x_n = x_0$ weakly. Must show that $\lim_{n\to\infty} x_n = x_0$ with respect to the norm. Let e_1, e_2, \ldots, e_n be a basis of V. Given $\alpha \in \mathbb{N}$ such that $1 \leq \alpha \leq n$ let $e^{\alpha} : V \to \mathbb{N}$ be the map $e^{\alpha} (\sum_{\beta=1}^n x_\beta e_\beta) = x_\alpha$. Then e^{α} is left linear. Since V is finite dimensional, e^{α} is continuous,

so $e^{\alpha} \in V^{*}$. Let $e^{\alpha}(x_{n}) = x_{n}^{(\alpha)}$ the α th component of the vector x_{n} .

Since $\lim_{n \to \infty} x_{n} = x_{0}$ weakly, $\lim_{n \to \infty} x_{n}^{\alpha} = x_{0}^{\alpha}$ for all $1 \leqslant \alpha \leqslant n$.

Since in the finite dimensional case all norms are equivalent without loss of generality let $\|\cdot\|_{\infty}$ be the norm on V. Given $\epsilon > 0$ there exists a N $_{\epsilon}$ such that $|\mathbf{x}_{m}^{(\alpha)} - \mathbf{x}_{0}^{(\alpha)}| < \epsilon$ for all $m > N_{\epsilon}$ and for all $\alpha \leqslant n$ therefore $\|\mathbf{x}_{m} - \mathbf{x}_{0}\| = \sup_{1 \leqslant \alpha \leqslant n} \left\{ |\mathbf{x}_{m}^{(\alpha)} - \mathbf{x}_{0}^{(\alpha)}| \right\} \leqslant \epsilon$ ie.

 $\lim_{m\to\infty} x_m = x_0 \quad \text{with respect to} \quad ||_{\infty} \quad \text{and so} \quad \lim_{m\to\infty} x_m = x_0 \quad \text{with respect}$ to all norm on V.

ii) If $(x_n)_{n\in\mathbb{N}}$ is a strongly convergent sequence, then clearly $(x_n)_{n\in\mathbb{N}}$ is bounded.

We want to show that if $(x_n)_{n\in\mathbb{N}}$ a weakly convergent sequence, then $(x_n)_{n\in\mathbb{N}}$ is bounded. In order to prove this we need some lemmas.

Lemma 4.35 Let V be a LNLS (RNLS) and $(x_n)_{n\in\mathbb{N}}$ an unbounded sequence in V. Let $\varphi_0\in V^*$ and $\overline{B(\varphi_0,r)}$ be the closed ball in V^* center at φ_0 of radius r>0. Then $\{\Psi(x_n)/\Psi\in \overline{B(\varphi_0,r)}, n\in\mathbb{N}\}$ is unbounded.

Proof: Suppose not. Therefore $\{\psi(\mathbf{x}_n)/\psi\in\overline{B(\phi_0,\mathbf{r})}, n\in\mathbb{N}\}$ is bounded. Claim $\{\psi(\mathbf{x}_n)/\psi\in\overline{B(\phi,\mathbf{r})}, n\in\mathbb{N}\}$ is also bounded. To prove this claim, note that if $\psi\in\overline{B(0,\mathbf{r})}$, Then $\psi+\psi_0\in\overline{B(\phi_0,\mathbf{r})}$. Since $\psi(\mathbf{x}_n)=\psi(\mathbf{x}_n)+\psi_0(\mathbf{x}_n)-\psi_0(\mathbf{x}_n)$, therefore we have the claim. Hence

there exists a K such that $|\psi(\mathbf{x}_n)| < K$ for all $\psi \in \overline{B(0,r)}$ and for all $n \in \mathbb{N}$. Since the map of $V \longrightarrow V^*$ given by $\mathbf{x} \mapsto \psi_{\mathbf{x}}$ is an isometry, $\|\mathbf{x}_n\| = \|\psi_{\mathbf{x}_n}\| = \sup_{\|\varphi\|=1} \left\{ |\psi_{\mathbf{x}_n}(\varphi)| \right\} = \frac{1}{r} \sup_{\|\varphi\|=r} \left\{ |\psi_{\mathbf{x}_n}(\varphi)| \right\} = \frac{1}{r} \sup_{\|\varphi\|=r} \left\{ |\psi(\mathbf{x}_n)| \right\} < K/_r$, so $(\mathbf{x}_n)_{n \in \mathbb{N}}$ is bounded, a contradiction.

Theorem 4.36 Let V be a LNLS (RNLS) and $(x_n)_{n \in \mathbb{N}}$ a weakly convergent sequence, then $(x_n)_{n \in \mathbb{N}}$ is bounded.

Proof: Suppose not. Hence $(x_n)_{n \in \mathbb{N}}$ is unbounded. Let \overline{B}_0 be any closed ball in V^* . Then $(\varphi(x_n))_{\varphi \in \overline{B}_0}$ is unbounded by lemma 3.35. Hence there exists a $\varphi_0 \in B_0$ and $n_1 \in \mathbb{N}$ such that $|\varphi_0(x_{n_1})| > 1$. Since ψ_{x_n} is continuous, there exists a neighborhood U such that $\varphi \in U$ and $|\psi_{\mathbf{x}_n}(\varphi)| > 1$ for all $\varphi \in U$. Let \overline{B}_1 be a closed ball contained in U. Hence $\overline{B}_1 \subseteq U \cap \overline{B}_0$. So we have that for all $\varphi \in \overline{B}_1 \mid \psi_{\mathbf{x}_n} (\varphi) \mid > 1$. $(\varphi(x_n))_{\varphi \in \overline{B}_1}$ is unbounded by lemma .35. Hence there exists a $\varphi_1 \in \overline{B}_1$ and there exists an $n_2 \in \mathbb{N}$ such that $|\varphi_1(x_{n_2})| > 2$. The same reasoning as before show that there exists a closed ball $B_2 \subseteq B_1$ sucht that for all $\varphi \in \overline{B}_2 |\varphi(x_{n_2})| > 2$. Continue in this way, we get that for all kelN there exist a closed ball $B_k \subseteq B_{k-1}$ and an $n_k \in N$ such that $|\varphi(x_{n_k})| > k$ for all $\varphi \in \overline{B}_k$. Then $\bigcap_{k \in \mathbb{N}} \overline{B}_k \neq \emptyset$ [1, P60]. Let $\varphi \in \bigcap_{k \in \mathbb{N}} B_k$ therefore $\varphi \in B_k$ for all $k \in \mathbb{N}$, hence $|\varphi(\mathbf{x}_{n_k})| > k$.

So $(\varphi(\mathbf{x}_n))$ is unbounded. Since $(\mathbf{x}_n)_{n\in\mathbb{N}}$ is weakly convergent, there exists an $\mathbf{x}_0\in\mathbb{V}$ such that $\lim_{n\to\infty}\varphi(\mathbf{x}_n)=\varphi(\mathbf{x}_0)$. Since $(\varphi(\mathbf{x}_n))$ is a subsequence of convergent sequence, $(\varphi(\mathbf{x}_n))$ is convergent, so bounded, a contradiction.

Weak and Weak * convergence in V

Let V be a LNLS (RNLS). Then V is a RNLS (LNLS). So it has strong topology which comes from the norm (which is a metric topology). Also, we can give: V the weak topology. We can put a third topology on V called the weak * topology. This topology is the smallest topology making $(\psi_x)_{x \in V}$ continuous. This topology can be described as follows: Let $A \subseteq V$ be a finite set and let E > 0 be given. Define $U_{A,E} = \{f \in V^* / |f(x)| < E \quad \forall x \in A \}$ [if $A = \{x_1, x_2, \ldots, x_m\}$ we shall sometimes write $U_{x_1, x_2, \ldots, x_m, E} = \{f \in V^* / |f(x)| < E \quad \forall n = 1, \ldots, x_m\}$ and we take the set of the form $U_{A,E}$ to be a neighborhood base of $0 \in V^*$. This generated topology on V^* is called the weak * topology. If $\lim_{N \to \infty} f_n = f$ in this topology we say that $\lim_{N \to \infty} f_n = f$ weakly *.

Weak and Weak-convergent in \overline{V} defined similarly.

Theorem 4.37 $\lim_{n\to\infty} f_n = f$ in the weak # (-) topology if and only if $\lim_{n\to\infty} \psi_{\mathbf{x}}(f_n) = \psi_{\mathbf{x}}(f)$ for all $\mathbf{x} \in V$.

Proof: Obvious.

Theorem μ .38 Let $(f_n)_{n\in\mathbb{N}} \subseteq V^*(\overline{V})$ where V is LNLS (RNLS) which is also in Banach space such that $\lim_{n\to\infty} f_n = f$ weakly #(-). Then $(f_n)_{n\in\mathbb{N}}$ is bounded.

Proof: Some argument as in Theorem 4.36.

Theorem 4.39 (Generalized Bolzano-Weierstrass Theorem) Let V be any separable LNLS (RNLS). Then every bounded sequence in $V^*(\overline{V})$ has a weakly *(-) convergent subsequence.

Proof: Let $D = (x_n)_{n \in \mathbb{N}}$ be a countable dense subset of V. Let $(f_n)_{n \in \mathbb{N}}$ be a bounded sequence in V^* therefore there exists a M such that $\|f_n\| < M$ for all $n \in \mathbb{N}$. Since $\|f_n(x_1)\| \le \|f_n\| \|x_1\| < \infty$ for all $n \in \mathbb{N}$, $(f_n(x_1))_{n \in \mathbb{N}}$ is a bounded sequence in \mathbb{H} , hence there exists a convergent subsequence $(f_n^{(1)}(x_1))_{n \in \mathbb{N}}$ of $(f_n(x_1))_{n \in \mathbb{N}}$. Since $\|f_n^{(1)}(x_2)\| \le \|f_n^{(1)}\| \|x_2\| < \infty$ for all $n \in \mathbb{N}$, $(f_n^{(1)}(x_2))_{n \in \mathbb{N}}$ is a bounded sequence in \mathbb{H} , hence there exists a convergent subsequence $(f_n^{(2)}(x_2))_{n \in \mathbb{N}}$ of $(f_n^{(1)}(x_2))_{n \in \mathbb{N}}$. Continue in this way there exist a subsequence $(f_n^{(k)})_{n \in \mathbb{N}}$ for all $k = 1, 2, \ldots$ such that

- 1) $(f_n^{(k+1)})_{n \in \mathbb{N}}$ is a subsequence of $(f_n^{(k)})_{n \in \mathbb{N}}$ for all k = 1, 2, ...
 - 2) $(f_n^{(k)})_{n \in \mathbb{N}}$ converges at the points x_1, x_2, \dots, x_k .

Choose the diagonal $f_1^{(1)}, f_2^{(2)}, \ldots$. This sequence converges for all x_n . Claim that $(f_n^n(x))_{n \in \mathbb{N}}$ converges for all $x \in \mathbb{V}$. To prove this, it suffices to show that it is cauchy. Let $x \in \mathbb{V}$ and $\xi > 0$ be given. Since D is dense in V, there exists \mathbb{N}_{ξ} such that $\|x_{\mathbb{N}_{\xi}} - x\| < \frac{\epsilon}{3M}$. Since $(f_n^{(n)}(x_{\mathbb{N}_{\xi}}))$ converges, there exists and $\mathbb{N} \in \mathbb{N}$ such that $\|f_n^{(n)}(x_{\mathbb{N}_{\xi}}) - f_m^m(x_{\mathbb{N}_{\xi}})\| < \frac{\epsilon}{3}$ whenever m, n > N. Hence for all n, m > N

$$\begin{aligned} \left| f_{n}^{(n)}(x) - f_{m}^{(m)}(x) \right| &\leq \left| f_{n}^{(n)}(x) - f_{n}^{(n)}(x_{N_{\xi}}) \right| + \left| f_{n}^{(n)}(x_{N_{\xi}}) - f_{m}^{(m)}(x_{N_{\xi}}) \right| \\ &+ \left| f_{m}^{(m)}(x_{N_{\xi}}) - f_{m}^{(m)}(x) \right| \\ &\leq \left\| f_{n}^{(n)} \right\| \left\| x - x_{N_{\xi}} \right\| + \frac{\varepsilon}{3} \left\| f_{m}^{(m)} \right\| \left\| x_{N_{\xi}} - x \right\| \\ &\leq M \cdot \frac{\varepsilon}{3} + M \cdot \frac{\varepsilon}{3} + M \cdot \frac{\varepsilon}{3} = \varepsilon \end{aligned}$$

Hence $(f_n^{(n)}(x))_{n\in\mathbb{N}}$ is cauchy. Since |H| is complete $(f_n^{(n)}(x))_n$ |H| converges. Define $f_0: V \to |H|$ by $f_0(x) = \lim_{n\to\infty} f_n^n(x)$. Then f_0 is left linear. If $x \neq 0$, then $|f_0(x)| = \lim_{n\to\infty} f_n^{(n)}(x)| = \lim_{n\to\infty} |f_n^{(n)}(x)| \leq \lim_{n\to\infty}$

Theorem 4.40 Let V be a separable LNLS (RNLS), B the closed unit ball in V and B* \subset V*[\overline{v}]. The closed unit ball in V*[\overline{v}]. The topology on B* induced by the weak * [-] topology in the same as that induced by the metric $P(f,g) = \sum_{n=1}^{\infty} \frac{|f(x_n) - g(x_n)|}{2^n}$ where $\{x_1, x_2, \cdots\}$ is a countable dense subset of B.

Proof: Since $\rho(f,g) = \sum_{n=1}^{\infty} \frac{|f(x_n) - g(x_n)|}{2^n} \leqslant \sum_{n=1}^{\infty} \frac{2}{2^n}$ $= \sum_{n=1}^{\infty} 1/2^{n-1} = 1 \text{ for all } f, g \in \mathbb{B}^{\times}, \rho \text{ is well-defined. If } \rho(f,g) = 0,$ then $(f-g)(x_n) = 0$ for all $n \in \mathbb{N}$. Let $x \in \mathbb{B}$. Since $(x_n)_{n \in \mathbb{N}}$ is dense in \mathbb{B} , there exists $\lim_{k \to \infty} x_n = x$. Hence $(f-g)(x) = \lim_{k \to \infty} (f-g)(x_n)$ = 0. So that f = g. The other axioms for a metric space are trivial, $\rho \text{ is a metric on } \mathbb{B}^{\times}. \text{ To show that the topologies are the same, we}$

1. $Q_{\varepsilon} = \{f \in B^*/P(0,f) < \varepsilon\} \supseteq B^* \cap U_{A,\varepsilon'}$ where $U_{A,\varepsilon'}$ is a weak * neighborhood of $0 \in V^*$ and

must prove that

2. Every weak * neighborhood $U_{A,\xi} \cap B \supset Q_{\xi}$ a metric neighborhood of $0 \in V$.

To prove 1, given $\varepsilon > 0$. Let N be such that $2^{-N} < \varepsilon/2$ and consider the weak * neighborhood of zero $U = U_{x_1, x_2, \dots, x_N, \varepsilon/2} = \{f \in V^* / |f(x_n)| < \varepsilon/2 \quad \forall n=1,2,\dots,N \}$. Then $f \in B^* \cap U$ implies that P(f,0)

$$= \frac{N}{n=1} \frac{|f(x_n)|}{2^n} + \frac{\infty}{n=N+1} \frac{|f(x_n)|}{2^n} \le \frac{\varepsilon}{2} (\frac{N}{n=1} \frac{1}{2^n}) + \frac{\infty}{n=N+1} \frac{1}{2^n}$$

$$= \frac{\varepsilon}{2} \left(\frac{N}{n+1} \frac{1}{2} n \right) + \frac{1}{2} N < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \text{ and hence BO } U \subset \mathbb{Q}_{\varepsilon}$$

This proves 1.

To prove 2, given $\delta > 0$ let $U = U_{y_1, y_2, \dots, y_m}$, $\delta = \{f \in V^* / |f(y_n)| < \delta \}$ $n = 1, 2, \dots, m\}$ be any weak # neighborhood of $0 \in V^*$.

case 1. $\|\mathbf{y}_n\| \leqslant 1$ for all $n=1,2,\ldots,m$. Since $\{\mathbf{x}_1,\mathbf{x}_2,\ldots\}$ is dense in B, there exists indices $\mathbf{n}_1,\mathbf{n}_2,\ldots,\mathbf{n}_m$ such that $\|\mathbf{y}_k-\mathbf{x}_n\| < \delta/2$ $k=1,2,\ldots,m$. Let $N=\max\left\{\mathbf{n}_1,\mathbf{n}_2,\ldots,\mathbf{n}_m\right\}$ and $\ell=\delta/2$ N+1. Then $\ell\in\mathbb{Q}_{\ell}$ implies that $|f(\mathbf{y}_k)|\leqslant |f(\mathbf{x}_n)|+|f(\mathbf{y}_k)-f(\mathbf{x}_n)|<\delta/2+\|f\|\|\mathbf{y}_k-\mathbf{x}_n\| < \delta/2+\|f\|\|\mathbf{y}_k-\mathbf{x}_n\|$ $\ell=1,2,\ldots,m$. Therefore \mathbb{Q}_{ℓ} implies that $|f(\mathbf{y}_k)|\leqslant |f(\mathbf{x}_n)|+|f(\mathbf{y}_k)-f(\mathbf{x}_n)|<\delta/2+\|f\|\|\mathbf{y}_k-\mathbf{x}_n\|$

case 2. $\|y_k\| > 1$ for some $k \in \{1, 2, \dots, m\}$. Let

$$\mathbf{y}_{k}' = \begin{cases} \mathbf{y}_{k} & \text{if } ||\mathbf{y}_{k}|| \leq 1 \\ \\ \frac{\mathbf{y}_{k}}{\|\mathbf{y}_{k}\|} & \text{if } ||\mathbf{y}_{k}|| > 1 \end{cases}$$
 and let

 $\text{M} = \max \left\{ \|\mathbf{y}_k\|/k = 1, 2, \dots, m \right\} \text{.} \quad \text{Then let } \mathbf{U}' = \mathbf{U}'_{\mathbf{y}_1', \mathbf{y}_2', \dots, \mathbf{y}_m', \delta/M}$ $\text{Therefore } \mathbf{U}' \subseteq \mathbf{U}. \quad \text{Since } \left\{ \mathbf{x}_1, \mathbf{x}_2, \dots \right\} \text{ is dense in B, there exists }$ $\text{indices } \mathbf{n}_1, \mathbf{n}_2, \dots, \mathbf{n}_m \text{ such that } \|\mathbf{y}_k' - \mathbf{x}_{\mathbf{n}_k}\| < \delta/2\mathbf{M} \quad k = 1, 2, \dots, m.$ $\text{Let } \mathbf{N} = \max \left\{ \mathbf{n}_1, \mathbf{n}_2, \dots, \mathbf{n}_m \right\} \text{ and } \mathbf{E} = \delta/2\mathbf{N} + \mathbf{1}_{\mathbf{M}} \text{.} \quad \text{By the same proof as }$

above $Q_{\varepsilon} \subset U' \cap B' \subseteq U \cap B'$.

Corollary 4.41 Let V be a separable LNLS (RNLS) which is also a Banach space. Then every bounded subset of $V^*(\overline{V})$ is relatively compact in the weak * (-) topology. The converse is also true.

Proof: Let A be any bounded subset—of V. Therefore there exists a r > 0 such that $A \subseteq \overline{B(0,r)}$. By Theorem 4.40, $\overline{B(0,r)}$ is a metric space. Hence we must show that \overline{A} has the BW property i.e. every sequence $(f_n)_{n \in \mathbb{N}}$ in \overline{A} has a convergent subsequence convering to a point in \overline{A} . Let $(f_n)_{n \in \mathbb{N}}$ be any sequence in \overline{A} therefore $(f_n)_{n \in \mathbb{N}}$ is a bounded sequence in $\overline{B(0,r)}$ therefore there exists a weak * convergent subsequence $(f_n)_{n \in \mathbb{N}}$ of $(f_n)_{n \in \mathbb{N}}$ by Theorem 4.41. Hence A is relatively compact in the weak * topology. The converse is obvious.

Theorem 4.42 Let V be a separable LNLS (RNLS) which is also a Banach. Then every closed ball subset of $V^*(\overline{V})$ is compact is compact in the weak * (-) topology (by closed, we mean closed in the strong topology)

Proof: Claim that every closed ball in the strong topology is closed in the weak * topology. Since translation take every closed set into another closed set we need only prove that the closed ball $B_c = \{f \in V^* / \|f\| \leqslant C\}$ is closed in the weak * topology. Suppose that $f \notin B_c$ therefore there exists a $x_0 \in V$ such

that $\|\mathbf{x}_0\| = 1$ and $\mathbf{f}_0(\mathbf{x}) = \alpha > C$. Then the set $U = \left\{ \mathbf{f} \in V^* / \left| \mathbf{f}(\mathbf{x}_0) \right| > \frac{1}{2} (\alpha + C) \right\} \text{ is a weak } * \text{ neighborhood of } \mathbf{f}_0$ containing no element of \mathbf{B}_c therefore \mathbf{B}_c is closed in the weak * topology. Since \mathbf{B}_c is bounded, it is compact in the weak * topology.

Definition 4.43 Let V be a LSPS (RSPS) which is also a Hilbert space and f: V \rightarrow V a continuous left (right) linear map. Then f is said to be self-adjoint if and only if $f(x) \cdot y = xf(y)$ for all $x, y \in V$.

Example 4.44 (i) Let $[a_{ij}]_{n \times n}$ be a metric where $a_{ij} \in \mathbb{H}$ and a $a_{ij} = \overline{a}_{ji}$ for all i, $j \leqslant n$. Let $f \colon \mathbb{H}^n \to \mathbb{H}^n$ be defined by $(f(x))_i = \sum_{j=1}^\infty x_j a_{ij}$ for all $x = (x_1, x_2, \dots, x_n) \in \mathbb{H}^n$. Then f is continuous left linear map. Claim that f is selt-adjoint. Let $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n) \in \mathbb{H}^n$. Then $f(x) \cdot y = \sum_{j=1}^n \sum_{j=1}^n x_j a_{ij} y_j = \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n x_j a_{jj} y_j = \sum_{j=1}^n x_j a_{jj} y$

(ii) Given l_H^2 the RSPS structure. Let $f: l_H^2 \longrightarrow l_H^2$ be defined by $f(x_1, x_2, \dots) = (\sum_{j=1}^{\infty} a_{1j}x_j, \sum_{j=1}^{\infty} a_{2j}x_j, \dots)$ where $\sum_{j=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2 < \infty$, $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2 < \infty$ and $a_{ij} = \bar{a}_{ji}$ for all $i, j \in \mathbb{N}$.

Then f is right linear cand c.c., hence f is continuous. Claim that f is self-adjoint. Let $x = (x_1, x_2, ...)$, $y = (y_1, y_2, ...) \in L^2$. Then $f(x) \cdot y = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \overline{a_{ij}x_{j}}y_{i} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \overline{x_{i}a_{ji}}y_{i} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \overline{x_{i}a_{ji}}y_{j}$ $= \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \overline{x_{i}a_{ij}}y_{j} = x \cdot \cdot f(y). \text{ Hence f is self-adjoint.}$

Proof: Let λ be any eigenvalue of f. There exists an $x \in V \setminus \{0\}$ such that $f(x) = \lambda x$. Then $\lambda(x \cdot x) = (\lambda x) \cdot x = f(x) \cdot x = x \cdot f(x) = x \cdot (\lambda x) = (x \cdot x) \overline{\lambda}$, and hence $\lambda = \overline{\lambda}$ i.e. $\lambda \in \mathbb{R}$. Moreover, if $f(x) = \lambda x$, $f(y) = \mu y$ ($\lambda \neq \mu$), then $\lambda(x \cdot y) = (\lambda x) \cdot y = f(x) \cdot y = x \cdot f(y) = x \cdot (\mu y) = (x \cdot y) \overline{\mu} = \mu(x \cdot y)$ and hence $x \cdot y = 0$ i.e., the vectors x and y are orthogonal.

We now shall prove the Hilbert-Schmidt Theorem. First we shall need some lemmas.

Lemma 4.46 Let V be a ISPS (RSPS) which is also a Hilbert space and $f: V \longrightarrow V$ a c.c self-adjoint map. If $\lim_{n \to \infty} x_n = x$ weakly, then $\lim_{n \to \infty} f(x_n) \cdot x_n = f(x) \cdot x$.

Proof:
$$|f(x_n) \cdot x_n - f(x) \cdot x| \le |f(x_n) \cdot x_n - f(x) \cdot x_n| + |f(x) \cdot x_n - f(x) \cdot x|$$

$$= |f(x_n - x) \cdot x_n| + |x \cdot f(x_n - x)|$$

$$\le (||x_n|| + ||x||) ||f(x_n - x)|| .$$

Since $\lim_{n \to \infty} x_n = x$ weakly, there exists a M such that $||x_n|| \le M$ for all $n \in \mathbb{N}$. Therefore $|f(x_n) \cdot x_n - f(x) \cdot x| \leq (M + ||x||) ||f(x_n) - f(x)||$. Since f is c.c. and $(x_n)_{n \in \mathbb{N}}$ is bounded, there exists a strongly subsequence $(f(x_n))$ of $(f(x_n))_{n \in \mathbb{N}}$. Claim that $\lim_{n \to \infty} f(x_n)$ = f(x) weakly. To prove this, let $\psi \in V^*$ therefore there exists a unique $y \in V$ such that $\psi(x) = x \cdot y$ for all $x \in V$. Hence $\psi(f(x_n))$ = $f(x_n) \cdot y = x_n \cdot f(y)$ for all $n \in \mathbb{N}$. Claim $\lim_{n \to \infty} x_n \cdot f(y) = x \cdot f(y)$. Let $\eta(x) = x \cdot f(y)$ for all $x \in V$. Then η is continuous and left linear. Hence $\lim_{n\to\infty} \eta(x_n) = \eta(x)$ i.e., $\lim_{n\to\infty} x_n \cdot f(y) = x \cdot f(y)$. Thus we have the claim. Therefore $\lim_{n\to\infty} \psi(f(x_n)) = \lim_{n\to\infty} x_n \cdot f(y)$ = $x \cdot f(y) = f(x) \cdot y = \psi(f(x))$. Hence $\lim_{n \to \infty} f(x_n) = f(x)$ weakly. Let $\lim_{k\to\infty} f(x_n) = z$ strongly therefore $\lim_{k\to\infty} f(x_n) = z$ weakly. Since $\lim_{n\to\infty} f(x_n) = x$ weakly and $\lim_{k\to\infty} f(x_n) = z$ weakly, $\lim_{n\to\infty} \varphi(f(x_n)) = \varphi(f(x)) \text{ and } \lim_{k\to\infty} \varphi(f(x_n)) = \varphi(z) \text{ for all } \varphi \in V^*$ therefore $\varphi(f(x)) = \varphi(z)$ for all $\varphi \in V$. Let $\{e_{\alpha} \mid \alpha \in \mathbb{N} \text{ be an }$ orthonormal left basis of V. Then if $\varphi_{\alpha}(x) = x \cdot e_{\alpha}$ for all $\alpha \in \mathbb{N}$ we get that $\psi_{\alpha}(f(x)) = \psi_{\alpha}(z)$ for all $\alpha \in \mathbb{N}$ therefore $f(x) \cdot e_{\alpha} =$ z.e for all $\alpha \in \mathbb{N}$. i.e., (f(x)-z).e for all $\alpha \in \mathbb{N}$. Since $(e_{\alpha})_{\alpha \in \mathbb{N}}$ is maximal orthonormal set, $f(x) \cdot z = 0$, hence f(x) = z.

Hence we have the claim. Thus $\lim_{k\to\infty} f(x_n) = f(x)$. Claim that lim $f(x_n) = f(x)$ strongly. Suppose not therefore there exists $\xi_0 > 0$ such that for each Né IN there exists n > N such that $f(x_n) \notin B(f(x), \xi_0)$. Let N = 1 there exists a $m_1 > N$ such that $f(x_m) \notin B(f(x), \xi_0)$. Let N = m₁ there exists m₂ > m₁ such that $f(x_m) \neq B(f(x), \ell_0)$. Continuing we get a sequence $(x_k)_{k \in \mathbb{N}}$ such that $\lim_{k\to\infty} f(x_n) \neq f(x)$. Since $(f(x_m))$ is relatively compact, there exists a strongly convergent subsequence ($f(x_{m_1})$)

Let $\lim_{x \to \infty} f(x_m) = y$. Since $\lim_{k \to \infty} f(x_m) \neq f(x)$, $f(x) \neq y$.

Since $\lim_{n\to\infty} f(x_n) = f(x)$ weakly, $\lim_{n\to\infty} \varphi(f(x_n)) = \varphi(f(x))$ for all

 $\varphi \in V^*$, so $\lim_{l \to \infty} \varphi(f(x_m)) = \varphi(f(x))$ for all $\varphi \in V^*$. Since

 $\lim_{1\to\infty} (\varphi(f(x_{m_{k_1}})) = \varphi(y) \quad \text{for all } \varphi \in V^*, \varphi(f(x)) = \varphi(y) \quad \text{for all}$

 $\varphi \in V$. By the same argument as above, f(x) = y, a contradiction.

Hence we have the claim. Thus $\lim_{n\to\infty} f(x_n) \cdot x_n = f(x) \cdot x$.

Lemma 4.47 Let V be a separable LSPS (RSPS) which is also a Hilbert space. Let f: V → V be a nonzero c.c. self-adjoint map. Let Q(x) = f(x).x for all $x \in V$. Suppose that there exists a $x_0 \in \overline{B(0,1)}$ such that sup $\{|Q(x)|\} = |Q(x_0)|$. Then if $y \perp x_0$ $x \in B(0,1)$ we must have that $f(x_0) \cdot y = x_0 \cdot f(y) = 0$. In particular x_0 is an

eigenvector of f.

Proof: Suppose $Q \equiv 0$. Let $x_0 \in V \setminus \{0\}$. Then let $x' = \frac{x_0}{\|x_0\|}$ therefore ||x'|| = 1. Let $a \in \mathbb{R} \setminus \{0\}$ be arbitrary and f(x') = y.

Then let $x = \frac{x' + ay}{(1+|a|^2||y||^2)^{1/2}}$ therefore ||x|| = 1.

 $0 = Q(x) = f(x)_{0} = \frac{(f(x) + af(y))_{0}(x + ay)}{1 + |a|^{2} ||y||^{2}}$

 $= \frac{[f(x).x + a(f(x).y) + a(f(y).x) + a^{2}(f(y).y)]}{1 + |a|^{2} ||y||^{2}}$

therefore 0 = a[f(x),y+f(y),x] = a[f(x'),y+f(x'),y] = 2a Re(f(x'),y)= 2a(f(x).y), hence $f(x).f(x) = \frac{f(x_0).f(x_0)}{\|x_0\|^2} = 0$, so $f(x_0) = 0$.

Hence $f \equiv 0$, a contradiction. So assume that $Q \not\equiv 0$. Then $x_0 \not\equiv 0$.

Claim that $\|x_0\| = 1$. Suppose not therefore $0 < \|x_0\| < 1$. Let

$$x_1 = \frac{x_0}{\|x_0\|}$$
 then $\|x_1\| = 1$. Hence $Q(x_1) = \frac{1}{\|x_0\|^2} \cdot Q(x_0)$, so

 $|Q(x_1)| > |Q(x_0)|$, a contradiction. Thus we have the claim.

Fix $y \perp x_0$. Let $a \in \mathbb{R} \setminus \{0\}$ and let $x = \frac{x_0 + ay}{(1 + |a|^2 ||x||^2)^{1/2}}$. Then

||x|| = 1. $Q(x) = f(x) \cdot x = \frac{1}{1 + |a|^2 ||x||^2} (f(x) + af(y)) \cdot (x_0 + ay)$

 $= \frac{1}{1+|a|^2||y||^2} \left[f(x_0) \cdot x_0 + a(f(x_0) \cdot y) + a(f(y) \cdot x_0 + |a|^2) (f(y) \cdot y) \right]$

 $= \frac{1}{1 + |a|^2 ||y||^2} \left[Q(x_0) + a(f(x_0) \cdot y + f(x_0) \cdot y) + |a|^2 (f(y) \cdot y) \right].$

If |a| is sufficiently small we get that $Q(x) \approx Q(x_0) + a(2Re(f(x_0) \cdot y))$.

If $f(x_0) \cdot y \neq 0$, then a can be chosen to make $|Q(x)| > |Q(x_0)|$, a contradiction. Hence $f(x_0) \cdot y = x_0 \cdot f(y) = 0$. Since $y = \{ \alpha x_0 \}_{\alpha \in \mathbb{H}} \oplus \{ \alpha x_0 \}_{\alpha$

Theorem 4.48 (Hilbert-Schmidt) Let V be a separable LSPS (RSPS). Let $f: V \to V$ ne a nonzero c.c. seft-adjoint map. Then there exists a countable set of orthonormal eigenvectors $(e_n)_{n \in \mathbb{N}}$ of f such that every vector $v \in V$ has unique representation in the form $x = \sum \beta_n e_n + x'$ where $x' \in \ker f$ also, $f(x) = \sum \lambda_n \beta_n e_n$ where λ_n is the eigenvalue of e_n and if the number of eigenvectors is ∞ then $\lim_{n \to \infty} \lambda_n = 0$.

Proof: For each $x \in V$, $|f(x) \cdot x| \leq ||f(x)|| ||x|| \leq ||f|| ||x||| ||x||| = ||f|| ||x|||^2$. If $||x|| \leq 1$, then $|f(x) \cdot x| \leq ||f|| < \infty$, so $||f(x) \cdot x|| = ||f(x) \cdot$

 $= f(y) \cdot y, \text{ so } \lim_{k \to \infty} |f(x_{n_k}) \cdot x_{n_k}| = |f(y) \cdot y|. \text{ Hence } |f(y) \cdot y| = M_1.$ By lemma 4.48, y is an eigenvector of $f(\cdot \cdot \cdot y \neq 0)$. Claim that ||y|| = 1, if not, then ||y|| < 1. Let $y' = \frac{y}{||y||}$, then ||y'|| = 1 and $|f(y') \cdot y'| = \frac{1}{||y||^2} |f(y) \cdot y| > M_1$, a contradiction. Hence we have the claim. Let $e_1 = y$ and let \mathcal{N}_1 be the eigenvalue of e_1 therefore $|f(e_1) \cdot e_1| = |\mathcal{N}| |e_1 \cdot e_1| = |\mathcal{N}| ||e_1|^2 = |\mathcal{N}|. \text{ So } |\mathcal{N}| = M_1.$ Let $W_1 = (\alpha e_1)_{\alpha \in \mathbb{N}}$ then W_1 is a closed left linear subspace of V, hence W_1 is a separable LSPS which is also a Hilbert space and so is W_1 . Let $W_1' \in W_1'$ then $f(W_1') \cdot e_1 = W_1' \cdot f(e_1) = W_1' \cdot (\mathcal{N}_1 e_1) = (W \cdot e_1) \overline{\lambda} = 0$ therefore $f(W_1') \in W_1'$. Hence $f: W_1 \to W_1'$ is c.c. and self adjoint.

Let $M_2 = \sup_{x \in \mathbb{N}} \{|f(x) \cdot x||^2\}$. Hence $M_2 \leq M_1$. By the same argument $||x|| \leq 1$

as before there exists an $e_2\in \mathbb{W}_1^\perp$ which is an eigenvector of f such that $||e_2||=1$. Again let λ_2 be the eigenvalue of e_2 then $|\lambda_2|=M_2$, so $|\lambda_2|\leqslant |\lambda_1|$. Let $\mathbb{W}_2=\left\{\alpha_1e_1+\alpha_2e_2\right\}\alpha_1,\alpha_2\in\mathbb{H}$. Again $f\colon \mathbb{W}_2\to\mathbb{W}_2$ is c.c. and self adjoint. Therefore by the same reasoning there exists an $e_3\in\mathbb{W}_2$ such that $||e_3||=1$ which is an eigenvector of f and the eigenvalue λ_3 of e_3 has the property that $|\lambda_3|\leqslant |\lambda_2|$. Continue in the way. There are two possibilities:

case 1. Suppose that there exists an $n_0 \in \mathbb{N}$ such that $f(x) \cdot x = 0$ on $\mathbb{W}_{n_0}^\perp$. By the same proof as in lemma 4.47, $f/\mathbb{W}_{n_0}^\perp = 0$. Hence $\mathbb{W}_{n_0}^\perp \subseteq \ker f$. Since $\mathbb{V} = \mathbb{W}_{n_0}^\perp \oplus \mathbb{W}_{n_0}^\perp$, for each $x \in \mathbb{V}$ x can be written uniquely in the form x = a + a' where $a \in \mathbb{W}_{n_0}$ and $a' \in \mathbb{W}_{n_0}^\perp \subseteq \ker f$. Since $a \in \mathbb{W}_{n_0}$, $a = \sum_{n=1}^\infty \beta_n e_n$ for some $\beta_n \in \mathbb{H}$. Hence for each $x \in \mathbb{V}$ $f(x) = f(a) + f(a') = \sum_{n=1}^\infty \lambda_n \beta_n e_n$.

+

case 2. For each $n \in \mathbb{N}$ there exists an $x_n \in \mathbb{V}_n$ such that (x_n) $f(x_n) \cdot x_n \neq 0$. In this case there exists infinitely many eigenvector $(\lambda_n)_{n\in\mathbb{N}}$ and they are ordered so that $|\lambda_n|\geqslant |\lambda_{n+1}|$. Claim that $\lim_{n\to\infty} \lambda_n = 0$. Since V is left isomorphic to $\lim_{n\to\infty} \lambda_n = 0$ weakly in l_{H}^{2} where $e'_{n} = (0,0,1,0,0,...)$ for all $n \in \mathbb{N}$, $\lim_{n \to \infty} e_{n} = 0$ weakly in V. Hence $\lim_{n\to\infty} f(e_n) = 0$ strongly (same proof as in lemma 4.46) therefore $\lim_{n\to\infty} \|f(e_n)\| = 0$. But $\|f(e_n)\| = \|\lambda_n e_n\| = 0$ $|\lambda_n| \|e_n\| = |\lambda_n|$, so $\lim_{n \to \infty} \lambda_n = 0$. Let W_{∞} be the closure of the left linear subspace generated by $(e_{\alpha})_{\alpha \in \mathbb{N}}$. If $\mathbb{W}_{\infty} = 0$, then $V = W_{\infty}$ and we are done (since let x' = 0). If $W_{\infty} \neq 0$, then choose $x \in \mathbb{V}_{\infty} \setminus \{0\}$ therefore we have that $\left| \frac{f(x)}{\|x\|} \cdot \frac{x}{\|x\|} \right| \leq |\lambda_n| = M_n$ for all new therefore $0 \le |f(x) \cdot x| \le |\lambda_n| ||x||^2 \to 0$. Hence $f(x) \cdot x = 0$. By the same proof as in lemma .47, $f/_{W_{\infty}} = 0$. Since $V = W_{\infty} \oplus W_{\infty}$, for each $x \in V$ can be written uniquely in the form x = a+a' where $a \in W_{\infty}$ and $a' \in W_{\infty}^{\perp}$, so $x = \sum_{n=1}^{\infty} \beta_n e_n + a'$.