CHAPTER IV
LINEAR OPERATOR THEORY OVER THE QUATERNIONS

All ILNLS (RNLS) and NLS are metric space.  -Hence if V is a
LNLS (RNLS,NLS) and AC V. Then A is compact if and only if A has

the BW property.

Definition j .1 Let V,W be LNLS's (RNLS's) and T: V—W a left
(right) linear map. Then T is said to be a completely continuous
- map if and only if Avg.V bounded implies  that T(A) is relatively
compact. We shall abbreviate "completely continuous" by "ce.c.M
some mathematicians use the termilogy compact opérator. Clearly a
coC. map is continuous. ‘

Remarks: (i) If W is finite dimensional left (right) vector space’

_over Il then continuous implies c.c.[ 5 ]

(ii) If V, W are o0 -dimensional LNLS (RNLS). Then

. continuous does not implies ceCe

Example j.2 Let V=W = ‘é and let I be the identity map which is

- continuous. Then B(0,1) is closed and bounded. However B(0,1) is

not compact. To prove this we need only show that B(0,1) is not BW.

th
‘ n . place
. Consider the sequence (en)nGJN where e = 0 R G P PR L

all n € N. Then (eh) is a sequence in B(041). Since m £ n

n € [N
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9

: - % :
implies d(em,en) ¢2) (en)n ¢ i canmnot have a convergent -

subséquehce.
Let V be a LNLS (RNLS) and W a NLS then CC(V,W) will denote
the set of all c.c. map from V to W which is a RNLS (LNLS). If V,

W are LNLS's (RNLS's) then CC(V,W) is a LNLS (RNLS) over R.
Theorem 4.3 CC(V,W) is a(left) right 1linear subspace of C(V,W).

Proof: Let T,yT,& CC(V,W) and A, BeH. Let A SV be

2
bounded., Must show that (T1ﬁ)(A) is relatively compact. Since

X+>X « 1s a homeomorphism for all semN {0y, (T ﬂ)(A) is rela-

tively compact. Let (w ) y be a sequence in TCA). Must show

that (wn) has a convergent subsequence. For each n € IN there

né IN

is a

exists an a € A such that w_ = T(an)o aiden (T (a ))n A

sequence in Tq(A) which is relative compact, there exists a conver-

{ \
gent subsequence (T1(a‘1/)) Since (T (a(1)))

n né IN of (Tﬁ(an))

nel’® ne¢iN

is a sequence in TZ(A) which is relative compact, there exists a

convergent subsequence- (T (a(z))) e of (T (a(q))) £ IN° Therefore
'(T(aia)))nenN converges ‘'since 1t is a sum of convergent sequence.

3K

Remark: If V, W are LNLS's (RNLS's) then CC(V,W) is left (right)

R-linear subspace of C(V,W).

Theorem 4.4 CC(V,W) is closed subspace of C(V,W) if W is a Banach

spaces
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2399?: . Let (Fn)nelN be a sequence in CC(V,W) such that
(Fn)thN converges to F. Must show that FECC(V,W). Let A C V be
bounded.
Must show that F(A) is relative compact. TLet (w ) be a sequence

nine N

in F(A). For each n€IN we can write W, o= F(xn) for some xne.ﬁ.

Hence we must show that (F(xn)) has a convergent subsequence.

né N

Since-(Fq(xﬁ)) is a sequence in F1(A) which is relatively compact,

né€ N
(1)))

there exists a convergent subsequence (F £x éﬂN' Since

(F (x(1))) is a sequence in FZ(A) which is relatively compact,

néEiN
(2)))

" there exists a convergent subsequence (F2(xn o By induction

() y

we get that for each ketN there exists a sequence (x

neiN

ne N such

(k))) (k)))

is a subsequence of

LA S le)

Con51der the diagonal sequence (x S %, g 4

that (F (x converges and (“ (x

n €N néIN

(F (x (k~1)))n€\N

Then for each meg N (Fm(xin>)) converges. Claim that (F(xin>))

né N negiN

converges. This claim finish the proof. Since W is a Banach space,

must show that (F(x;n))) is a cauchy sequence. Since A is bounded,

né N

there exists a M > O such that ||a | <M for all a€A. Since F,

converges to F, given ¢ > O there exists a Nf such that n > N,

; ' S .' E - % (n) -
implies that'an Pliig Yyye Bl AN 0 Then AF, (x B0 S 16 &

convergent sequence. Hence (F (x(n))) is cauchy, so there exists

ne N

a Ng such that my, n > N; 1mp11esl]F (x(m)) ¥ (x (n))l’ ﬁ/}, Let
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i
%; = max {Ng’Ng] s Therefore if my, n > N(C then

1P rl ) | ¢ rat™)-r, D), ™) — 1 P
2 (o (n) ()
S8 LC AL C el

< Jr-r ux;’"’u+qu<x,§'“’-Fk<x§,n>>nuan-ngigxgwnga ,,

Theorem 4 .5 CC(V,V) is a two side ideal in C(V,V).

Proof: Let F&€CC(V,V) and Ge C(V,V). Let AL V be bounded.
Since G is continuous, G(A) is bounded. Therefore F(G(A)) is rela-
tively compact. Since A is bounded and F is coé., F(A) is relatively
compact. Since G is continuous and F(A) i§ relatively compact,
G(F(A)) is relatively compact. Hence GoF, FoG are c.c. By Theorem
lLe3y CC(V,V) is left linear subspace of C(V,V). Hence we have

tﬁeorem. ‘8?

ExamEle 40.6 Let ) ='QIH and T(.X,]’Xa,ooo) = (kir'] a1kxk,k§1 a2kxk,ooo)
o9 | o

where z = |a.i| < %9 o Then T is csce
j=1 =1

Proof: Let € > 0. Then there exists a number p% such that

oo 50 2 2
1 z |a, | <' £5,) We défine T. by T (x) 2 B (% X yoess) =
j= keqi' oK LR £ B
_pE+1 -3
) i .
(k§1 aquk,e.o,k§1 apakxk,O,O,O,.n)° After the pg -the term all

entries are O. Then, since the range of each operator T; is finite
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dimensional, each Te is completely continuous. Now

2 a X

3
T ( )=T(x)
“ X - “ ey k’

< <O oo 2}
bH PH ; bH
55 I%+1 '=P£+1 AN ’aakf k=1lxk|J

2 A
< ezl
or ”TE-T||< ¢ « Thus T is c.c. by Theorem 3.4 2

Theorem 4.7 Let V be a oo =dimensional LNLS(RNLS) and T:V—sV a ceCe

mape Then T can not have a continuous inverse.

Proof: Suppose not.  Then T has a continuous inverse T~1o

I'= TT-1 therefore,/ Iz /V——>V is c.cs The closed unit ball
B€0,1) is bounded in V therefore I(B(0,1)) = B(0,1) is relative

: edmpact. Since V 'is <o -~dimensional, there exists a Sequence (xn)néﬂN

of left linear independent vectors. Let wn be the left linéar subspace

generated by Xq,xz,ooggxnn Then xn+1¢V%lfbr all n &€ N, also wn
is closed for all n € IN. Let<in = d(xn+1gwn). Thencxn Y0 for @wll

» %
n € [N, For each n € [N there exists a x € W such that O < d(xn,x )

n+1

< 2dn. Now

A, ymai)e int iz y-Fomel] = ane {lx,, -Glewll
Xnaq"Xn Wy )= ;2fw lxn+’l-xn—wn. i ;2fw _an+1- Xn"w)I
n n
= inf le -w[” = d(xn+1,wn) = dh'

wekd
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. *
x4 : ; X = X 4 .
Ot 1y i and ‘if n > 1 "let y  zl————a———— o Then iy 4@ = 1
17 =01 n ”x g ” RPN
n n-1

for all n € IN therefore (yn) is a sequence in B(0,1).

n &N

, f - s )
5 ; b
d(y sW.) =.inf f“y ~wllt = inf ‘"Ekﬁl——fgw; w“‘
gt wew © A we‘wn{ <, , 4~ ﬁ“ J
1 . [ % ] 1 i '
i e 1 1.1 (“x -X -w“% = =——————— inf {“x -w”}
||xn+1-xnllwé‘WnL M “xn+1-x:w1wéiwn e :
e T e o (e
“xn+1"xntl ,lxn+1—xnli A

Therefore d(yn+1,wn) > % for /all n € IN.. Hence if m < n tlien

Yp€ W, CW .o Therefore d(ymgyn) > d(yn,wn_1)Q> %, so (y.)

n=-1 n‘ne& N

cannot have a convergent subseguence since it is not cauchy, a contra-
diction. §§§

Let V, W be LNLS (RNLS) and T: V—sW a continuous left (right)
* *

: * ,
linear map. Then there exists a natural projection map T : W—>V
y
called the adjoin map defined as follows: if (p& W defined
* : o
[T (wi](x) =) (T(x))e Then T is continuous right (left) linear map.

In fact

1{“q5T”} € sufz1{H‘PH HTH} = ||z

7 = sup JITColl} =
Lo 6l

sup
=1 ol =

Remark: ,Q!T*H =] T
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: : % +#
Proof: Suppose that T = 0, then T = 0. Hence lT | = fTH.
: : 1
A & © w = ® °
ssume that T Z 0. Fix X3¢ Viker T and let yg NTTEEWT T(xo)

Hencei‘you O Lgt U be the left linear subspace of W génerated
by ¥y Define F: > by F(hyo) =A . Clearly F is continuous a
and left linear. In fact ||Fll = 1. By the Hahn-Banach Theorem
there exists a cpntinuous left linear map (f : W—H such thatll@ || =

IFll = 1 and@(x) = F(x) for all x ¢ U. Since P (T(xy)) = (IT(x Myy)

= Iz, we have that Tz M =P (rx Nl = I[TfW)](xO),,g
1T 1% 1€ N0 xglls memon 1T o), 12 xge kern {0},
]
th 7 Vol - o 0wl
en T(x) = O. Therefore T 0< T ll. HenceijlTH =1liT .

Theorem 4.8 Let V, W be LNLS's (RNLS's) and T:V—>W is a c.e. map.
oo *
Then T ¢ W—>§ is a.csCe. Mape
' A %*
Proof: We must show that if AC W is bounded, then T (A)
*
is relatively compact in V . Since every bounded set is contained
*
in a closed ball center at 0; it is sufficecient to show that T of

* *
every closed ball center at O in W idis relatively compact in V .

e %*
Let B$(O,r) be the closed ball center at O radius r > 0 in W . Then

¥ 3 g s o, —m———

B (0,r) = B¥(0,1)r therefore T7(8%(0,r)) = T (B¥(0,r) =

I ST

T (B*(0,1))r. Since the map X+—-» Xr is a homeomorphism then if we

~ show that T (B*(0,1)) is relatively compact in v we get that

* et .
7 (B*Yo,r)) is relatively compact. Let B(0,1) be the closed ball

center at O in V therefore T(B(0,1)) is relatively compact in W,
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hence T(B(0,1)) is compact in W. Define a metric P on T(B(o,1)) as

follows: 1f (., Y,eW , then O (P4,) =  sup 16 (-0, (9]«

y& T(B(C,1)) t

Claim that B*(O,1) is relatively compact with respect to the metrich"c
In order to prove the claim, we need only show that B*(0,1) is

uniformly bounded and equicontinucus by the Arzela - Asocili Theorem.

1. To show that B (0.1) is uniformly bounded. Note that if

¢ B%(0,1) thenll @l ¢ 1. Let ¢ € B™(0,1). Claim that

mp_{loel] e flocolf <o {1onn=i .
x€ T(B(0,1)) % ¢ B(BC0, 1)) x ¢ T(B0, 1))

Since (P is continuous on compact set EZEZO,1)), there exists an

z¢ T(B(0,1)) such that |¢(z)] = sup __{I(P(x)!‘i . If z€T(B(0,1)),
x €& T(R(0,1))

then done. So assume that zéfT(§ZO,13). Then there exists a sequence

) in T(§z6723)vsuch that (yn)

3 {
G 2 SEIN convergent to z. Since ||

né N

is continuous function, (l@(yn)‘)n(;m converges toi(p(z)!, hence

sup {Vﬁ(xﬂ} Z l(?(z) o. Clearly sup {KP(xﬂig sup {if(xﬂjm‘

x€ T(B(0,1)) x €T(B(0,1)) x € T(B(0,1)

Hence we have the claim. Thus

e {lg@1} = sup {loml] < sup xly =
x€ T(B(0,1)) x € T(B(0,1)) x € T(B(0,1))

sup %HT(y)H% =  sup UtT(yMﬁ =jjnll .

y € B(0,1) i <1

Sihce(p € B*(O,1) is arbitrary, we have that sup {Kp(x)l}gl,T”

€ T(B(0,1))
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.§(_— "
for all @ € B (0,1). Hence B"(0,1) is uniformly bounded with

respect tof'

2., To show B%(O,'l) is equicontinuous. Let € > 0 be given

and let & = £ . Then for all § € B(0,1) and for all %, 9%, € T(B(0,1))
lx=x, | <0 implies thatg(p(x1)-¢<x2>i = l@<x1-x2>l.g;;@;1nx1-x2u

< x,]-xZ” < £ . Hence B*(O,’l) is equicontinuous. Hence B*(0,1) is

*

relatively compact with respect to the metricp Claim that the map

*
T" : B (o, 1)-'—>V is an isometry where B’ (0,1) has the metrlc/) and

V has the norm metric. To prove thls, let (P,I,‘PZeB*(O 1). Must

show that [lT"(¢)-1" (o) 172 peo, i)

i NN

x € B(0,1)

* X*
2" cep-1" (o) |

)-8 (e ||
BYE 1)

i

¢ )
sup ‘”((P,]-(Va)(x){j
x €T B(0,1)

fi

= sup i -e) ol

x € T(B(0,1))

sup [I’:P,](z) @(Z)U

z € T(B(0,1))

}r) ((P'] "I“,pz) i

Therefore T* is an isometry. Hence T* is a homeomorphism of B*(O,’])

B
" with the metric P onto T (B*(O,'l)) with respect the norm metric. But
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4 :
B (0,1) is relatively compact with respect to the metricf) -« Hence
%, o :
T (3-(041)) is relatively compact with respect to the norm metrice.

*
Hence T is cscCe. 5&

Theorem 4.9 Let V be a LNLS (RNLS) which is also a Banach space

e S

»V  a ce.cemap. If I-T is onto then I-T is 1-1.

Prood: Suppose not. Therefore I-T = A is onto but A is
not 1-1. Hence there exists an X, € V N{0] such that A(x1) = 0N

Given n € IN let W, = ker A%, Then W Q;Wn¢1 for all n€ IN. Claim

that wnc.wn+1 for all n ¢ IN¢//To prove this, note that since A is

onto, there exists an X5 sugh that: x. = A(xa) and there exists an

1

By induction there exists an X, such that

X3 such that A(xj) = X,

An(xn) i for all n€ IN {1} Since An(xn) . An‘1(A(xn))

n-1

n-1 | : n-1
= A (Xndq) Hieve s BX] = O x €W . But xn¢Vhb4 since A (xn)

1)
i

A(x,) = x, # 0. Hence W __

1 %
5 G dn Fort a1 f e ils

ne2 Y
A (A(xn)) 5 AR y

By the same argument as in Theorem 4.7 we can find in each Wn an

" i i : \
element y such that‘lynu = 1 and ilyn~yi!> = for all'y ¢ Woiq /s
. . 3 i % i i 3 7 % i \ l
Then for all k < n | T(y )-T(y ) || = lly ~(I-D) (7 )y, +(T-T(g ) | >3

because -(I-T)(yn)-yk+(I—T)(yk) lies in W _4° This show that the

sequence (T(yn)) can not have a convergent subsequence contra

neiN

dieting the fact that T:is ceCo %§%

Definition 4.10 /'Let V be a LNLS (RNLS) and T: V—sV a continuous

left (right) linear map. Then A € H is said to be an eigenvalue of
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T if and only if there exists an vé VN{0) such that T(v) =" 2Av
(T(v) = vA ).

Definition 4.11 Let V be a NLS and T: V-——»V a continuous left
(right) linear map. Then A& IH is said to be a right (left) eigen~
value of T if and only if there exists an v ¢ V N[0} such that

LR e S W B

Definition 4.12 Let V be a NLS and T: V—=V a continuous left
linear map. Then A € H is said to be a right chafacteristic value
OF T a#d only if the continuous left linear map T-I2A has no o8
continuous inverse. '

Left characteristic value is defined dually.

Remark: - Let V be a LNLS (RNLS) and T: V— V a continuous left
(right) linear map. Then A<R is sz2id to be a characteristic
value of T if and only if theleft (right) linear map T- AI has no

continuous inverse.

Remark: If V is a NLS which is also an e ~left(right) dimensional
and A€ H is a left (right) eigenvalue of T, then A is a(right) left

characteristic value of T. The converse is not true.

Proof: Suppose that A is a left eigenvalue of T. Then

there exists an ve V‘\{Ok such that T(v) = av therefore (T-21)(v)=0,

hence T2l is not 1-1. Hence T=Al has no continuous inversee.

Example 4.13%3. Let V = qH[a,b ]with respect the supnorm. Fix a non

> 55 B 3 . r 2 | :
constant function fO€ZCm[a,bJ. Define T: qHLa,b]-ﬁ qH[a,bJ by T(f)
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= f.fy therefore T is left linear. Let M > O be such that

| 250l ¢ M for all x ¢ [ayb]. Hence if £ € Qg [a,b] {0}, then
l(f.fo)l (%) =12} lfo(x)] <|I£l M therefore ||Tl & Mo Hence T is
continuous. Let 4 € Im £fyo Then (T-IA)f = (f.fo-fﬁ) = f(fo-)).

Let W be a nonzero LNLS (RNLS) and F: W—sW a continuous left (right)
linear map. Claim that if F has a continuous inverse then there
exists a m > 0 such that m|lx || < [|F(x)|| for all x € W. To prove

3 i

this, let x € W. Therefore ||x |l =} 2¢x) |l = IF"(Fx)) < 7 WiECl .

Let m = 1 therefore m>> O. Then mfl x|l<l|F(x)lle This we have

I Et
the claime To show that T-IA  has no continuous inverse i.e. there

does not exist m > O such that mlfll gA”(T—Iﬁ)(f)sz ”f(f0~1)H for all
f€& qH[a,b]. To prove this, suppose not. Then there exists m > O
such that m || £]l < [ £(£,~) || for a1l feCyfaib]. Since A& Im £
there exists an ty & [asb | such that fo(to) =A . Choose ¢ > 0 such
PR O B ey ag éc > 0 such that | t-t | < 4
implies |£4(£)-£,(t) | = | £5(£)= 4] < bje Lot x = supja <t < ty/

L ]

| t-t, | > % andy = inf { tg< t < b/ [t=t | 281 . Choose a conti-

nuous map g € qH[a,b] such that

0oy waf driopd iy é
x-t { ;
glt) e < = if ’t-—to[ < ég and x <t < Ky

b \
L2 4y |t-to] < & and t< t < b.
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Then || gll= 1 and “g(fo-k)ll= sup j}g(t)(fo(t)~ﬂﬂ} < &1 Bak
te [ast] ;
m = mllgllg]}g(fo-l)ﬂ <§¢, so0 a contrpdiction. Hence we have the

claim. Thus T-IA has no continuous inverse. gg

Theorem #4.1% TLet V be a NLS and F:V V a cd.left (right) lincar map. Then

if A € H is a nonzero right teft) eigenv lue of £ the left (right) linear subspace.

generated by the eigenvectors of A is finite dimensional .

Let V be a LNLS (RNLS) and T: V—=V a c.c. map. We want to
show that if I-T is 1-1, then I-T is onto.  In order tc prove this

we'll need some lemmas.

Lemma 4.15 - Let V be a LNLS (RNLS) which is also a Banach space

and T: V—>VU" g ¢vce map,/ Then WM\ (I~T) is closed.

Proof: Let A = I=<T and dim ker A be n (Use Theorem 3.14)

Choose a basis €11€510004€ of ker A and let

~0 it 4 .=8

87 e .
L ik # P

for Bld A B Egﬁ,a,,..,ng » Then {@1,¢2,=g.dp ? is a basis of

n
i ‘ : ’ )
(ker A) . Claim that there exists a closed left linear subspace W
of V such that therec exists a closed left_linear subspace W of V
such that V = ker A ® Wo. To prove this note that by the Hahn-Banach
Theorem we can extend (p1,q%}.,,,<pp to continuvous left linear maps

P18 100028, from V to M such that || g1l =||Q ]| for all i = 1,2,.0.ym.

Let § : V—>H" be defined by #(x) = (8,(x) 400048, (x))e Clearly # is
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continuous and left linear. Let W = ker #. Then W is closed. For

e
each x ¢ V let U, = I ﬁi(x) e;€ ker A, Choose j €N such that
a1 ‘

Y€ § < ne ' Phan

n n
¢j(x-.2 ¢i(x)ei)~= ﬂj(x)-.§'¢i(x)q3(ei)

B.(x=U_)
J o 3224 g =

1l

¢j(x)-¢j(x) = 0

Hence ﬁj(x-UX) = 0 for all j < n. Therefore ¢(x-Ux) = 0, 80
x-Uxé.ker #. Now x = x—UX+Ux o Therefore V = ker A+W. To prove
that this is a direct sum we must show that WNker A = {0} . Let
n
x € Whlker A therefore x = £ x.e. for some x, € [H and #(x) =0
: - ‘
B ¢j(x) = 0 for all j £ n therefore O = ¢j(x) = ﬁj( ) xiei)

$=1

n :
= i§1 xiqg(ei) = xj. Hence ¥ = 0. Therefore W(lker A = {0}« Hence

V=rker AQ@W. Since ker ANW=[0}, A/, is 1-1. Claim that

A(W) = Im(A). To prove this note that W € V therefore A(W) C A(V).
Let x € A(V) therefore x ¢ A(y) for some y&V, so vy = u+v for some
u€ker A and v€W, so x = A(y) = A(u+v) = A(u)+A(v) = O+A(v); hence
x & A(W), Hence Im A = A(W). To finish the proéf we must show that

A(W) is closed in V. Now A/W: W—> A(W) and A/w is a 1=-1, onto conti-
nuous left linear map. Claim that A/w is a homeomorphism ie. (A/W)-1
is continuous. Since (A/w)f1 is left linear, we need only show that

(A/w)-1 is continuous at 0. To prove this, suppose note. Therefore
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. % . -
there exists a sequence (vn’néﬂN in 4(W) such that (vn)n€”N~converges

to O and ((A/w)-1(vn))n does not converge to O. For each né& N

€N

there exists a unique xne W such that ¥ A(xn), 50 we have a

sequence (Xn>nG;N in W such that (xn)nfixN does not converge to O

=)

bEIN® 2)n ¢ Conversges to 0. There 'exists & €20

But (A(xn))

o~

for each m € IN there exists an n € IN such that n > m andljxn | 3¢ -
m

-

Hence there exists a subsequence (xn)kC

N of (xn) such that for

ne N

k
< % for all k & INe Since

eachkxem | . Il > ¢ §6 4 A
k
%, | $atsr=)
k 3 k
E = 4 and T 18 Ceco’i‘T;__W- has a convergent subsequence.
L VB e
/
(T(xn.)}
k.
) |
Let (xnk ) be a subsequence of (XnklkeiN such that ,qusﬁJ-/
3 1em 2t P e
- Alx 23 X T(x ) [ X '
n n n n
- s ) ok
convergese. Since =i v T converges
) Iz |l g Al o i el R e
k S k k
i 38 a¥ 1 1elN
X A(xn )
kl kl
converges., Let z = lim €EWe Bo 0= lim b =
l~wm“xn I ! oy “xn I
k k
o1 1
B i SiE
k1 kl ( (
lim - 1lim = z=-T(z) = A(z), hence ~z&ker A
1-—>co ”xn ‘[ 14>a)!lxn I ' : )
.kl k
: 20
therefore z = 0 ,a contradiction sincellz|l = 1. Hence (A/w)_1 is

/ - -
continuous. Let T = (A/w) 1, Claim that A(W) 'is complete in V.
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To prove this let (yn) be a cauchy sequence in AW).Then

ne N

: ;
(T (yn))nEiN is a cauchy sequence in W. Since W is closed in V and

/
V is a Banach space, W is complete, hence (T (yn))nelN converges in

‘ 3 i 3 { &
We Let wy=1lim T (y_ ) therefore wy& W. Then Alwg) = A(llp ™y

n-—roo n—>00

/ !
= lim A(T(yn)) = lim . Hence A(W) is complete in V. Since V is

n—>co n—»eo

a Banach space, A(W) is closed. Hence Im(I-T) is closed.

Lemma 4.16 Let V be a LNLS (RNLS) which is also a Banach space and
T: V—>V a c.c. map. Then y & Im(I-T) if and only if(p(y) = O for

all Y € ker(I—fs.

i :
Proof: Let y € Im(I-T) and (€ ker(I-T ). Then there exists

an x e>V such that y = (I-T)(x) therefore(y) = ((I-T)(x)) =

[(z-¢ ] (x) = 0.

! =] *
Conversely, suppose that (P(y) = 0 for alllp & ker(I-T ). Must

Must show that y Im(I-T). Hence we must show that if y € /) ker@.
(Peker(I-T)

Then there exists an x&V such that y = x=-T(x) ie. y € Im(I-T).

2
We shall prove the contradiction ie. if y(i Im(I-T), then y é?() kery .
*
eker(I-T)

Let y'gllm(I~T). Let W be the left linear subspace of V generated
by Im(I~T) and y. For each z€W 2z has unique representation in the
form z = Ay+u for some A & H and u € Im(I-T). Definelp(z) =7

s0 (P : W—> H is left linear. Claim that (p is continuous. Let
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ze€ W\{0l. Therefore z =7y+u for some A € H and uec Im(I-T).

3 ‘LP(Z)I ) l(‘[)(;\y+u), i//\' V! {~-,("(Z)!
A e Rt v MTzT = Tiy+a] ° If A= 0, then LFETT" & O

Assume A # O. Then

o)l I 1

" ik ! £ ©0 ., Hence
28 |3;qiy¥%un> HY*%uﬂ

1
< A In(I=T))

is continuous. By the Hanh-Banach theorem we can extend q7to a
continuous left linear map # V% such that{l@ll =llg Il. Must show
that # & ker(I-T*). To prove this note that ((I-T*)g)(x) =
FO(I-T) (%)) = P((I-T)(x)) = 0, hence @ € ker(I-T)). Also B(y) =

P(y) =1#0, soy ¢ ker @. Hence y ¢ (r\ ker "
' CPEker(I-T) XX

Lemma 4.17 Let V, wybe LNLS's (RNLS's) and F: V—> W a continuous

left (right) linear. Then the natural mep =: V/kerF—~> ImF is a

left (right) linear isomorphic if V,W are Banach space and ImF is closed.

Proof: Since m is a 1-1 onto and left linear we shall
show that m is continuous at ‘O. This shall finish the proof. Let

(o) be a sequence in V/

Latne N

kepp COBVerging to O, Must show that

(nla ) converges to O. Since (dn)

n’’ne N converges to O, thnn)

né& N ne N

converges to O. Given ¢ > O and n € IN there exists an xnéiah such
that ”n(dn)ﬂ =[}F(xn)” ‘SIIFH{IXHH < Fl Qld&i+-57n) which converges

to 0 therefore (Hn(dh)“)

ne N converges to O so.(n(ai))nEwN‘

converges to Oe §§%
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Lemma 4.18 Let V be a LNLS (RNLS) which is also a Banach space

. / " 3 * 5
and Ts V—>V & ce.qemap. Then{ye& Im(I-T ) if and only if QP (x) =0
for all x € ker(I-T). '

* i ®
Proof: Let{ £ Im(I-T ). Then there exists a Y& V - such

that (= (I-T )y . Let x € ker(I-T) thereforeW(x) = ((I-T HY)(x) =
Y(I-T)(x)) =W(0) = O,

Conversely, suppose that(p(x) = O for all x€ ker(I-T). For
each y € Im(I-T) there eoxists an x€V such that y = (I-T)(x).
Define ‘)’L(y) =(p(x) this is well-defined since if yé& (I-T)(x)
/
then x-x’ € ker (I-T) therefore O = (P(x-x’) =@ (x)-@px )o S0P (x)
: / ;
2% Yo .Claim that "!z is left linear. Let y,s ¥, € Im(I-T) and
o€ |[H there exist x1,x2€ V. such'that (I-T)(x,') o and (I—T)(xa)
] pr- 1 s o] - SR i
¥, hence oy, g T)(x1) (1 T)(o(.x,]) herefore TL(dy1)
R s y G LIt =</\
q)(o(x1) —o\(ﬁ(x,]) _u.Q(x1) and ’}?,(y1+y2) —\P(x1+x2) ,/(x1)+(p(x2)
= 72 (x1)+7'[(x2). Hence we have the claim. Claim that 7) is continuous
To prove this, consider the diagram
P. 'n: n

V== Vo (1op) — TW(I-D) - . H

i

e [x] iy (T-T) (%)

— N(I-T)(x) =@ (x)

Suppose that ’/l is not continuous. Hence there exists an open set
UC B such that 7) —1(U) i8 not open in Im(I-T). Claim that
P-'](n-"(?‘z’”q(U))) is open in V. By the oven mapping theorem, P is open,

-, =T, =1 b 2 : s
so P(P” (= (72 (U)))) is open in V/ker(I-T)° Since P is onto
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P(P-1(n-1QQ-1(U)))) = n-q(ﬁf1(U)) which is open in V/ker(I-T)’a. |

contradiction. ' Hence P-j(n_1(ﬁ"1(U))) is not open in V.  But

P-1(W—1(ﬁf1(U))) =(ﬁ~1(U) andﬁp-q(U) is open since (f is continuous,
a contradiction. Hence 72 is continuous. By the Hahn-Banach

* e -
Theorem, there exists alyfﬁ V such thatJVyIm(I-T) =7 andH(V{]:HWyh

Now for all x€V, [(T-2")y](x) =W ((1-T)(x)) =N ((I-T)(x)) =(p(x). :

Hence (I-T*)Q[z(p o« Thus ip = Im(I-T%). é%%

Corollary 419 Let V be LNLSm(RNLS) which is also a Banach space

and T: V—V a e.c. map. If I~T" is a 1-1, then I-T is onto.

x 1
#* ,
Prpof: Since I-T 'is 1=1, ker(I-T ) = {O}. Hence for all

YEV P(y) 50 'for'allcpe;ker(I-T*). Therefore | (I-T) is onto.

X

Corollary 4«20 +Let V be a LNLS (RNLS) which is also a Banach space
.K.
and T: V—>V a ce.c. map., If I-T is 1=1y then I-T is onto.

Proof: Since?@T I8 =T, ker(i.T) = {O%.“ Hence for all

* *
P &€V @(x) =0 for all xeker(I-T). Hence I-T is onto.

N

Theorem 4 .21  Let V be a LNLS (RNLS) which is also a . Banach space

and 2.3 V—alN & ey, maps TP ISNT 18 1«1 then IQT is onto.

; % A
Proof: Since I-T is 1-1, I-T is onto, hence I-T is 1-1.

*
Since I-T is 1-1, I-T is onto.

PSS
Theorem 4.22 Let V be a NLS which is also a Banach space and

T: V—>V a left (right) linear map which is also c.c. If A is

nonzero right (left) characteristic value ' of T then A is a fight
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(left) eigenvalue of T.

Proof: Since A is a right characteristic value of T wé
get that T-I2 has no continuous inverse. We must show that A is
a right eigeﬁvalue of Ts Suppose not therefore T-IA is 1=1. So
(DT HAT') ds 4ty Hemos TSI HaAdiL Binds 0 s loess w4
is c.ce also. Hence ToT2™ ! is onto, so P 1-1, onto, conti=-
nuous and leff linear map from the Banach space V onto itself.

By the open mapping theorem YOPIT ) haiw dasitinGons AePtt Tl Hea
inverse. ie. I-T0 is a homeomorphism. Hence (I~T2-1)(~Z) is a

homeomorphism also. So T-IA is a homeomorphism, hence T-IJ has

a continuous inverse a contradiction. Hence A is a right eigen-

value of T. %i%

Remarks: i) If V is a LNLS (RNLS) which is also a Banach space
and T: V—V is a left (right) linear map which is also c.c. and
A€ R is a nonzero characteristic value of T then A is an eigen-

value of T.

ii) If V ie a left (right) finite dimensional vector
space over IH which is also a NLS and T: V=V is a NLS and T: V—V
is a continuous left (right) linear map and A2 € H. is a nonzero
right (ieft) characteristic value of T then ins a right (left)

eigenvalue of T,

Theorem 4.23 Let V be a NLS which is also a2 Banach space and
T: V>V a continuous left (right) linear map. Then

(T=1)"" [(T-ZI)—1_]- exists for all |A| > liTll and AeR |,
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il

Proof: Let A e R be such that {A] > HTll. Since T-IA

(I-To-;{)(-}‘t) Y eou T A CSE L (I-—T-%)-/'(-%)‘

k
o m % . R 5 : | P
z (é) \—%)c This series converges since l!? , = ; il < % L“L1.
k=0 A A ‘A’ o (75 ,//{,

.Hence (InTA)-1 exists. )

N
Definition j.24 Let V, W be LNLS's (RNLS's) which is also a
Banach space, an element TE€ C(V,W) is called a Fredholm operator

from .V to W if and only if
i) ker T is finite dimensional

ii) ImT is closed and coker T is finite dimensional where

coker T = W/T& T

- Theorem 4.25 Let V be a LNLS (RNLS) and T: V—>V is c.c. Then

I-T is Fredholm.

Proof: By theorem4 +1%, ker I-T is finite dimensional.
By Lemma jo15, Im (I-T) is closed. We shall show that coker (I-T)
is finite dimensional. This shall finish the proof. If I-T is onto

there is nothing to prove. Therefore we may assume that I-T is not

z

onto. Suppose that coker (I-T) is not finite dimensional. Let

(x +W) be algebraic an basis of coker (I-T). Choose o, € I and

o €I

let H1 be the left linear subspace generated by (I-T) and %x .
1

Choose dzé;I‘\{dq% and let H2 be the left linear subspace generated

by H1 and Xy e By induction we have Hn is the left linear subspace
2 :
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generated by H_ _, and %, for all n€IN. Hence we have (I-T)(V) =
HOC‘H1 G H2 sece o By the same proof as in Theoren 2. 10, Hn is
closed for all n€IN and dim (Hn/Hn_1) is 1. By same argument as
in Theorem 3.7 we can find in each Hn an element X, such that

lixgfl = 1 and ffx -y ||> 2 for a1l y ¢ H .. Then for all k < n

q°
IT(xn)-T(xk)l % [xn—(I~T)(#n)—xk+(I-T)(xk)’2:-% because -(I-T)(x )

-X) + (I—T)(xk) lies in H ., This show that the sequence (T(xn))néﬁN

can not have a convergent subsequence sontradicting the fact that T

ph

Definition 4.26 If T is a Fredholm operator, thén we define the

is c.c. Thus proving the lemma.

‘index of T to be ind T = dim ker T - dim coker T,
Let V be a LNLS (RNLS) over @ which is also a Banach space
and T: V—V is c.c. We want to show that ind (Id-T) = -ind(Id-T ).

In order to prove. This we'll need somé lemmas.

Lemma 4.27 Let V,W be LNLS's (RNILS's) which are both Banach space

and T: V—>W a continuous left (right) linear map, then ker (%) &

;

* {
{few pr f/pcy) = Of+ If in addition T(V) is closed in W, then

X, # x | *
TW) = {£€V /2/, 1= 0f. 5o, inparticular, T (W) is closed

‘Proof: T (£) = 0é& feleesttat o0 2w all x€ Ve=f(T(x))=0

4 T * '~ e o - }
for al x¢ V(::;f'(:LfEVJ/f/T(V) = O}o Hence ker T = (f& w/f/T(V)“O .
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; : A Al ‘
Assume that T(V) is closed in W. TFor each 1€ ‘(fév/f/ker p =0
let 11 V/ker > H be defined by 1([x]) = 1(x). By the same

argument as in Lemma LS Ty RE (V/ker T) o Let P: V— V/ker o be

o~ : *
the natural map. Then loP = 1 for all leffev'/f/ker o = O} A
Let T: ¥/, o —=(T(V) be the natural map. By lemma 4.17, T is a’
homeomorphism and we let S:. T(V)—-—-)-V/ker p be its inverse. Since
~ %K 7 +# 4 | ~
lo8Se(T(V)) , there exists 1 €W /such that 1/T(V) = 168 by Hahn-

Banach theorem. Since ToP = PP s or'i"l oP = S oTe Hence
[T )] (x) = 27 (2(x)) = Tos(T(x)) = T(sT(x))) =T(x]) = 1(x)
: o}g ().

26p 11 %€V 46y 2L L/ LB ig v*/
OF all %€ V dey P = 1, Hence /fe f/kerT

*/ % i i / * X, 7/ :
Let 1€T (W ) there exists 1/€ W such that 1 = T°(1 ). Let x€& ker Te.

Phan ilx) &1 (T(x)) = 1 (0) = 0, s0 L€ EfGV*/f/ker g 0} Thus

i

* * 3 { K ] * %k
2T ¢ §fe LT oj. Hence |fe v/f/ker o = oj: W)

Tt falloie shat T W ) in olosed.

N

Corollary 4.28 If W is closed left (right) linear subspace of LNLS

%*

: ; o . { * '
(RNLS) V, then P, is a homeomorphism of (V/w) with {f€ V/f/w = O}

where Pyt V—~>V/W is the natural map.

' A ¥* * j
Proof: Lot T. & (V/w) be ‘such that Pw(f) = Pw(g) therefore
f(Pw(x)) = g(Pw(x)) for all xe€Vs Letué¢ V/w. Since P is onto,
there exists xe€V such that Pi(x) =d 4 80 £(a) = f(Pw(x)) = g(Pw(X))

{4 o * +* * i
= gll). Hemce P is 1-1. By lemma 4.27, P (V/)" = {fev/f/ker =0
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% 4 ¥ . ' 2
= {te V/f/w = 0} which is closed in V , and hence space. By the

%

Corollary L4.29 'If T(V) is closed in W, then

>
open mapping theorem, Pw is opene.

(coker T)*

1

i) ker (T*); (W/T(V))*

1

ii) (ker T)" = Vﬁ/‘f?w*) coker (T7)

: %
Proof: By lemma .27 and Corollary 4.28, ker (%) =~ (W/T(V))

(coker ). Claim (ker TV & v /. wh {tev /r
= Loocke» T) . aim (ker T) % /A where A = J fEV /k'erTzoj'

* * :
To prove this, let({f: Vv /A———'-y(ker T) be defined by P([£+A]) = f/ker o

Clearly (p is 1-1 and right linear. By the Hahn-Banach Theorém, for
* P H
each f &(ker T) there exists an £ €V such that f”/ker p = f- Hence

(p is onto. Claim that (J is continuous. Let (Fn) be a sequence

ne IN

* ..
in v /A such that (Fn)n ¢y converges to O, We must show that ( (-

29

((‘D(Fn)) converges to O, - To prove this, given ¢ > O for each

n &N
~neiN there exists f, € F  such that ”fn”\< “ Fn ” + C/n. Since f € F,
: & ; 7 1%
for all nelN, ((F) = £ 4, ¢+ ThereforelQ(F)Il= |2, 4 N
< “Fn I +€/n which converges to 0, so (”CP(fn)“)nem converges to O.
Hence «P(Fn))ne N converges to O:, Hence we have the claim. ' By the
\of i *
open mapping theorem and lemwa 4.27, (ker T) Z V /A =V /T"Zﬁ‘) =

coker (T%) . XX

Theorem 4.30 Let V be LNLS's (RNLS's) which are also Banach

space. Then ind (I-T) = -ind (I-TV).
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U %
Proof: By corollary 4.29, dim ker (I-T) = dim (coker (I-T))

dim etiche (T4TY Bnd dim kep C(I-0) & didi(ker (Z4m)) = His =3

dim coker (I-T ). Hence

1l

ind (I-T) dim ker (I-T)-dim coker (I-T)

* :
dim coker (I-T )-dim ker (I-T")

i

il

~ind (I-T").

Weak Topology Let (V,ll |I) be LNLS (RNLS) over (H. The norm gives

a metric d by defining d(x,y) = ||x=y/{ and the metric gives a topo-

%

logy by taking the open balls B(xy:€) = ixé?V//d(x,xo) <£i§ as a

base for the topology. We call this the strong topology hence a

sequence (xn) converges to x in the strong topology if and only

né N
if 1lim lx -xil = 0.
n— oo
Definition 4.31 The weak topology on V is the smallest topology
3 .
on V which makes every f&V continuous. More precisely, given

* 2 7
> o 0 © o = :"
€>0 and £ ,f,, : .frc V then u ufq’fa"°°'fr z 1xesv/4fd(xﬂ

<E Vi = 1,2,°.o,r} is open and sets of this fofm are a basis
for the neighborhood of O (To get a basis for the‘neighborhood of
x€ V, take sets of the, form x+U where U is a neighborhood of O and

x+U = {x+%/a61ﬁg

converges weakly.to xe V

’Deflnltlon 4.32 The sequence (xn)nqgtN

4% 'and ooly 2f lim R X in the weakly topology of V,
n— oo
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Theorem 4.33 - lim x = x weakly if and only if lim flx ) = £(x)
N~ @0 { n—s o0 i

%(.
foruall fe

Proof: Obvious.

Remark: Strong convergence =—> weak convergence. Since if
*

lim X, = x |strongly and feV then ‘f(xn)—f(x), = if(xn—x)l

N3 ot

< Hf|l“xn-x“—~%-0- as n—> o2, However, it dim V = ¢0 then wéak

convergence 74; strong convergence.

. 5 nthplace ‘
EXample[l.BLl- Let V =ﬁlH en= (0,0,eoo,qyo’o,noo) fOI‘ all n€ !N

>
and P € V¥ . Let CP(en) = B/ for all nc N. By the same proof as

in the example 1.24 (i), (Bn) éiﬂig, go 1im = B. = 0. Hence

il niafon B
iirfoé (P(?n) =@(0). Thus l];_l—r:loo i e weakly. But (en)nélN is
not strongly converéent because if m # n &(en,en) = 2 therefore
(en)neWN\ is not cauchy with respect to the norm‘metrico'gg
Remarks: (i) In a finite dimensional left (riéht) vector space v

over [H weak convergence is equivalent to strong convergence.

Proofi Let lim x = X5 weakly. Must show that lim X = X
n—>ok n—o0

0
with respect to the norm. Let €q9€510009€ be a . basis of V. . Given

n
A €IN such that 1 < < n let 6 : V—>|H be the map ¢ ( I xgen) e

Then e is left linear. Since V is finite dimensional, e is continuous,
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; Aaly . oA :
do e v il 1ad ed‘(xn) = xg) the ogth component of the vector x .
Since lim Heie Xq weakly, lim x;( o ‘xg for all 14\<_ X £ Ne

/

Nn— <o : N—>oct
Since in the finite dimensional case all norms are equivalent without

loss of generality let H Hmbe the norm on V. Given & > O there

exists a NF such that 'xrid‘)— x(oc)i </t for all m's N and for

0 <
i e e
all & < n therefore |lx - x || = sup ﬂxéx )—xéd)! % g des
1e€n '
. S . | . o .
lim X = X, with respect to || ||w and so 11.m X, = X, with respect
m— o0 m—>cQ

to all norm on V, \§<

1) Is <xn)n(-- n 18 a /strongly convergent seguence, then clearly

(xn)nélN is bounded.

We want to show that if (xn)h‘: N 2 weakly convergent sequence,

then (xn)nC-IN is bounded. In ordér to prove this we need some lemmas.

Lemma 4.35 Let V be a LNLS (RNLS) and (Xn)né;N an unbounded sequence

p * o AR Lkt ) * ; ;
in V. Let(p &V and B(Lpo,r) be the closed ball in V center at ({JO

 of radius r > O. Then {‘Ly(xn)/'tyeB(zpo,r'),neml] is unbounded .

Proof: . Suppose not. Therefore «,f?,)/(xn)/?-VéB(iPo,rj,né iN} is

bounded. Claim{l}f(xn)/l{/é B( 0 y2),ne iN} is also bounded. To prove
this claim, note that if Y/ € B(O,r), Then Y+, €B(Q,,r). Since

w’\(xn) ='W(xn)+@o(xn)-({70(xn), therefore we have the claim. Hence



105

there exists a K such that |Y(x )| < K for a1l WEB(0,r) and
-x— :
for all n € IN. Since the map O£ Vo given by x!—>74f is an

isometry, || xn“'-'“ufxn“ =,}Csl;ilp ]'M" ((V)U =2 F\\;Iﬁ sz ((4’)’} i

-;'—, sup {lq}(xn)f g £ K/r v+ B0 (xn)nelN is bounded, a contradiction.

Il =" ‘ e

Theorem 4.36 Let V be a LNLS (RNLS) and (x 0 a weakly conver-

né&iN
gent sequence, Ehan (xn)nFiN is bounded.
Proof: Suppose not. Hence (xn)n(IN is unbounded. Let —go
*
be any closed ball in V . ~ Then (gﬂ(xn))w[—ﬁfs unbounded by lemma 3.35.
Bl

Hence there exists a(ﬁoégo and n16 N such that ,@O(xn )’ > 1. Since
: 1

Yy is continuous, there exists a neighborhood U such that (PO eU
n
1

and|Y, (¢)[>1 forall g€ U. Let B, be a closed ball contained
T
in U. Hence B,CUNBy. So we have that for allge B, |y, ()| >1.
n
1

(@x,) )‘-Péﬁ,l is unbounded by lemma .35. Hence there exists a(p, ¢ B,
and there exists an nZQiN such that f'iP,](xn )| > 2. The same reasoning
2

as before show that there exists a closed ball 52 o E,] sucht that

for all § € Ea !(P(xn ), > 2. Continue in this way, we get that for
: : 2
all ké€IN there exist a closed ball Ek £ Bk-1 and an nk(-. N such that

@(x. )| > k for all ¢ ¢ B, o Then ak B #¢ [1,P60] .
t nk‘ @ k ; keN k ¢ 4

Let ¢ € (| B therefore ¢ € B, for all k € M, hence|P(x_ )| > k.
k€N k
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So ((F(xn )) is unbounded. Since (xn)nﬁ' is weakly convergent,

k KEN =W
there exists an xoé V such that 1lim (P(xn) =(p(xo). Since

N> 00

Plx, )) is a subsequence of convergent sequence, (P(x_ ))
k k&N "k k€N

is convergent, so bounded, a contradiction.

%
Weak and Weak * convergence in V

Let V be a LNLS (RNLS). Then V*.is a RNLS (LNLS). 8o it
has strong fopoiogy which comes from the norm (which is a metric
topology). Also, we can give, ijthe weak topologye. We can put a
third topology on V*‘called the weak % topology. This topology is

the smallest topology making (#&)xe:v continuous. This topology

can be described as follows: Let AC V be a finite set and let £5>0

be given. Define SUA Pt {fé'\f*/['f(x)} £ VXG.AQI '1f A = {;c,1,1c2,°°
30 p
2%
! {fe v /}f(x)} <€

..,xﬁ% we shall sometimes write U
myt

X1 ’xz,ooo’x
\fn -~ 1,..°mE] and we take the set of the form UA . to be a neigh-
,v

i 3
borhood base of 0¢V . This generated topology on V™ is called the

weak ¥ topology. If lim fn = f din this topology we say that

Il—» 50
lim fn = f weakly* .
n—yo0 i

Weak and Weak-convergent in V defined similarly.

Theorem 4 .37 1lim f = f in the weesk % (-) topology if and only
n— 0

if lim 1y¥(fn) =1V%(f) for all x€&V.

n—>co
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Proof: Obviouss

f‘V (V) where V is LNLS (RNLS) which

Theorem 4.38 Let (f ) e

is also in Banach space such that lim f = f weakly ¥ (=) .
z n—>o0

Then (fn) is bounded.

n€iN

Proof: -  Some argument as in Theorem 4.36.

Theorem .39  (Generalized Bolzano-Weierstrass Theorem) Let V. be
3 s
any separable LNLS (RNLS). Then évery bounded sequence in V (V)

has a weakly ¥ (=) convergent subsequence.

Proof: Let D% (x ) be a countable dense subset of V.

n(lN

X
Let (£ )nEIN be a bounded sequenco in V. therefore there exists a M

such that || £_|| < M for all n N. Since lf (x)) € Nl lixqll < o0

for all n € N, (fn(x1))nénN is = bounded sequence in [H, hence there

s = ‘ &)
exists a convergent subsequence (fn (xq)) of (f (x ))nélN'

n¢iN

Sines 'fé1)(i2 l ”f(1%! l}<<x> for all n € N, (f(1)(x ))neﬂN

is a bounded sequence in |H, hence there exists a convergent subsequence

s

(fga)(xz))nclm of (f(1)(x2))n€'N° Continue in this way there exist

a subsequence (f )) e for all T = 1.25 v -suth that
(k+1) (k) .
1) (fn )ne!N is a subsequence of (f_ )néﬂN for all
k = 1,2,aeo
2) (f(k)) converges at the points X, sX59ecc9Xp e
ne N e e o B
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.Choose the diagonal fgq),féa)

.

A n
all x . Claim that (fn(x))néiN converges for all x€V. To prove

se0e o This sequence CONverges for

this, it suffices to show that it is cauchy. Let x€V and € 2.0

be given. Since D is dense in V, there exists N_ such that

llxy =x]} < €/ o Since (f(n)(x )) converges, there exists
3 2 : e

and N € IN such thatflf(n)(x )=-£"(x )] < €/, whenever m, 2> N.
n %: m Ng 3

Hence for all n, m > N
ifgn)(x)-fém)(x)l g{fin)(x)-f;n)(xﬁ:)[+Ifin)(x%;)~fém)(fo)!

*lfém)(xgi)-fém)(x)l

U]ty fi 275 ™)

SM.E/BM. +8/3 +M°€/3NI =£ -

Hence (fin)(x)) is cauchye. Since|H is complete (fﬁn)(x))n ﬁ

nelN
converges. Define f i V-—IH by fo(x) = lim fg(x). Then f, is
; n—>o0
left linear. If x # O, then |fo(x)l =|1lim f;n)(x)‘ = lim |f;n)(x)yg
o :

> 0 n—se°

1im l'fgn)nﬂxhéiﬂhxn. Hence Hfoi}= supjl fO(X)H & M. Thus f, is
n—> oo x#O{.IIX I j

*
continuous. Therefore foé-V ¢ Algo, for all xc V¥V 1lim fgn)(x) = fo(x).

n—>oo

Hence (fn)nClN has a subsequence weakly % converging to fo.



109

Theorem 4.%0 Let V be a separable LNLS (RNLS), B the closed unit
oo % o

bell in V and B C V I¥]. The closed unit ball in V [V]. The

‘topology on B induced by the weak * [-) topology in the same as

oo If(xn)fg(xnﬂ

that induced by the metric P(£f,5) = E = where
0= 2

{x1,x2,..e} is a countable dense subset of Bo.

— lf(xn)—g(xn)i Sk
Proof: VSincefD(f,g) = = = i 2/2n

= 21 1/2n-1 = 1 for all £5 g&B ,JP is well-defined. Iff)(f,g)=o,
n= : .

then (f-g)(x ) = 0 for all n e IN. Let x€B., Since (Xn)nelN is

dense in B, there exists lim x = x. Hence (f-g)(x) = lim (f-g)(x_)

k> o0 nk k—>o0 nk

= 0. So that £ = go The other axioms for a metric space are trivial,
3
JP is a metric on B » To show that the topologies are the same, we

must prove that
(ec B /0(0,£)<E12 B NV, .,/ where U, . i K #
1= Ry = 1f€ /PC0, 1 <Ez‘g 0 Ko where Uy ./ is a wea
: *
neighborhood of 0 & V and
*
2, Every weak % neighborhood U, SF)B 2Q = metric neighbor-
k] L
*
hood of 0V &
To prove 1, given &£ > 0. Let N be such that Thi 6/2 and consider

i R
the weak % neighborhood of zero U =1 {fé,V /|f(xnﬂ &£

x1,x2,.°.,xN,£/2 x

; ‘ * =
€, \7’n=1,2,.,..,N)¢. Then f & B (jU implies that P(£,0) -
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N \f(xn)l G If(xn)l i =
= F e——t % > g«/z(z 1/2n)+ e 5

at n=N+1 2 n="1 =M% 2

N e
e 1 £ 2 T
= /E(nz—:1 1/2n)+ 5 N < /2+ /2 = ¢ and hence B} U € QE .

This proves 1.

N

>
To prove 2, given 450 letU=1 5 s EN 2iely )| <8
: y1ayza°°°9yma3 L n

..*-

s B 1,2,e.,,m} be any weak ¥ meighborhood of O c Vo

case 1. [lynﬂ <1 for all n= 1325ec0,MM. Since {xq,xz,...} is

dense in B, there exists indices Ngyflyaece sy such that ﬂyk—xnkn<é/2

' )
ol 1,2’ooo,ma Let N = max {n,],na,ooo’nmj and E = 5/2N+1 ° Then

fe Qav,implies that |£(y, )] € |f(xnk)l+{f(yk)-f(xnk)l< 5}2+ufnuyk-xn£

_ *
< é/2+ Of; = § . Therefore—0. ¢ Uf(rB.

case 2 tlykﬂ S 1 for some k 6{1,2,.c,,m3. Let
y Al e
. :
= and let
EE g
——— T y b
195l k

, ’ /
Mo max-{Hka/k = 1,2,..°,m}° Then let U = Uy;,y;,...,y;,&/m

ok /
Therefore U < U. Since {x1,x2,.o.} ig dense in B, there exists

indices n,‘.nagt.ee'nm such that “y{l(.-xnk” < 5/2M k= 1,2,...'111.

Liety N = max {n1,n2,...,na} and & =é/2‘N+1M . By the same proof as
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* / * % .
. = :
above Q€ . phB o AnRB. 2§S
Corollary 4.41 Let V be a separable LNLS (RNLS) which is also a
o e :
Banach space. Then every bounded subset of V (V) is relatively

compact in the weak % (-) topologye The converse is also true.

: %
Proof: Let A be any bounded subset-of V » Therefore
there exists a r > O such that AC B(O,r). By Theorem 4..40,
BCO,f} is a metric space. Hence we must show that E has the BW

property i.e. every seQuence (fn)nefN in A has a convergent sub-
sequence convering to a point in BJet (fn)neiN be any sequence

in & therefore (fn)

ne N is a bounded sequence in B(O,r) therefore

there exisys a weak * convergent subsequence (fn ) of (fn)nelN
k ke IN
by Theorem 4,41, Hence A is relatively‘compact in the weak ¥ topo-

logy. The converse is obviouss }§(

Theorem 4.42 Let V be a separable INLS (RNLS) which is also a
- e

Banach. Then every closed ball subset of V (V) is compact is

compact in the weak % (-) topology (by closed, we mean closed in

the strong topology)

Proof: Claim that every closed ball in the strong topo~-
logy is closed in the weak % topology. Since trénslation take
every closed set into another closed set we need only prove that
the closed ball B, = {fEsV*/Hf!§< C} is closed in the weak *

topology. Suppose that %Q{ B, therefore there exists a xy€V such
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Ahat nxo e 4 and fo(x) =o > Cs Then the set
¢ * 1 P :
U = i fev /|f(xo)| >-§ (+C) | is a weak ¥ neighborhood of fg

containing no element of Bc therefore Bc is closed in the v}eak 5 5

topology. Since Bc is bounded, it is compact in the weak ¥ topo-

logye %

Definition4 .43 Let V be a LSPS (RSPS) which is also a Hilbert
space and 'f: V—>V a continuous left (right) linear map. Then £

is said to be self-adjoint if and only if f(x).y = xf(y) for all

X, Y€ Vo
Example 4.4% (i) Let [aij:'nxn be a metric where a;.€ H and a
o B ror alY iy ¥/ da s £: H%:—> H" be defined by

ij 3i
Ty ( Ye H . P £ i
(f(X))i = £ xjaij for all x = (X X 9e009X) : H . hen f is

continuous left linear map. Claim that f is selt-adjoint. Let

: n
X = (X’I’XZ’”"xn)' y & (y1,y2,o..,yn)€ JH s “Then f(x)esy =

N S = '2 "g 9 5 ?: ~% il
> X b X.aﬂ. S o e A x.8,.Y. =
~ s B b il e 2 i=1 j=1 3L e g h 4 - S R el 5
k> o ¥ x.£(y)
XY 8ok = >
HERT T v P

(ii) Given lfl the R8PS structure. Let f: ,Q]IZ{--‘ 9.51 be

oo =0

defined by f(x,],xa,.n,) = (‘2 844%40 'Z‘ aijj"’") where
: 5=4 j=1
$ ¥ i T % | <0 and 5.. for all i,jel
S pie b e, ) a..|,<evand a,. = a.. or a 1,J€ Ne
i=1 j=1 13 i=1 j=1 la iJ 31
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Then f is right linear cand CeCo, hence f is continuous. Claim

: S P X b2
that f is .self-adjoint. Let x = (x1,x2,°,°), y = (y1'32"°°)6)ﬁH°
o0 A eyl o Vg wTEd
Then f{x)ey = £ ¥ a,.Xx.y. = X I XxX.8,.5. = S " Ra.Y
fotidat S0 0T o 4ed o9 0 Gar dad AR
T ¥ = ) £
= X.8..Y., = Xeef(y)o -Hence £ is self-adjointe _
51 g=1 . 2 0 X<

Theorem 4 .45 Let Vb a LSPS (RSPS) and f: V—>V be a self-adjoint
map. Then all eigenvalues of f are real and two eigenvectors of f

corresponding to distinct eigenvalues are orthogonal.

Proof: Let A béxany cigenvalue of f. There exists an
x€V {0} such that £(x) =74 s Then A (x.x) = (Ax)ex = f(X)ex =
x.£(x) = x.(Ax) = (xox) X , and hence A= % i.e. A€ |R. Moreover,
if £f(x) =74x, £f(y) = py (A# )y then A(x.y) = (Ax)ey = £(x).y =
x£(y) = xo(ny) = (x.y)u = #{x.y) and hence x.y = O i.e., the

vectors x and y are orthogonal. ggv

We now shall prove the Hilbert-Schmidt Theorem. First we

shall need some lemmaso.

Lemma 4 .46 Let V be a 16PS (RSPS) which is also a Hilbert space
and f: V—>V a c.c self-adjoint map. If lim X, =% weakly,
n-—=>c0

then 1lim f(in)exn = Tl Yex o
n—s00

Proof: ‘lf(xn)axn-f(x)ux <[f(xn)-xn-f(x)°xn|+]f(x).xn-f(x),xi

:lf(xh—x).xnl+|x,f(xn-X)|

£ (Han+HxH)Hf(xn—x)N'.
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S8ince 1lim X
P n—sch

x weakly, there exists a M such that Hxn“< M

il

n
for all n¢ IN.  Therefore lf(xn)oxn-f(x),xl'g (M+Hx“)|lf(xn)—f(x)“°
Since f is csce and (Xn)nelN is bounded, there exists a strongly

cubssquance (£lx - )) of (£(x.)) . . Claim that lim £(x_)
By kN Ao nel pREB

: » ‘ . ‘
f(x) weakly. To prove this, let W e V  therefore there exists

1l

]

unique y €V such that Y(x) = x.y for all x€ V. Hencely(f(xn))

1l

f(xn).y = xnof(y) for all n€lN., Claim 1lim xnof(y) = X f(¥)o
n—>c0 ;

Let'Q(x). - x.f(y) for a1l x € V. Then 7] is continuous and left

linear. Hence -1lim 7L(Xn) =7 (x) i.e., lim xn.f(y) = X f(y)o
n—on n—>co :

Thus we have the claim.  Therefore lim W (f(xn)) = lim xn.f(y)
n—»0oo nN=co

= ¥.£(y) = £(x) oy =2p-(f(x))° Hence lim f(xn) = f(x) weakly.
00

Let lim f(xn ) = z ' strongly . therefore 1lim f(xn ) = z weaklye
k— o0 k ; k-—> 00 k

Since 1im f(x ) = x weakly and lim f(x ) = z weakly,
n n
n—>cf . k-— 2 k
S *
lim (P (£(x )) =p(£(x)) and lim P (£(x_ ) = (P(z) for all@Q eV
n—>co ; k—> o0 k

» :
therefore P (£(x)) = ((z) for allP € V . Let %edﬁ e be an

orthonoraial 1eft basis of Y. Them if Y (%) = Xse  Ior all o €N
we get that ((£(x)) = {((z) for all x €N therefore £(x).e, =
ze8 for all &« €IN. i.e€e: (f(x)—z).gi for all o & N Since

(eo()o(EIN is maximal orthonormal set, f(x).z = 0, hence f(x) = z.
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Hence we have the claim. Thus 1lim f(xn Y = Blx). Claim that
k— o0 k '

lim f(xn) = f(x) strongly. Suppose not therefore there exists

N—y<Q

E()>'O such that for each N& IN there exists n > N such that

i

£(x,) ¢ B(£(x),£). Let N = 1 there exists a.m,> N such that

m, there exists m, > m, such that

f(xm1) ¢ B(£(x),€y). Let N ] -

f(xmz)ﬁé B(f(x),&o). Continuing we get a sequence (Xk)ké,m such
that 1im f(x_ ) # f(x). Since (f(x_)) is relatively

k-3 0 n,. e kelN

compact, there exists a strongly convergent subsequence (f(xm ))

Ky 1em

]

Let 1lim f(x_ ) = ye Since lim f(xm ) £ fix), £(x) # ¥.

T—> o mkl £ oon k

Since 1lim f(xn)
Nn—> o0 n-—oo

1l

*- *
@weV , so lim ( (f(xm ) = (f(x)) for allLEYV . Since
S kl

lim (P(£(x, ) =P{y) Tfor all @€ V*,(p(f(x)) =(p(y) for all
1—>o0 kg

*
@&V . By the same argument as above, f(x) = y, a contradiction.

Hence we have the claim. Thus 1im f(xn).xn = f(x)oXoe
n—% oo :

Lemma 4 .47 Let V be a separable LSPS (RSPS) which is also a

Hilbert space. Let f: V—=>V be az nonzero c.c. self-adjoint mape

Let Q(x) = f(x)ox for all x& V. Suppose that there existes a

g { 1 ;
& B(0,1) such that sup ilQ(x)YK . !Q(xo)!, Then if y<L_xO
%€ B(0,1)
we must have that f(xo)oy = xo;f(y) = 0. In particular X, is an

5

eigenvector of f.

f(x) weakly, lim &p(f(xn)) =(Pv(f(x)-) for all
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Proof: Suppose @ = O. Let x.€ VN{0). Then let x = -
b Lot L o) J “xoh

therefore ilxﬂl = . 1e et o E IR \{03 be arbitrary and f(i’) = Yo

/
X + ay

(142l 2Ny 1"

Then let x = therefore\ix” = 1.

_ (PG +aE(3))  (xray)
1+ ]2l 1y |F

O=-Q(x) = $xi.z

i (4 / / / 6>}
brted = anl fh) DanCrlriints = 06D

1+Ialzliylﬁ
bherefore 0= a{t(x) by /hh L S RI) .7+ 7Ch) a7 = 26 Re(F(iNey)
" " y f(xo)of(xo) ;
=.2a(f(x).y), hence f(x).f(x) = = = Oy 80 f(xo) = T
el

Hence f = Oy a contradictions. 8o assume that @ Z O. Then Xq 42 >

Claim that “XO“ = 1. Suppose not therefore O < ”XO” < 1. - Let

X
0 | Y 1
¥q = then {{x_ll =1, Hence Q(x,) = v Q% F 50
1 ”XOl n !l 1!! 7 Q 27 & HXO.‘Z Q 0 : ;

lQ(x1)‘ >-|Q(xo)f, a contradiction. Thus we have the claim.

X +tay

o--2Then
(1+]a| Az ®)”

Fix yl x;. Let a€ R N[0} and let x =

1

: o (£(x)+af(y))(x +ay)
1+ lal Tliy |

HX“= ;'o Q(X) = f(x)ex =

1

'4 '2“ Eg [f(xo),xo+ al(£(xy)ey)+ a(f(y).xo+la|2 (f(y).y)]
1+ {a Yy

= —2— [alrp)ealelxg)ays £0eg)on)+lal 2(2(r) )]«
1+ lal Tyl ,



K
:
If |a| is sufficiently small we get that 0Q(x)® Q(x0)+a(2Re(f(xO).y))a

i f(xo).y £ O, then a can be chosen to make fa(x) 1 > lQ(xo)i, a

contradiction. Hence f(xo)ay = xo.f(y) = O B8ince —:=

4 5

3 e : = ? ‘ f ]
g @ {dxoﬁdéiﬂ s £lxg) = y+z for some ¥ E4AX, ] ey

0Joel
s
i ST e g s = ° ° T - = °
and 2 € {9X0] therefore O f(xo) P2 VeZ+ZeZ O0+Z a2 ZeZy

i {aqc

g2 = O Hence Xq is an eigenvalue of f. %g

Theorem 4.48  (Hilbert-Schmidf) (et V be a separable LSPS (RSPS).
Let f: V>V ne a nonzero CoCe seft-adjoint map. Then there exists

a countable set of orthonofmal eigenvectors (en)nEIN of f such that
every vector ve€ V has unique representation in the form X = z Bnen+f
where % & ker £ =also, f£(x) =3 Kanen. where %n is the eigenvalue

of ag and if the number of éigenvectors is o0 then lim 7\n = 0O,
n—>c0

Proof: TFor each x€V, o) ox | < {IEGO = W HEJ I xx ]

= g ixl®e 1 flxl g 1, then | £(x)ox | < l}£ 1l <o0, sO {lf(x).xii

xi<t
- o 3 1 :
is bounded, Let M, = sup ﬂf(x)oxgj. Let (xn)nelN ‘be a sequence
f1xli<1 -
of elements of V such that ||{x j| = 1 and 1lim tf(gg.xn} - ¥1. Since ¥

n—=>co

V is a Hilbert space, V is left isomorvhic to V and so by Theorem 4.4 2,
the closed unit ball center at O is weakly compact, hence there exists

weakly convergent subsequence (xn ) o Let lim B a2y therefore
- . k k€ IN k—>R k

y € the closed unit ball i.e. Nl 15 By 1emma.q.46, lim f(xnk);kn

k—s00 K
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= f(Y)-ys 80 ifﬁmm ‘f(xnk),?nk!= }f(y).y}. Hence If(y§.y! = M,e

By lemma 4 .48, y is an eigenvector of £ (%« ¥ # 0)e Claim that

/ i
yll.= 1, if not, then Ilyll < 1. Let y =iz , then iyl = 1
/ /‘ 1 | X o
and lf(y Yoy | = ——= | f(ydey | > M,, a contradiction. Ience we
e 1

Hyll
have the claim. Let e, =¥ and let ﬂ1 be the eigenvalue of ei
j thereforev}f(e1)ee1‘ = iﬂ1 ,eqoeql = {4 HG4F = 1Rt lﬂ‘ = Mo
Let W1'= (Qe1)d€,N ?hen W1 is a closed left linear subspace of V,”
hence w1 is a separable LSPS which is also a Hilbert space and so

2 J* J L / / / / ~
is Woe Let w €W, then f(w1?5e1 % w1.f(e1) = w1.(7%e1) = (w.e1)Q.:“O

il . 5 X
therefore f(wq)é,w1. Hence f: w1——>w1 is Ce.c. and self adjoint.

: B A
Let M2 = sup {lf(x)ox }a Hence M, < M1° By the same argument

Hxll <1
xE

AT
as before there exists an eaDE-W,i which is an eigenvector of f such

that lle, |l = 1. Again let A, be the eigenvalue of e, the'nl'lai = M,

o o
. e ! s P
so |A,] € fAfe Let W, =qjd e+ "J”zezjf:ﬁ[,déem o Again £: W,—> W,
ig cst.  and self adjdint° Therefore by the same reasoning there

exists an eBGEW2 such that He3'l= 1 which is an eigenvector of f
and the eigenvalue 13 of e3 has the property that lﬂBl g,lﬂal. :

Continue in the way. There are two possibiiities:
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case 1. Suppose that there exists an n,&N such that fixFex = 0

2
on W, » By the same proof as in lemmg 4 b7, f/w . = O. Hence
_O ; no
4. 3
W C-ker £, Binge'V.= W @ W s for each x¢ V X can be
n n n
0 0 0
%

written uniquely in the form x = a+a’  where aé.wn and a' & Wn
0 0

C ker f,

Since aeWios a=.3% B._e for some B_¢& |Ho Hence for each xX€V
ng ot nn n -

1]
™

£(x) = £(a)+£(a’) ?\anen >

X
‘

case 2. For each n € [N there exists an X € wn such that ¢ i

f(xn).xn £ 0. 1In this case there exists infinitely many eigenvector

o GIzim that &

(Ag), e v @nd they are ordered so that | Anl > | /\n+’l

lim ’An = 0. Since V is left isomorphic to ﬁ»é and lim e; =0
n—>oco bR . n—e oo
5 ; n -place
weakly in 9"11{ where e = (0,0,1 40,0554%) for all n€ INy lim e =0
n—>oo

weakly in V. Hence 1lim f(en) = 0 strongly (same proof as in

n—> oo
lemma 4 .46) therefore lim Hf(en)ﬂ 2 O.- Bt Hf(en)“ = H';{nenn o T
n—»co :
I?\n‘ i en“ = Mn‘ y 80 ]I;:._riw ?\n = 0. Let ch>0 be the closure of the
1

left linear subspace generated by (ed )o\é N If W= 0, then

-

i
V = W__ and we are done (since let = = 0)ur 3T W # 0, then choose

o0
A 2{ %) % ‘
X€ woo\{oﬁ t}}erefore we have that l Eie el < ‘an =M for

all n€IN therefore 0 < ‘f(x).xtg {’/\nl l[x“a-——).o. Hence f(x).x = O.
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