

CHAPTER II

BANACH SPACE OVER THE QUATERNIONS

- <u>Definition 2.1</u> Let V be a left vectorspace over H. A map $\|\cdot\|: V \longrightarrow \mathbb{R}$ is said to be left norm on V if and only if
 - (i) $\|\mathbf{v}\| \ge 0$ for all $\mathbf{v} \in V$ and $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$.
 - (ii) $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\|$ for all $\mathbf{v} \in V$ and for all $\alpha \in \mathbb{H}$.
 - (iii) $\|\mathbf{v}+\mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|$ for all $\mathbf{v}, \mathbf{w} \in V$.
- If $\|$ is a left norm on V then the pair $(V,\|\ \|)$ is called a left normed linear space. We shall abbreviate it by LNLS.
- Definition 2.2 Let V be a right vector space over H. A map $\| \cdot \| : V \longrightarrow \mathbb{R}$ is said to be right norm on V if and only if
 - (i) $\|\mathbf{v}\| \geqslant 0$ for all $\mathbf{v} \in V$ and $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = 0$.
 - (ii) ||vx|| = ||v|| | x | for all v ∈ V and for all α∈ H.
 - (iii) $\|v+w\| \le \|v\| + \|w\|$ for all $v, w \in V$.
- If $\| \|$ is a right norm then the pair $(V,\| \|)$ is called a right normed linear space. We shall abbreviate it by RNLS.
- Definition 2.3 Let V be a vector space over H. Then (V, || ||) is called a normed linear space if || || is both a left normed and right norm. We shall abbreviate it by NLS.

Given a LNLS(RNLS) V, define d(v,w) = ||v-w|| then d is a metric on V hence V is a topological space.

Definition 2.4 If a LNLS(RNLS) is complete with respect to the metric d then we shall call V a Banach space.

Example 2.5 (i) $(\mathbb{H}^n, \| \|_p)$ where $\| \mathbf{x} \|_p = (\sum_{\alpha=1}^n |\mathbf{x}_{\alpha}|^p)^{1/p}$ for all $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) \in \mathbb{H}^n$ and $1 \leq p < \infty$.

Proof: Let $(z_{\alpha})_{\alpha \in \mathbb{N}}$ be a cauchy sequence in H. Given $\varepsilon > 0$ there exists a N_{ε} such that $\|z_m - z_k\|_p < \varepsilon$ for all $m, k > N_{\varepsilon}$. Hence for each $\alpha \in \{1, 2, \dots, n\}$ $(z_m^{(\alpha)})_{m \in \mathbb{N}}$ is a acauchy sequence in H. Since H is complete, there exists an $z_0^{(\alpha)} \in \mathbb{H}$ such that $\lim_{m \to \infty} z_m = z_0^{(\alpha)}$. Let $z_0 = (z_0^{(1)}, z_0^{(2)}, \dots, z_0^{(n)})$. Claim that $\lim_{m \to \infty} z_m = z_0$. Since $\lim_{m \to \infty} z_m^{(\alpha)} = z_0^{(\alpha)}$ for all $\alpha \in \{1, 2, \dots, n\}$, there exists a N_{ε} such that $|z_m^{(\alpha)} - z_0^{(\alpha)}| < \frac{\varepsilon}{1/p}$ for all $m > N_{\varepsilon}$ and for all $\alpha \in \{1, 2, \dots, n\}$ so $\sum_{m \to \infty} |z_m^{(\alpha)} - z_0^{(\alpha)}|^p < \varepsilon^p$, for all $\alpha \in \{1, 2, \dots, n\}$ so $\sum_{m \to \infty} |z_m^{(\alpha)} - z_0^{(\alpha)}|^p < \varepsilon^p$. Hence $\lim_{m \to \infty} z_m = z_0$. Thus $\lim_{m \to \infty} z_m = z_0$. Thus $\lim_{m \to \infty} z_m = z_0$. Space.

(ii) In $\int_{\mathbb{H}}^{p} = \left\{ (\mathbf{z}_{n})_{n \in \mathbb{N}} \middle| \mathbf{z}_{n} \in \mathbb{H} \middle| \forall n \in \mathbb{N} \text{ and } \sum_{n=1}^{\infty} \middle| \mathbf{z}_{n} \middle|^{p} < \infty \right\}$ and $\|\mathbf{z}\|_{p} = \left(\sum_{n=1}^{\infty} \middle| \mathbf{z}_{n} \middle|^{p}\right)^{1/p}$ where $1 \leqslant p < \infty$.

Let $(z_n)_{n \in \mathbb{N}}$ be a cauchy sequence in $\mathcal{L}_{\mathbb{H}}^p$. Given $\xi > 0$. There exists an $N_{\xi} \in \mathbb{N}$ such that $\|\mathbf{z}_{n} - \mathbf{z}_{m}\|_{p} < \frac{\xi}{2}$ for all m, $n > N_{\epsilon}$. Therefore for each $\alpha \in \mathbb{N}$, $\left|z_{n}^{(\alpha)} - z_{m}^{(\alpha)}\right| < \frac{\epsilon}{2}$ for all m, $n > N_{\xi}$. Hence for each $\alpha \in \mathbb{N} (z_n^{(\alpha)})_{n \in \mathbb{N}}$ is a cauchy sequence in Since $\mathbb H$ is complete, there exists an $\mathbf z_0^{(\alpha)} \in \mathbb H$ such that $\lim \mathbf z_n^{(\alpha)}$ $= z_0^{(\alpha)}$. Let $z_0 = (z_0^{(\alpha)})_{\alpha \in \mathbb{N}}$. Claim that $\lim_{n \to \infty} z_n = z_0$. Since $\sum_{\alpha=1}^{\infty} |z_{m}^{(\alpha)} - z_{0}^{(\alpha)}|^{p} < (\epsilon/2)^{p} \quad \text{for all m, n > N}_{\epsilon}, \quad \sum_{\alpha=1}^{M} |z_{m}^{(\alpha)} - z_{n}^{(\alpha)}|^{p} < (\epsilon/2)^{p}$ $(\ell_2)^p$ for all M \in N and for all m, n > N. Fix M, m and let n $\to \infty$ in $\sum_{m=1}^{M} |z_{m}^{(\alpha)} - z_{n}^{(\alpha)}|^{p} < (\epsilon/2)^{p}$ we get that $\sum_{m=1}^{M} |z_{m}^{(\alpha)} - z_{0}^{(\alpha)}|^{p} < (\epsilon/2)^{p}$. Since M is arbitrary, $\sum_{m=0}^{\infty} |z_{m}^{(\alpha)} - z_{0}^{(\alpha)}|^{p} \leq (\frac{\varepsilon}{2})^{p}$. Hence $\lim_{m \to \infty} z_{m} = z_{0}$. Since $\sum_{m=0}^{\infty} |z_{m}^{(\alpha)} - z_{0}^{(\alpha)}|^{p} \leq (\frac{\varepsilon}{2})^{p}$ for all $m > N_{\varepsilon}$, for each $m > N_{\varepsilon}$ \mathbf{z}_{m} - $\mathbf{z}_{0} \in \mathcal{L}_{\mathbb{H}}^{\mathbf{p}}$ which is a vector space over \mathbb{H} so $\mathbf{z}_{0} \in \mathcal{L}_{\mathbb{H}}^{\mathbf{p}}$. \times (iii) In $l_{\mathbb{H}}^{\infty} = \{(z_n)_{n \in \mathbb{N}} / z_n \in \mathbb{H} \mid \forall n \in \mathbb{N} \text{ and } \sup_{n \in \mathbb{N}} \{|z_n|\} < \infty\}$ and $\|\mathbf{z}\|_{\infty} = \sup_{n \in \mathbb{N}} \{ |\mathbf{z}_n| \}$. 003761

Proof: Let $(z_n)_{n \in \mathbb{N}}$ be a cauchy sequence in ℓ_H . Given $\xi > 0$ there exists a \mathbb{N}_{ξ} such that $\|z_m - z_n\|_{\infty} < \frac{\xi}{2}$ for all m, $n > \mathbb{N}_{\xi}$. Hence for each $\alpha \in \mathbb{N}$ $|z_m^{(\alpha)} - z_n^{(\alpha)}| < \frac{\xi}{2}$ for all m, $n > \mathbb{N}_{\xi}$. Therefore for each $\alpha \in \mathbb{N}$ $(z_n^{(\alpha)})_{n \in \mathbb{N}}$ is a cauchy sequence in \mathbb{H} .

Since H is complete, there exists $z_0^{(\alpha)} \in H$ such that $\lim_{n \to \infty} z_n^{(\alpha)} = z_0^{(\alpha)}$. Let $z_0 = (z_0^{(\alpha)})_{\alpha \in \mathbb{N}}$. Claim that $\lim_{n \to \infty} z_n = z_0 \in I_H$. To prove this, note that $\left|z_m^{(\alpha)} - z_n^{(\alpha)}\right| < \frac{\ell}{2}$ for all m, n > N_{\ell} and for all $\alpha \in \mathbb{N}$. Now fix $\alpha \in \mathbb{N}$ and m > N_{\ell} then let $n \to \infty$ in $\left|z_m^{(\alpha)} - z_n^{(\alpha)}\right| < \frac{\ell}{2}$ we get that $\left|z_m^{(\alpha)} - z_0^{(\alpha)}\right| \le \frac{\ell}{2}$. Since α is arbitrary, $\left|z_m^{(\alpha)} - z_0^{(\alpha)}\right| \le \frac{\ell}{2}$ for all $\alpha \in \mathbb{N}$ and for all m > N_{\ell}, hence $\lim_{m \to \infty} z_m = z_0$. Since $\lim_{m \to \infty} z_m = z_0$. Since $\lim_{m \to \infty} z_m = z_0$. Since $\lim_{m \to \infty} z_m = \lim_{m \to \infty} z_0 = \lim_{m \to \infty} z_m = \lim_{m \to \infty} z_0 = \lim_{m \to \infty} z_$

iv) In $C_{\mathbb{H}}[a,b] = \{f:[a,b] \rightarrow \mathbb{H} \mid f \text{ is continuous}\}$ and $\|f\| = \sup_{\mathbf{x} \in [a,b]} \{|f(\mathbf{x})|\}$. The proof that $C_{\mathbb{H}}[a,b]$ is complete is similar to that $\int_{\mathbb{H}}^{\infty}$ is complete.

Example of LNLS(RNLS) which is not complete

In $(\mathcal{L}_{\mathbb{H}}^1, \| \|_{\infty})$ where $\|\mathbf{x}\| = \sup_{\mathbf{n} \in \mathbb{N}} \{ \|\mathbf{x}_{\mathbf{n}}\| \}$

Proof: Note that $l_{\mathbb{H}}^1$ is a linear subspace of $l_{\mathbb{H}}^{\infty}$. Let $l_1 = (1,0,0,\ldots), l_2 = (1,1/2,0,0,\ldots), l_3 = (1,1/2,1/3,0,0,\ldots), l_4 = (1,1/2,1/3,0,0,\ldots), l_5 = (1,1/2,1/3,0,0,\ldots), l_6 = (1,1/2,1/3,0,0,\ldots), l_7 = (1,1/2,1/3,0,0,\ldots), l_8 = (1,1/2,1/3,0,\ldots), l_8 = (1,1/2,1/3,1/3,0,\ldots), l_8$

Definition 2.6 Let V be a left (right) vector space over H and $\|\cdot\|_1$, $\|\cdot\|_1$ are left (right) norms on V. Then these left (right) norm are said to be equivalent if and only if there exist m_1 , $m_2 > 0$ such that $m_1 \| \mathbf{x} \| \le \|\hat{\mathbf{x}} \|' \le m_2 \| \mathbf{x} \|$ for all $\mathbf{x} \in V$. Clearly equeivalent norms gives the same topology on V.

Remark: Since $\mathbb{H}^n \cong \mathbb{R}^{4n}$, all left (right) norms on a finite dimensional left (right) vector space over \mathbb{H} are equivalent see [5].

Remark: All subsequent the theorem for LNLS's true for RNLS's and the proof is same. So we shall only prove theorems for LNLS case.

Let V, W be LNLS's (RNLS's). Then the left (right) vector space V X W over H is a LNLS(RNLS) by defining

$$\|(v,w)\| = (\|v\|^p + \|w\|^p)^{1/p}$$
 $1 \le p < \infty$. In fact $\|(v,w)\| = \max\{\|v\|,\|w\|\}$.

Since $V \times W$ is a LNLS(RNLS), $V \times W$ is a topological space. Also as a topological space, $V \times W$ has the product topology.

Proposition 2.7 These two topologies are equivalent.

Proof: Standard.

Remark: If V, W are NLS's then the vector space V M W over H is a NLS defined as above.

Proposition 2.8 Let V be LNLS (RNLS). Then the map $(x,y)\mapsto x+y$ and $(\alpha,x)\mapsto \alpha x(x\alpha)$ are continuous with respect to the product topology. Also, the map $x\mapsto ||x||$ is continuous. In fact the map $(x,y)\mapsto x+y$ and $x\mapsto ||x||$ are uniformly continuous with respect to the norm topology.

Proof: Standard.

Remark: Since the map $(x,y) \longmapsto x+y$ and $(\alpha,x) \mapsto \alpha x$ $(x\alpha)$ are continuous in both variable they are continuous in each variable separately. Therefore if $x_0 \in V$ and $\alpha \in H$ are fixed then the map $(x,x_0) \longmapsto x+x_0$, $(\alpha_0,x) \longmapsto \alpha_0 x(x\alpha_0)$ and $(\alpha,x_0) \longmapsto \alpha x_0(x\alpha_0)$ are all continuous.

Corollary 2.9 Let V be a LNLS(RNLS) and W \subseteq V a left (right) linear subspace. Then \overline{W} is a left (right) linear subspace.

Proof: Let $x, y \in \overline{\mathbb{W}}$ and $\alpha, \beta \in \mathbb{H}$. Want to show that $\alpha x + \beta y \in \overline{\mathbb{W}}$. Then \exists sequences $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ in \mathbb{W} such that $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} y_n = y$. Since \mathbb{W} is a left linear subspace, $\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha x_n + \beta y_n \in \mathbb{W}$ by the above proposition, $\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha x + \beta y$. Hence $\alpha x + \beta y \in \overline{\mathbb{W}}$.

Theorem 2.10 Let V be a LNLS(RNLS) and let W be a closed subspace of V. Then a left (right) linear subspace generated by W and a finite number of elements for V is closed in V.

Use induction on the number of generators of W. If the number of generator is 0 then the theorem is true. By induction, suppose the theorem is true for n-1 i.e. every left linear subspace of V generated by W and n-1 vector is closed. must prove the theorem for n. Let U be left linear subspace generated by W and w1, w2, ..., Wn. Must show that U is closed. U' be the left linear subspace generated by W and w_1, w_2, \dots, w_{n-1} . Then U' is closed by induction. If $w_n \in U'$, then U = U' therefore U is closed so done. Hence we may assume that $w_n \notin U'$. Therefore U is the left linear subspace by w_n and U . So every vector in W can be written uniquely in the form $\lambda w_n + w'$ where $w' \in U'$ and $\lambda \in H$. Let $z \in \overline{U}$. Must show that $z \in \overline{U}$. Since $z \in \overline{U}$, $z = \lim_{\alpha \to \infty} x_{\alpha}$ for some sequence $(x_{\alpha})_{\alpha \in \mathbb{N}}$ in U. Since $x_{\alpha} \in \mathbb{U}$ for all $\alpha \in \mathbb{N}$, $x_{\alpha} = \lambda_{\alpha} + w_{\alpha}$ for some $\lambda_{\alpha} \in \mathbb{H}$ and $w_{\alpha} \in \mathbb{U}$. Since $(x_{\alpha})_{\alpha \in \mathbb{N}}$ is convergent, $(x_{\alpha})_{\alpha \in \mathbb{N}}$ is a bounded sequence i.e. there exists a $\eta > 0$ such that $\|\mathbf{x}_{\alpha}\| < \eta$ for all $\alpha \in \mathbb{N}$. Therefore $\| \lambda w_n + w_\alpha' \| < \eta$ for all $\alpha \in \mathbb{N}$. Claim that (λ) is bounded in H. To prove this, suppose not therefore there exists a subsequence $(\lambda_{\alpha_{\beta}})_{\beta \in \mathbb{N}}$ of $(\lambda_{\alpha})_{\alpha \in \mathbb{N}}$ such that $\lambda_{\alpha_{\beta}} \neq 0$ for all $\beta \in \mathbb{N}$ and $|\lambda_{\alpha_{\beta}}| \to \infty$ as $\beta \to \infty$. Now $\|1/\lambda_{\alpha_{\beta}} \cdot x_{\alpha_{\beta}}\| < \gamma_{\alpha_{\beta}}$ for all $\beta \in \mathbb{N}$ therefore $\|\mathbf{w}_n + 1/2 \cdot \mathbf{w}_{\alpha_{\beta}} \| < \frac{\eta}{\lambda_{\alpha_{\beta}}} > 0$. So $\lim_{\beta \to \infty} 1/\lambda \cdot w'_{\alpha\beta} = -w_n. \text{ Since } 1/\lambda \cdot w'_{\alpha\beta} \in U' \text{ which is closed and}$ $\lim_{\beta \to \infty} 1/\lambda \cdot w'_{\alpha_{\beta}} = -w_n$, $-w_n \in \overline{U}' = U'$, hence $w_n \in U'$, a contradiction.

Hence $(\lambda_{\alpha})_{\alpha \in \mathbb{N}}$ is bounded in H. So we have the claim. By the Bolzano-weiertrass theorem, there exists a convergent subsequence $(\lambda_{\alpha})_{\beta \in \mathbb{N}}$ of $(\lambda_{\alpha})_{\alpha \in \mathbb{N}}$. Let $\lambda = \lim_{\beta \to \infty} \lambda_{\alpha}$. Hence $\lambda_{w_n} = (\lim_{\beta \to \infty} \lambda_{\alpha})_{w_n}$. Also, $\lambda_{\alpha_{\beta}} w_n + w_{\alpha_{\beta}}'$ converges as $\beta \to \infty$ [Since it is a subsequence of the convergent sequence $(\lambda_{\alpha} w_n + w_{\alpha}')_{\alpha \in \mathbb{N}}$]. Since $w_{\alpha}' = (\lambda_{\alpha} w_n + w_{\alpha}')$. $-(\lambda_{\alpha} w_n)$ for all $\beta \in \mathbb{N}$, $(w_{\alpha}')_{\beta \in \mathbb{N}}$ is convergent. Let $w' = \lim_{\beta \to \infty} w_{\alpha}'$. Then $w' \in U' = U'$. Since $z = \lim_{\alpha \to \infty} x_{\alpha} = \lim_{\alpha \to \infty} (\lambda_{\alpha} w_n + w_{\alpha}') = \lim_{\beta \to \infty} (\lambda_{\alpha} w_n + w_{\alpha}') = \lim_{\beta \to \infty} (\lambda_{\alpha} w_n + w_{\alpha}') = \lambda_{\alpha} w_n + w_{\alpha}'$. $+ w' \in \mathbb{N}$ the left linear subspace generated by w_n and w' which is w', $w' \in \mathbb{N}$.

Theorem 2.11 Let V, W be LNLS's (RNLS's) and F is a left (right) linear map. If F is continuous at one point, then F is continuous everywhere.

Proof: Let $x_0 \in V$ be the point where F is continuous. Let $x \in V$ and let $\lim_{n \to \infty} x_n = x$. To show that $\lim_{n \to \infty} F(x_n) = F(x)$. Since $\lim_{n \to \infty} (x_n - x + x_0) = x_0$, $\lim_{n \to \infty} F(x_n - x + x_0) = F(x_0)$. Therefore $\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} F(x_n - x + x_0) + F(x - x_0) = F(x_0) + F(x) - F(x_0) = F(x_0)$.

Corollary 2.12 Let V be a LNLS(RNLS). If F is a left (right) conjugate map and F is continuous at one point, then F is continuous everywhere.

Definition .13 Let V, W be LNLS's (RNLS's) and F: V \rightarrow W a left (right) linear map. Then F is said to be bounded if and only if $\sup_{x\neq 0} \left\{ \frac{\|F(x)\|}{\|x\|} \right\} < \infty .$

Definition .14 Let V be LNLS (RNLS) and F: V \rightarrow H a left (right) conjugate map. Then F is said to be bounded if and only if $\sup_{x\neq 0} \left\{ \frac{|F(x)|}{\|x\|} \right\} < \infty.$

Theorem 2.15 Let V, W be LNLS's (RNLS's) and F: V W a left (right) linear map. Then F is continuous if and only if F is bounded.

Proof: Let $M = \sup_{x \neq 0} \left\{ \frac{\|F(x)\|}{\|x\|} \right\} < \infty$. Hence $\|F(x)\| \leqslant M\|x\|$ for all $x \in V \setminus \{0\}$. To prove F is continuous. We shall show that F is continuous at 0. Let $\lim_{n \to \infty} x_n = 0$ must show that $\lim_{n \to \infty} F(x_n) = F(0) = 0$. Since $0 \leqslant \|F(x_n)\| \leqslant M\|x_n\|$ and $\lim_{n \to \infty} x_n = 0$, $\lim_{n \to \infty} \|F(x_n)\| = 0$, hence $\lim_{n \to \infty} F(x_n) = 0$. So done.

Conversely, suppose not, so for each m∈N there exists an $x_m \in V \setminus \{0\}$ such that $\frac{\|F(x_m)\|}{\|x_m\|} > m$. Let $y_m = \frac{x_m}{\|x_m\|}$ therefore $\|y_m\| = 1/_m$ for all m∈N and $\lim_{m \to \infty} \|y_m\| = 0$. Hence $\lim_{m \to \infty} y_m = 0$. Since F is continuous, $\lim_{m \to \infty} F(y_m) = F(0) = 0$. Hence $\|F(y_m)\| = \frac{\|F(x_m)\|}{\|x_m\|} > 1$ for all $m \in \mathbb{N}$ and $\lim_{m \to \infty} \|F(y_m)\| = 0$, a contradiction.

Corollary .16 Let V be LNLS(RNLS) and F: V H a left (right) conjugate map. Then F is continuous if and only if F is bounded.

Let V be a LNLS(RNLS) and W a NLS. The set of all continuous left (right) linear operator which map V into W, is denoted by C(V,W). We also denote V = C(V,H). The set of all continuous left (right) conjugate operators which map V in to H, is denoted by \overline{V} . Then C(V,W) and \overline{V} can be made into a RNLS(LNLS) and LNLS(RNLS) respectively as follows: Given F, $G \in C(V,W) \cup \overline{V}$ and $\alpha \in H$ define $(F\alpha)(x) = (F(x))\alpha$, $(\alpha F)(x) = \alpha (F(x)), (F+G)(x) = F(x)+G(x)$ and $\|F\| = \sup \left\{ \frac{\|F(x)\|}{\|x\|} \right\}$.

Remarks: (i) $\|F(x)\| \le \|F\| \|x\|$ for all $x \in V$.

(ii) If V, W are LNLS's (RNLS's) then C(V,W) is left (right) vector space over R = Cent (H) and are also left (right) norm linear space over R using the above norm i.e. $||F|| = \sup_{\mathbf{x} \neq \mathbf{0}} \left\{ \frac{||F(\mathbf{x})||}{||\mathbf{x}||} \right\}$.

Theorem 2.17 Let V be a LNLS and W a NLS which is also a Banach space. Then C(V,W) is complete.

Proof: Let $(F_n)_{n\in\mathbb{N}}$ be a cauchy sequence in C(V,W). Hence given E>0 there exists a N_E such that $\|F_m-F_n\|< E/2$ whenever m, $n>N_E$. Hence for each $x\in V$.

 $0\leqslant \|F_m(x)-F_n(x)\|\leqslant \|F_m-F_n\|\|x\|. \text{ Since } (F_n)_{n\in\mathbb{N}} \text{ is cauchy }$ in C(V,W), $(F_n(x))_{n\in\mathbb{N}}$ is cauchy in W. Since W is complete, there exists a $v_x\in W$ such that $\lim_{n\to\infty}F_n(x)=v_x.$ Define $F\colon V\to W$ by $F(x)=v_x.$ Claim that $\lim_{n\to\infty}F_n=F\in C(V,W).$ Clearly F is left linear. f

To show that F is continuous. Choose $N \in \mathbb{N}$ such that $\|F_N - F_{N+p}\| < 1$ for all $p \in \mathbb{N}$. Hence $\|F_{N+p}\| < \|F_N\| + 1$ for all $p \in \mathbb{N}$. Thus $\|F_{N+p}(x)\| \leq \|F_{N+p}\| \|x\| \leq (\|F_N\| + 1)\|x\|$ for all $x \in \mathbb{V}$ and for all $p \in \mathbb{N}$. Now, taking the limit as $p \to \infty$ we get that $\lim_{p \to \infty} \|F_{N+p}(x)\| = \|F(x)\|$. Therefore $\|F(x)\| < (\|F_N\| + 1)\|x\|$ for all $x \in \mathbb{V}$. Hence $\|F\| \leq \|F_N\| + 1 < \infty$. Therefore F is bounded, so F is continuous. To show that $\lim_{n \to \infty} \|F_n\| = F$, note that $\|F_n - F\| = F$. Hence $\|F\| \leq \|F\| = F$. Therefore F is bounded, so F is continuous.

$$\|F_{n}-F\| \leq \frac{\|(F_{n}-F)(x_{\xi})\|}{\|x_{\xi}\|} + \mathcal{E}_{2} = \frac{\|F_{n}(x_{\xi})-F(x_{\xi})\|}{\|x_{\xi}\|} + \mathcal{E}_{2}$$

$$= \|F_{n}(\frac{1}{\|x_{\xi}\|} \cdot x_{\xi}) - F(\frac{1}{\|x_{\xi}\|} \cdot x_{\xi})\| + \mathcal{E}_{2}.$$

Since $F(\frac{1}{\|x_{\xi}\|}, x_{\xi}) = \lim_{m \to \infty} F_m(\frac{1}{\|x_{\xi}\|}, x_{\xi})$, there exists a N_{ξ} such that

$$\left\| F_n(\frac{1}{\|x_{\xi}\|} \cdot x_{\xi}) - F(\frac{1}{\|x_{\xi}\|} \cdot x_{\xi}) \right\| < \varepsilon_2 \quad \text{for all } n > N_{\xi}.$$

Hence $\lim_{n\to\infty} F_n = F$. Therefore C(V,W) is complete.

Remark: The same proof that if V, W are LNLS and W is complete, then then C(V,W) is complete.

Corollary 2.18 Let V be a LNLS(RNLS). Then V is complete.

Proposition 2.19 Let
$$F \in C(V, W)$$
. Then $||F|| = \sup_{x \neq 0} \left\{ \frac{||F(x)||}{||x||} \right\} = \sup_{\||x|| \leq 1} \left\{ ||F(x)|| \right\} = \frac{1}{r} \sup_{\||x|| = r} \left\{ ||F(x)|| \right\} = \frac{1}{r} \sup_{\||x|| \leq r} \left\{ ||F(x)|| \right\}.$

Proof: Let $x \in V \setminus \{0\}$ then $x = \|x\| (\frac{1}{\|x\|} \cdot x)$. Let $U = \frac{1}{\|x\|} \cdot x$.

Then $\|U\| = 1$ therefore $\frac{\|F(x)\|}{\|x\|} = \frac{F(\|x\|U)}{\|x\|} = \frac{\|x\|\|F(U)\|}{\|x\|} = \|F(U)\|$.

Hence $\|F\| = \sup_{\|x\|=1} \{\|F(x)\|\}$ so obvious $\|F\| = \sup_{\|x\| \le 1} \{\|F(x)\|\}$. Also suppose that $\|x\| = r > 0$ therefore $\|\frac{1}{r} \cdot x\| = 1$. In addition, if $\|y\| = 1$, then $y = \frac{1}{r} \cdot (ry)$ and $\|ry\| = r\|y\| = r$. Hence we see that $\|F\| = \sup_{\|x\|=r} \{\|F(\frac{1}{r} \cdot x)\|\} = \frac{1}{r} \sup_{\|x\|=r} \{\|F(x)\|\}$. Also, it is clear that $\|F\| = \sup_{\|x\|=r} \{\|F(x)\|\}$.

Theorem 2.20 (Hahn-Banach) Let V be a LNLS(RNLS) and W is a left (right) linear subspace of V. Let $f\colon W \to H$ be a continuous left (right) linear function. Then there exists a continuous left (right) linear function $F\colon V \to H$ such that $F/_W = f$ and $\|f\| = \|F\|$.

Proof: Since V is a LNLS over H, V is a left norm linear space over \mathbb{C} where $\mathbb{C} \cong \{a+bi/a,b\in\mathbb{R}\}$, hence W is a left norm linear space over \mathbb{C} . For each $x\in W$ let $f(x)=a_0+a_1i+a_2j+a_3k$ for some $a_a\in\mathbb{R}$ where $\alpha=0,1,2,3$. Then define $U(x)=a_0+a_1i$ therefore $\mathbb{U}\colon \mathbb{W}\longrightarrow \mathbb{C}$. Claim that \mathbb{U} is a \mathbb{C} -linear map. Let $x,y\in \mathbb{W}$ and $\alpha\in\mathbb{C}$ therefore $f(\alpha x)=\alpha f(x)$. Let $f(x)=a_0+a_1i+a_2j+a_3k$ and $f(y)=b_0+b_1i+b_2j+b_3k$. Then $U(x+y)=a_0+b_0+(a_1+b_1)i=a_0+a_1i+b_0+b_1i=U(x)+U(y)$ and $U(\alpha x)=\alpha a_0+\alpha a_1i=\alpha(a_0+a_1i)=\alpha U(x)$. Hence we have the claim. Claim that \mathbb{U} is continuous. Let

 $x \in W \setminus \{0\}$ therefore $f(x) = a_0 + a_1 i + a_2 j + a_3 k$ for some $a_{\alpha} \in \mathbb{R}$ where $\alpha \in \{0,1,2,3\}$, so $\frac{|U(x)|}{||x||} = \frac{|a_0 + a_1 i|}{||x||} < \frac{|f(x)|}{||x||} < ||f|| < \infty$.

Hence U is continuous and in fact, $\|U\| \leqslant \|f\|$. Claim that f(x) = U(x) - kU(kx) for all $x \in W \setminus \{0\}$. Let $x \in W \setminus \{0\}$ therefore $f(x) = a_0 + a_1 i + a_2 j + a_3 k$ for some $a_\alpha \in \mathbb{R}$ where $\alpha \in \{0,1,2,3\}$. i.e. $f(x) = a_0 + a_1 i + k(a_3 + a_2 i) \text{ and } f(kx) = kf(x) = a_0 k + a_1 j - a_2 i - a_3,$ so $U(kx) = -a_3 - a_2 i$. i.e. $-U(kx) = a_3 + a_2 i$. Hence f(x) = U(x) - kU(kx). Thus we have the claim. Since U is continuous \mathbb{C} -linear map, By the Hahn-Banach theorem for complex norm linear space, there exists a continuous \mathbb{C} -linear map $U': V \longrightarrow \mathbb{C}$ such that U/W = U and $\|U\| = \|U\|$. Define $F: V \longrightarrow \mathbb{H}$ by F(x) = U'(x) - kU'(kx). Claim that F is left linear. Let $x, y \in V$ and $\alpha \in \mathbb{C}$ therefore $\alpha = a + bi$ for some $a, b \in \mathbb{R}$. Then

F(x+y) = U'(x+y)-kU'(k(x+y)) = U'(x)+U'(y)-kU'(kx)-kU'(ky)

= U'(x)-kU'(kx)+U'(y)-kU'(ky) = F(x)+F(y),

 $F(\alpha x) = U'(\alpha x) - kU'(k(\alpha x)) = \alpha U'(x) - kU'(k(a+bi)x)$

 $= \alpha U'(x) - kU'(akx) - kU'(bkix) = \alpha U'(x) - akU'(kx) - bkU'(-ikx)$

 $= \alpha U'(x) - akU'(kx) + b(ki)U'(kx) = \alpha U'(x) - akU'(kx) - bikU'(kx)$

 $= \alpha U'(x) - (a+bi)kU'(kx) = \alpha U'(x) - \alpha kU'(kx)$

 $= \alpha(U'(x)-kU'(kx)) = \alpha F(x),$

F(kx) = U(kx)-kU(k(kx)) = U(kx)-kU(-x)

= U'(kx) + kU'(x) = kU'(x) + U'(kx) = k(U'(x) - kU'(kx)) = kF(x)

and

F(jx) = U'(jx)-kU'(k(jx)) = U'(jx)+kU'(ix) = U'(jx)+kiU'(x)= U'(jx)+jU'(x) = jU'(x)+U'(jx) = jU(x)-iU'(ijx)

left linear over H. Claim that F is continuous and extends f. Since U is continuous and the map $x_{\vdash \rightarrow} kx$ is continuous, F is concontinuous, F is concontinuous, F is continuous. Let $x \in W$. Then F(x) = U'(x)-kU'(kx)=U(x)-kU(x)-kU(x)-kU(x)=U(x)-kU(x)-kU(x)-kU(x)=U(x)-kU(

= jU'(x)-jkU'(kx) = j(U'(x)-kU'(kx)) = jF(x). Hence F is

 $\alpha_{\mathbf{x}} = \frac{|\mathbf{f}(\mathbf{x})|}{|\mathbf{f}(\mathbf{x})|} \text{ therefore } |\alpha_{\mathbf{x}}| = 1 \text{ and } \alpha_{\mathbf{x}} \mathbf{f}(\mathbf{x}) = |\mathbf{f}(\mathbf{x})| \text{ therefore if }$ $\mathbf{x} \neq 0 \text{ and } \mathbf{f}(\mathbf{x}) \neq 0, \text{ then } \frac{|\mathbf{f}(\mathbf{x})|}{|\mathbf{x}||} = \frac{\alpha_{\mathbf{x}} \mathbf{f}(\mathbf{x})}{|\mathbf{x}||} = \frac{\mathbf{f}(\alpha_{\mathbf{x}} \mathbf{x})}{|\alpha_{\mathbf{x}} \mathbf{x}||} = \frac{\mathbf{U}(\alpha_{\mathbf{x}} \mathbf{x})}{|\alpha_{\mathbf{x}} \mathbf{x}||} \leq$

 $\|\mathbf{U}\|$. If $\mathbf{x} \neq 0$ and $\mathbf{f}(\mathbf{x}) = 0$, then $\frac{|\mathbf{f}(\mathbf{x})|}{\|\mathbf{x}\|} = 0 \leqslant \|\mathbf{U}\|$. Hence $\|\mathbf{f}\| \leqslant \|\mathbf{U}\|$. Thus $\|\mathbf{f}\| = \|\mathbf{U}\|$. Similarly $\|\mathbf{U}'\| = \|\mathbf{F}\|$. Hence $\|\mathbf{f}\| = \|\mathbf{U}\| = \|\mathbf{U}'\| = \|\mathbf{F}\|$. Hence we have the theorem.

Corollary 2.21 If f: W—>IH is a left((right) conjugate function then there exists a continuous left (right) conjugate.function F: V—>H such that $F/_{W} = f$ and ||F|| = ||f||

Theorem .22 Let V be a LNLS (RNLS) which is also a Banach space and $A \in C(V,V)$ such that $\|A\| < 1$. Then $(I-A)^{-1} = \sum_{n=0}^{\infty} A^n$.

Proof: First we must show that $(\stackrel{n}{\Sigma} A^k)$ converges. Note that $\stackrel{n}{\Sigma} \|A^k\| \leqslant \stackrel{\infty}{\Sigma} \|A\|^k$ for all $n \in \mathbb{N}$ therefore $\stackrel{\infty}{\Sigma} \|A^k\| \leqslant \stackrel{\infty}{\Sigma} \|A\|^k < \infty$. Let m, n then $\|\stackrel{n}{\Sigma} A^k - \stackrel{m}{\Sigma} A^k\| = \|\stackrel{n}{\Sigma} A^k\| \leqslant \stackrel{n}{\Sigma} \|A^k\| < \stackrel{n}{\Sigma} \|A\|^k \to 0$ as m, $n \to \infty$ therefore $(\stackrel{n}{\Sigma} A^k)_{n \in \mathbb{N}}$ is cauchy sequence in C(V,V), hence $(\stackrel{n}{\Sigma} A^k)_{n \in \mathbb{N}}$ converges. $(I-A)(\stackrel{n}{\Sigma} A^k) = I-A^{n+1}$ for all $n \in \mathbb{N}$. Therefore k=0 lim $(I-A)(\stackrel{n}{\Sigma} A^k) = \lim_{n \to \infty} I-A^{n+1} = I$. Hence $(I-A)^{-1} = \stackrel{\infty}{\Sigma} A^n$. n=0

Definition 2.23 Let (V, || ||), (V, || ||) be LNLS's (RNLS's) then we say that (V, || ||) is left (right) isomorphic to (V, || ||) if and only if there exists a 1-1 onto left linear map F such that ||F(V)|| = ||V|| for all $V \in V$.

Example 2.24 (i) $(l_H^p, || ||)^*$ is right (left) isomorphic to $(l_H^q, || ||_q)$ where 1/p + 1/q = 1 and 1 .

Proof: Let $y = (\beta_n)_{n \in \mathbb{N}} \in \mathcal{L}_{\mathbb{H}}^q$. Define $F_y : \mathcal{L}_{\mathbb{H}}^p \to \mathbb{H}$ by $F_y(x) = \sum_{n=1}^\infty \alpha_n \beta_n \quad \text{where } x = (\alpha_n)_{n \in \mathbb{N}} \in \mathcal{L}_{\mathbb{H}}^p. \quad \text{Since } (\sum_{n=1}^k \alpha_n \beta_n)_{k \in \mathbb{N}} \text{ is is cauchy sequence in } \mathbb{H}, \ (\sum_{n=1}^k \alpha_n \beta_n)_{k \in \mathbb{N}} \quad \text{converges, so } F_y \text{ is well-defined.} \quad \text{Clearly } F_y \text{ is left linear.} \quad \text{Claim that } F_y \text{ is continuous.}$ Let $x = (\alpha_n)_{n \in \mathbb{N}} \in \mathcal{L}_{\mathbb{H}}^p$. Then

$$|F_{\mathbf{y}}(\mathbf{x})| = |\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}| \leq \sum_{n=1}^{\infty} |\alpha_{n} \beta_{n}| \leq (\sum_{n=1}^{\infty} |\alpha_{n}|^{p})^{1/p} (\sum_{n=1}^{\infty} |\beta_{n}|^{q})^{1/q}$$

 $=\|\mathbf{x}\|_{p}\|\mathbf{y}\|_{q}. \quad \text{Therefore} \|\mathbf{F}_{\mathbf{y}}\| < \|\mathbf{y}\|_{q}. \quad \text{Hence } \mathbf{F}_{\mathbf{y}} \text{ is continuous.}$ In fact $\|\mathbf{F}_{\mathbf{y}}\| < \|\mathbf{y}\|_{q}. \quad \text{Thus } \mathbf{F}_{\mathbf{y}} \in \mathcal{L}_{H}^{p^{*}}. \quad \text{Define a map } \mathbf{F} \colon \mathcal{L}_{H}^{q} \longrightarrow \mathcal{L}_{H}^{p^{*}} \text{ by}$ $\mathbf{F}(\mathbf{y}) = \mathbf{F}_{\mathbf{y}} \quad \text{for all } \mathbf{y} \in \mathcal{L}_{H}^{q}. \quad \text{Claim that } \mathbf{F} \text{ is right linear.} \quad \text{Let } \alpha,$ $\mathbf{\beta} \in \mathbb{H} \text{ and } \mathbf{y}_{1} = (\alpha_{\mathbf{n}})_{\mathbf{n} \in \mathbb{N}}, \ \mathbf{y}_{2} = (\beta_{\mathbf{n}})_{\mathbf{n} \in \mathbb{N}}. \quad \text{Then}$

$$\begin{split} \mathbf{F}_{\mathbf{y}} & = \sum_{n=1}^{\infty} \mathbf{x}_{n} (\alpha_{n} \alpha + \beta_{n} \beta) = (\sum_{n=1}^{\infty} \mathbf{x}_{n} \alpha_{n} \mathbf{y} + (\sum_{n=1}^{\infty} \mathbf{x}_{n} \beta_{n}) \beta \\ & = \mathbf{F}_{\mathbf{y}_{1}} (\mathbf{x}) \alpha + \mathbf{F}_{\mathbf{y}_{2}} (\mathbf{x}) \beta = \mathbf{F}_{\mathbf{y}_{1}} \alpha (\mathbf{x}) + \mathbf{F}_{\mathbf{y}_{2}} \beta (\mathbf{x}) \quad \text{for all } \mathbf{x} = (\mathbf{x}_{n})_{n \in \mathbb{N}} \mathcal{I}_{\mathbb{H}}^{p}. \end{split}$$

Hence $F(y_1\alpha+y_2\beta) = F_{y_1\alpha+y_2\beta} = F_{y_1}\alpha + F_{y_2}\beta = F(y_1)\alpha + F(y_2)\beta$.

Therefore F is right linear. Claim that $\|y\|_q = \|F(y)\| = \|F_y\|$ for all $y \in I_H^q$. If y = 0, then $\|y\|_q = \|0\|_q = \|F(0)\| = \|F_y\| = \|F_0\|$ so done. Assume that $0 \neq y = (\beta_n)_{n \in [N]} \in I_H^q$. Define $x_N \in I_H^p$ by $x_N = \sum_{n=1}^N \alpha_n e_n \quad \text{where } e_n = (0,0,\ldots,1,0,0,\ldots) \quad \text{and for } n = 1,2,\ldots,N$

$$\alpha_{n} = \begin{cases} 0 & \text{if } \beta_{n} = 0 \\ |\beta_{n}|^{q-1} \cdot \frac{\overline{\beta}_{n}}{|\beta_{n}|} & \text{if } \beta_{n} \neq 0. \end{cases}$$

Then $\|\mathbf{x}_{N}\|_{p} = (\sum_{n=1}^{N} |\alpha_{n}|^{p})^{1/p} = (\sum_{n=1}^{N} |\beta_{n}|^{q})^{1/q}$. Therefore $\|\mathbf{F}_{y}(\mathbf{x}_{N})\| = \|\sum_{n=1}^{N} |\beta_{n}|^{q} = (\sum_{n=1}^{N} |\beta_{n}|^{q})^{1/q} (\sum_{n=1}^{N} |\beta_{n}|^{q})^{1/p}$ $= (\sum_{n=1}^{N} |\beta_{n}|^{q})^{1/q} \|\mathbf{x}_{N}\|_{p}.$

Thus for N sufficiently large to ensure that $\|\mathbf{x}_N\|_p \neq 0$ we have that $\|\mathbf{F}_y(\frac{\mathbf{x}_N}{\|\mathbf{x}_N\|_p})\| = (\sum\limits_{n=1}^N |\beta_n|^q)^{1/q}$. Hence $\|\mathbf{F}_y\| \geqslant (\sum\limits_{n=1}^N |\beta_n|^q)^{1/q}$. Therefore $\|\mathbf{F}_y\| \geqslant (\sum\limits_{n=1}^N |\beta_n|^q)^{1/q} = \|\mathbf{y}\|_q$. Claim that F is onto. Let $\sum\limits_{n=1}^N \frac{1}{n} = (0,0,\ldots,1,0,0,\ldots)$ for all $n\in\mathbb{N}$. Let $\mathbf{F}\in\mathbb{L}_H^p$ we denote $\mathbf{F}(\mathbf{e}_n) = \beta_n$ for all $n\in\mathbb{N}$. We must show that $(\beta_n)_{n\in\mathbb{N}} \in \mathbb{L}_H^q$. If $\beta_n = 0$ for all $n\in\mathbb{N}$, then $(\beta_n)_{n\in\mathbb{N}} \in \mathbb{L}_H^q$. So assume $(\beta_n)_{n\in\mathbb{N}} \neq 0$. Define $\mathbf{x}_N \in \mathbb{L}_H^p$ as follows: $\mathbf{x}_N = \sum\limits_{n=1}^N \alpha_n \mathbf{e}_n$ for $n=1,2,\ldots,N$

$$\alpha_{n} = \begin{cases} 0 & \text{if if } \beta_{n} = 0 \\ \left|\beta_{n}\right|^{q-1} \cdot \frac{\overline{\beta}_{n}}{\left|\beta_{n}\right|} & \text{if } \beta_{n} \neq 0. \end{cases}$$

Therefore $|F'(x_N)| = |F'(\sum_{n=1}^{N} e_n)| = \sum_{n=1}^{N} |\beta_n|^q$ and $|x_N||_p = (\sum_{n=1}^{N} |\beta_n|^q)^{1/p}$

for N sufficiently large we have that

$$\begin{split} & \frac{\left| \stackrel{c}{F}(x_N) \right|}{\left\| x_N \right\|_p} = \frac{\sum_{n=1}^{N} \left| \beta_n \right|^q}{\left\| x_N \right\|_p} = \left(\frac{\sum_{n=1}^{N} \left| \beta_n \right|^q}{n=1} \right)^{1-1/p}, \text{ so } \left\| \stackrel{c}{F} \right\| \geqslant \left(\frac{\sum_{n=1}^{N} \left| \beta_n \right|^q}{n=1} \right)^{1/q}. \end{split}$$
 Since N is arbitrary we get that $\left(\frac{\sum_{n=1}^{\infty} \left| \beta_n \right|^q}{n=1} \right)^{1/q} \leqslant \left\| \stackrel{c}{F} \right\|. \text{ Therefore } \\ & y = \left(\beta_n \right)_{n \in \mathbb{N}} \in \mathbb{N}^q. \text{ Claim } \stackrel{c}{F}' = F_y. \text{ Let } \left(x_n \right)_{n \in \mathbb{N}} = x \in \mathbb{N}^q. \text{ Then } \\ & \stackrel{c}{F}(x) = \stackrel{c}{F}(\lim_{k \to \infty} \sum_{n=1}^{N} x_n e_n) = \lim_{k \to \infty} \sum_{n=1}^{N} x_n \stackrel{c}{F}(e_n) = \lim_{k \to \infty} \sum_{n=1}^{N} x_n \beta_n \end{split}$

 $=\sum_{n=1}^{\infty}x_n\beta_n=F_y(x). \text{ Hence } F=F_y. \text{ Therefore } F \text{ is onto. Claim } F \text{ is 1-1. Let } y=(\alpha_n)_{n\in\mathbb{N}}\in\mathbb{N}^q \text{ such that } F(y)=0=F_y \text{ therefore } F_y(x)=0 \text{ for all } x\in\mathbb{N}^p, \text{ hence } F_y(e_n)=\alpha_n=0 \text{ for all } n\in\mathbb{N}, \text{ so } y=\sum_{n=1}^{\infty}\alpha_ne_n=0. \text{ Hence } F \text{ is 1-1. Thus } (\mathbb{N}^p,\|\cdot\|_p)^{\times} \text{ is right isomorphic to } (\mathbb{N}^q,\|\cdot\|_q).$

(ii) $(l_{\rm H}^{1}, \parallel \parallel)^{\times}$ is a right (left) isomorphic to $(l_{\rm H}^{\infty}, \parallel \parallel)$

Proof: Let $y = (\beta_n)_{n \in \mathbb{N}} \in \mathbb{L}_{\mathbb{H}}^{\infty}$. Define $F_y : \mathbb{L}_{\mathbb{H}}^{1} \to \mathbb{H}$ by

 $F_y(x) = \sum_{n=1}^{\infty} \alpha_n \beta_n \quad \text{where} \quad x = (\alpha_n)_{n \in \mathbb{N}} \in \mathbb{N}. \quad \text{Claim that } F_y \text{ is well}$ defined i.e. we must to show $(\sum_{n=1}^k \alpha_n \beta_n)_{k \in \mathbb{N}} \quad \text{converges.} \quad \text{Fix N } \in \mathbb{N}$ therefore

 $\begin{aligned} \left| \mathbf{F}_{\mathbf{y}}(\mathbf{x}) \right| &= \left| \sum_{\mathbf{n}=1}^{\infty} \alpha_{\mathbf{n}} \beta_{\mathbf{n}} \right| \leqslant \sum_{\mathbf{n}=1}^{\infty} \left| \alpha_{\mathbf{n}} \beta_{\mathbf{n}} \right| = \sum_{\mathbf{n}=1}^{\infty} \left| \alpha_{\mathbf{n}} \right| \left| \beta_{\mathbf{n}} \right| \leqslant \|\mathbf{x}\| \|\mathbf{y}\|_{\infty} < \infty. \quad \text{Hence} \\ \mathbf{F}_{\mathbf{y}} \text{ is continuous.} \quad \text{In fact } \|\mathbf{F}_{\mathbf{y}}\| \leqslant \|\mathbf{y}\|_{\infty}. \quad \text{Hence } \mathbf{F}_{\mathbf{y}} \in \mathcal{L}_{\mathbb{H}}^{1}. \quad \text{Define a} \\ \text{map } \mathbf{F}: \mathcal{L}_{\mathbb{H}}^{\infty} \to \mathcal{L}_{\mathbb{H}}^{1} \quad \text{by } \mathbf{F}(\mathbf{y}) = \mathbf{F}_{\mathbf{y}} \quad \text{for all } \mathbf{y} \in \mathcal{L}_{\mathbb{H}}^{\infty}. \quad \text{The same proof as in} \end{aligned}$

(i) show that F is right linear. Claim that $\|y\|_{\infty} = \|F(y)\| = \|F_y\|$ for all $y \in \frac{\infty}{\mathbb{H}}$. If y = 0, then $\|y\|_{\infty} = \|0\|_{\infty} = \|F(0)\| = \|F_0\|$. So done. Assume that $0 \neq y = (\beta_n)_{n \in \mathbb{N}} \in \mathbb{L}^{\infty}$. Given E > 0 there exists an $n \in \mathbb{N}$ such that $\beta_{n_c} > \|y\|_{\infty} = \mathbb{N}$. Now let

$$\mathbf{x}_{m} = \begin{cases} 0 & \text{if } m \neq n_{\xi} \\ \frac{\overline{\beta}_{n_{\xi}}}{\left|\beta_{n_{\xi}}\right|} & \text{if } m = n_{\xi} \end{cases}$$

Therefore $\frac{\left|\mathbb{F}_{\mathbf{y}}(\mathbf{x})\right|}{\|\mathbf{x}\|} = \left|\mathbb{F}_{\mathbf{y}}(\mathbf{x})\right| = \left|\sum_{m=1}^{\infty} \mathbf{x}_{m} \beta_{m}\right| = \left|\beta_{n_{\xi}}\right| > \|\mathbf{y}\|_{\infty} - \epsilon$.

Hence given & O there exists an $x_0 \in \frac{1}{|H|} \{0\}$ such that $\frac{\left|F_y(x_0)\right|}{\|x_0\|} > \|y\|_{\infty} - \&$. Hence $\|F_y\| > \|y\|_{\infty}$. Thus $\|F_y\| = \|y\|$. Claim that F is onto. Let $e_n = (0,0,\ldots,1,0,0,\ldots)$ for all $n \in \mathbb{N}$. Let $F \in \mathbb{A}_H^1 \text{ we denote } F(e_n) = \beta_n \text{ for all } n \in \mathbb{N}. \text{ If } \beta_n = 0 \text{ for all } n \in \mathbb{N} \text{ then } (\beta_n)_{n \in \mathbb{N}} \in \mathbb{A}_H^\infty.$ So assume that $y = (\beta_n)_{n \in \mathbb{N}} \neq 0$. Suppose that $\sup_{n \in \mathbb{N}} \left\{ |\beta_n| \right\} = \infty$. Given M > O there exists an $\mathbb{N}_M \in \mathbb{N}$ such that $|\beta_{\mathbb{N}_M}| > \mathbb{N}$. For each $n \in \mathbb{N}$ let

$$d_{n} = \begin{cases} 0 & \text{if } n \neq N_{M} \\ \frac{\overline{\beta}_{N_{M}}}{\left|\beta_{N_{M}}\right|} & \text{if } n = N_{M}. \end{cases}$$

Then $d = (d_n)_{n \in \mathbb{N}} \in \mathcal{L}_{\mathbb{H}}^{\circ}$. Also, ||d|| = 1. Since

 $\left| \mathbf{F}(\mathbf{d}) \right| = \left| \mathbf{F}(\sum_{n=1}^{\infty} \mathbf{d}_n \mathbf{e}_n) \right| = \left| \sum_{n=1}^{N_M} \mathbf{d}_n \mathbf{F}(\mathbf{e}_n) \right| = \left| \beta_{N_M} \right| > M, \frac{\left| \mathbf{F}(\mathbf{d}) \right|}{\left| \left| \mathbf{d} \right| \right|} > M$

a contradiction since $F \in \mathbb{A}_H^*$. Hence $\sup_{n \in \mathbb{N}} \left\{ \left| \beta_n \right| \right\} < \infty$ i.e.

 $y = (\beta_n)_{n \in \mathbb{N}} \in \mathcal{L}_{\mathbb{H}}^{\infty}$. The same proof (i) show that $F' = F_y$ and F is 1-1 i.e. F is onto and 1-1. Hence $(\mathcal{L}_{\mathbb{H}}^1, \| \ \|)$ is right isomorphic to $\mathcal{L}_{\mathbb{H}}^{\infty}, \| \ \|_{\infty}$).

(iii) Let $C_0 = \{(x_n)_{n \in \mathbb{N}} / x_n \in \mathbb{H} \ \forall n \in \mathbb{N} \text{ and } \lim_{n \to \infty} x_n = 0\}$ and $\|x\| = \sup_{n \in \mathbb{N}} \{|x_n|\}$ where $x = (x_n)_{n \in \mathbb{N}} \in C_0$. Then $(C_0, \|\cdot\|)$ is right (left) isomorphic to $\mathcal{L}_{\mathbb{H}}^1$.

Let $d = (d_n)_{n \in \mathbb{N}}$ then $d \in C_0$ also, ||d|| = 1. Then

 $|\varphi(a)| = |\varphi(\sum_{n=1}^{N_M} d_n e_n)| = \sum_{n=1}^{N_M} |a_n| > M. ||a||. \text{ Therefore } \frac{|\varphi(a)|}{||a||} > M.$

Hence we see that give M > O there exists an d \in C such that

 $\frac{|\varphi(\mathbf{d})|}{||\mathbf{d}||} \geq \mathbf{M}, \text{ a contradiction since } \varphi \in C_0^*. \text{ So } \sum_{n=1}^{\infty} |\mathbf{a}_n| < \infty \text{ therefore } \mathbf{a} \in L_{\mathbb{H}^*}^1. \text{ Next we must show that } \varphi(\mathbf{x}) = \sum_{n=1}^{\infty} \mathbf{x}_n \mathbf{a}_n. \text{ Let } \mathbf{x} = (\mathbf{x}_n)_{n \in \mathbb{N}} \in C_0^*.$

Give $m \in \mathbb{N}$ let $x_m = \sum_{n=1}^m x_n e_n$. Then $\varphi(x_m) = \sum_{n=1}^m x_n a_n$. Since $\lim_{m \to \infty} x_m = x$

and $\varphi \in C_0^*$, $\lim_{m \to \infty} \varphi(x_m) = \varphi(x)$. Thus $\varphi(x) = \sum_{n=1}^\infty x_n a_n$. Define $F: C_0^* \downarrow_{|H}^1$ by $F(\varphi) = (a_n)_{n \in |N|}$ where $a_n = \varphi(e_n)$ for all $n \in N$. Clearly F is right linear. To show that F is 1-1. Let $\varphi \in C_0^*$ be such that $F(\varphi) = 0$ therefore $\varphi(e_n) = 0$ for all $n \in N$. Hence $\varphi(x) = \varphi(\sum_{n=1}^\infty x_n e_n) = \sum_{n=1}^\infty x_n e_n$

 $\sum_{n=1}^{\infty} x_n \varphi(e_n) = 0 \quad \text{for all} \quad x = (x_n)_{n \in \mathbb{N}} \in C_0 \quad \text{i.e.} \quad \varphi \equiv 0. \quad \text{Hence F}$ is 1-1. To show F is onto. Given $(a_n)_{n \in \mathbb{N}} \in \frac{1}{\mathbb{H}} \quad \text{define} (\varphi(x) = \sum_{n=1}^{\infty} x_n a_n)$ for all $x = (x_n)_{n \in \mathbb{N}} \in C_0$. Then φ is well-defined, left linear and continuous since

 $\left| \left| \varphi(\mathbf{x}) \right| = \left| \begin{array}{c} \infty \\ \Sigma \\ \mathbf{n} = 1 \end{array} \mathbf{x}_{\mathbf{n}} \mathbf{a}_{\mathbf{n}} \right| \leqslant \sum_{n=1}^{\infty} \left| \mathbf{a}_{\mathbf{n}} \right| \left| \mathbf{x}_{\mathbf{n}} \right| \leqslant \|\mathbf{a}\|_{1} \|\mathbf{x}\|_{2}. \quad \text{In fact, } \|\phi\| \leqslant \|\mathbf{a}\|_{1}.$

Since $\varphi(e_n) = a_n$ for all $n \in \mathbb{N}$, $F(\varphi) = (a_n)_{n \in \mathbb{N}}$. Lastly we must show that F preserves norm i.e. $\|\varphi\| = \|F(\varphi)\|$ for all $\varphi \in C_0$. If

 $\varphi = 0$ then $F(\varphi) = 0$ therefore $\|\varphi\| = \|F(\varphi)\|$ so done. Hence assume that $\varphi \neq 0$. We have already show that $\|\varphi\| \leqslant \|a\|_1$. Give $(a_n)_{n \in \mathbb{N}} \in \mathcal{L}_{\mathbb{H}}^1$ and $\epsilon > 0$ there exists an $\mathbb{N}_{\epsilon} \in \mathbb{N}$ such that $\sum_{n=1}^{\infty} |a_n| > \|a\|_1 - \epsilon$. Now let

$$\mathbf{x}_{\mathbf{n}} = \begin{cases} 0 & \text{if } \mathbf{n} > \mathbf{N}_{\xi} \\ 0 & \text{if } \mathbf{n} \leqslant \mathbf{N}_{\xi} \text{ and } \mathbf{a}_{\mathbf{n}} = 0. \end{cases}$$

$$\frac{\mathbf{a}_{\mathbf{n}}}{|\mathbf{a}_{\mathbf{n}}|} \quad \text{if } \mathbf{n} \leqslant \mathbf{N}_{\xi} \quad \text{and } \mathbf{a}_{\mathbf{n}} \neq 0$$

Let $x = (x_n)_{n \in \mathbb{N}}$. Then $x \in C_0$ also, ||x|| = 1. Now,

$$\frac{|\varphi(\mathbf{x})|}{\|\mathbf{x}\|} = |\varphi(\mathbf{x})| = |\sum_{n=1}^{\infty} \mathbf{x}_n \mathbf{a}_n| = |\sum_{n=1}^{N_{\xi}} |\mathbf{a}_n|| = \sum_{n=1}^{N_{\xi}} |\mathbf{a}_n| > \|\mathbf{a}\|_{1} - \xi.$$

Hence given $\varepsilon > 0$ there exists an $x \in C_0 \setminus \{0\}$ such that $\frac{|\psi(x)|}{||x||} > ||a||_1 - \varepsilon$ therefore $||\psi|| \ge ||a||_1$. Hence $||\psi|| = ||a||_1 = ||F(\psi)||$. Thus $(C_0, || ||)$ is right isomorphic to \mathcal{L}_H^1 .

Let V be a LNLS(RNLS) and W \subseteq V a closed left(right) linear subspace. Then $V/_W$ is a left (right) vector space over H. $V/_W$ has a left (right) norm define as follows: let $\alpha \in V/_W$ define $\|\alpha\| = \inf_{x \in \alpha} \|x\|$. Let $P:V \longrightarrow V/_W$ be the natural projection i.e. if $x \in V$ define P(x) = x+W = [x]. Then P is left (right) linear.

Let $x \in V \setminus \{0\}$. Then $\frac{\|P(x)\|}{\|x\|} = \frac{\|[x]\|}{\|x\|} \leqslant \frac{\|x\|}{\|x\|} = 1$ therefore P is continuous.

Remark: If V is a NLS and W \subseteq V a closed linear subspace. Then $V/_W$ is a vector space over H. $V/_W$ has a norm define as above.

Theorem 2.25 Let V be a LNLS(RNLS) which is also a Banach space. Then $V/_W$ is a Banach space where W is closed left (right) linear subspace of V.

Proof: Let $(y_n)_{n \in \mathbb{N}}$ be a cauchy sequence in $V/_W$ there exists a $n_1 \in \mathbb{N}$ such that $\|y_{n_1} - y_n\| < 1/_2$ for all $n \ge n_1$. Choose $n_2 > n_1$ such that $\|y_{n_2} - y_n\| < 1/_2^2$ for all $n \ge n_2$. By induction we can find $n_1 < n_2 < \cdots$ such that $\|y_{n_k} - y_n\| < 1/_2^k$ for all $n \ge n_k$. In particular, $\|y_{n_k} - y_{n_{k+1}}\| < 1/_2^k$. Let x_1 be an element in V such that $P(x_1) = y_{n_1}$. Since P is onto, there exists a $x \in V$ such that $P(x) = y_{n_2}$. Since $\|y_{n_1} - y_{n_2}\| = \|P(x_1) - P(x)\| = \|P(x_1 - x)\| =$ inf $\{\|x_1 - x + z\| / z \in W\} < 1/_2$, there exists a $z_0 \in W$ such that $\|x_1 - x + z_0\| < 1/_2$. Let $x_2 = x - z_0$ then $P(x_2) = P(x - z_0) = P(x) - P(z_0) =$ $P(x) = y_{n_2}$ and $\|x_1 - x_2\| < 1/_2$. Suppose there exists a $x_k \in V$ such that $P(x_k) = y_{n_k}$ then there exists an $x_{k+1} \in V$ such that $\|x_k - x_{k+1}\| \le 1/_2^k$ by the same proof as above. For any positive integer 1 we get that

 $\|\mathbf{x}_{k} - \mathbf{x}_{k+1}\| \leqslant \|\mathbf{x}_{k} - \mathbf{x}_{k+1}\| + \|\mathbf{x}_{k+1} - \mathbf{x}_{k+2}\| + \dots + \|\mathbf{x}_{k+1-1} - \mathbf{x}_{k+1}\|$

 $<1/_2k+1/_2k+1+...+1/_2k+1-1<1/_2k$ $(1+1/_2+...)=1/_2k-1$ therefore

 $\lim_{k\to\infty} \|x_k - x_{k+1}\| = 0$, so $(x_k)_{k\in\mathbb{N}}$ is a cauchy sequence in V.

Since V is complete, there exists an $x \in V$ such that $\lim_{k \to \infty} x_k = x$.

By the continuity of P we have that $\lim_{k\to\infty} P(x_k) = P(x)$ i.e.

 $\lim_{k\to\infty} y_n = P(x) \quad \text{therefore (y_n)} \quad \text{is a convergent subsequence} \quad k\to\infty$

of $(y_n)_{n \in \mathbb{N}}$ hence $(y_n)_{n \in \mathbb{N}}$ itself must be convergent.

Theorem 2.26 Let V,W be a LNLS(RNIS) which are also Banach space.

Then VXW is a Banach space

Proof: Same proof as in $(H^n, || ||_2)$.

Theorem 2.27 Let V be a LNLS(RNLS). Then V is left (right) isomorphic to a subspace of V

Proof: For each $x \in V$ define $\psi_x \colon V \to H$ by $\psi_x(\varphi) = \varphi(x)$ for all $\varphi \in V$. Then ψ_x is right linear. Claim that ψ_x is continuous. To prove this let $\varphi \in V \setminus \{0\}$ therefore

$$\frac{|\psi_{\mathbf{x}}(\phi)|}{||\phi||} = \frac{|\phi(\mathbf{x})|}{||\phi||} \leqslant \frac{|\phi(\mathbf{x})|}{||\phi||} = ||\mathbf{x}||, \text{ so } ||\psi_{\mathbf{x}}|| \leqslant ||\mathbf{x}|| < \infty.$$

6

If x = 0, then $\psi_0 = 0$ which is continuous. In fact $\|\psi_0\| = \|0\| = 0$ therefore $\|\psi_x\| \leqslant \|x\|$ for all $x \in V$. Define a map $F: V \longrightarrow V^*$ by

 $F(x) = \psi_{x}$. Then F is left linear. Claim that F is 1-1 and preserves norms. To show that F is 1-1, suppose that F is not 1-1. exists an $x \in V \setminus \{0\}$ such that F(x) = 0, so $\psi_x = 0$ i.e. $\psi_x(\phi) = 0$ for all $\varphi \in V$, hence $\psi(x) = 0$ for all $\varphi \in V$. Let W be the left linear subspace of V generated by x i.e. $W = \{ \alpha x / \alpha \in H \}$. Define $\eta: W \longrightarrow H$ by $\eta(\alpha x) = \alpha$ for all $\alpha \in H$. Then η is left linear. η is continuous since dim W is 1. By the Hahn-Banach Theorem we can extend η to a continuous left linear map \emptyset : V \longrightarrow H such that $\|\emptyset\| = \|\eta\|$ therefore $\emptyset \in V^*$ and $\psi_x(\emptyset) = 0 = \emptyset(x) = \eta(x) = 1$, a contradiction. Hence F is 1-1. We must show that $\| \psi_{\mathbf{x}} \| \geqslant \| \mathbf{x} \|$ for all $x \in V$. To prove this, we shall first show that given $x \in V \setminus \{0\}$ and M > 0 then there exists an $(\varphi \in V)$ such that $||\varphi|| = M$ and $|\varphi(x)| = ||\varphi|| ||x||$. To prove this, let U be the left linear subspace of V generated by x. Define W: U \rightarrow H by W(x) = α M|x|. Then W is left linear and continuous. By the Hahn Banach Theorem, there exists a continuous left $\|\Gamma\| \|\mathbf{x}\|$. Hence for each $\mathbf{x} \in V \setminus \{0\}$ and M > 0 there exists a $\psi \in V$ such that $\| \varphi \| = M$ and $| \varphi (x) = \| \varphi \| \| x \|$. Given $x \in V \setminus \{0\}$ there exists an $\varphi \in V^*$ such that $\|\varphi\| = 1$ and $\varphi(x) = \|x\|$. Hence $\frac{|\psi_x(\varphi)|}{\|f_0\|} = 1$ $|\psi_{\mathbf{x}}(\varphi)| = |\varphi(\mathbf{x})| = \|\mathbf{x}\|, \quad \text{so} \|\psi_{\mathbf{x}}\| \ge \|\mathbf{x}\|. \quad \text{Hence } \|\psi_{\mathbf{x}}\| = \|\mathbf{x}\|.$

Remarks: (i) Since F is norm preserving F is an isometry, hence F is a homeomorphic onto its image

⁽ii) In the finite dimensional case V is left (right) isomorphic to \textbf{V}^{\bigstar}

(iii) In the ∞ -dimensional case V may not to left (right) isomorphic to V^* .

Example 2.28 Let $C_0 = \{(x_n)_{n \in \mathbb{N}} / x_n \in \mathbb{H} \ \forall n \in \mathbb{N} \ \text{and } \lim_{n \to \infty} x_n = 0\}$ and $\|x\| = \sup_{n \in \mathbb{N}} \{|x_n|\}$ where $x = (x_n)_{n \in \mathbb{N}} \in C_0$. Claim that C_0 is separable. To prove this, let

 $D = \left\{ (\mathbf{x}_n)_{n \in \mathbb{N}} \in \mathbf{C}_0 \ / \ \mathbf{x}_n \in \mathbb{Q}^4 \ \forall \, n \in \mathbb{N} \ \text{ and } \ \exists \, \mathbf{N} \in \mathbb{N} \ni \mathbf{x}_n = 0 \ \forall \, \mathbf{n} \ > \mathbf{N} \right\}$ therefore D is countable. To show $\overline{D} = \mathbf{C}_0$. Let $\mathbf{z} = (\mathbf{z}_n)_{n \in \mathbb{N}} \in \mathbf{C}_0$. Let $\mathbf{z} > 0$ be given there exists a $\mathbf{N}_{\mathbf{z}} > 0$ such that $|\mathbf{z}_n| < \mathcal{E}_2$ for all $n > \mathbf{N}_{\mathbf{z}}$. For each $n = 1, 2, \dots, \mathbf{N}_{\mathbf{z}}$ there exists an $\mathbf{q}_n \in \mathbb{Q}^4$ such that $|\mathbf{q}_n - \mathbf{z}_n| < \mathcal{E}_2$ therefore $\sup_{1 \le n \le \mathbf{N}_{\mathbf{z}}} \{|\mathbf{q}_n - \mathbf{z}_n|\} \in \mathcal{E}_2$. Take $\mathbf{x}_{\mathbf{z}} = (\mathbf{q}_1, \mathbf{q}_2, \dots, \mathbf{q}_{\mathbf{z}_n}, 0, 0, \dots)$ therefore $\mathbf{x}_{\mathbf{z}} \in \mathbf{D}$ and $\|\mathbf{x}_{\mathbf{z}} - \mathbf{z}\| \le \mathcal{E}_2 < \mathbf{z}$. Hence $\overline{\mathbf{D}} = \mathbf{C}_0$ i.e. \mathbf{C}_0 is separable. Next, claim that ℓ_H^∞ is non separable. To prove this, note that the set of sequence $(\mathbf{z}_n)_{n \in \mathbb{N}}$ such that $\mathbf{z}_n = 0$ or 1 is uncountable and belong to ℓ_H^∞ . Let $\mathbf{z} = (\mathbf{z}_n)_{n \in \mathbb{N}}$, $\mathbf{w} = (\mathbf{w}_n)_{n \in \mathbb{N}}$ are distinct sequences such that $\mathbf{w}_n = 0$ or 1 and $\mathbf{z}_n = 0$ or 1 for all $\mathbf{n} \in \mathbb{N}$. Then

$$d(z,w) = ||z-w|| = \sup_{n \in |N|} \{|z_n - w_n|\} = 1.$$

Claim that $B(z,1/4) \cap B(w,1/4) = \emptyset$. Suppose not therefore there exists an $x \in B(z,1/4) \cap B(w,1/4)$. So ||x-z|| < 1/4 and ||x-w|| < 1/4.

Therefore

 $1 = \|\mathbf{z} - \mathbf{w}\| \leqslant \|\mathbf{z} - \mathbf{x}\| + \|\mathbf{x} - \mathbf{w}\| \leqslant 1/_2 \text{, a contradiction.}$ Hence if $\mathbf{z} = (\mathbf{z_n})_{\mathbf{n} \in \mathbb{N}}$, $\mathbf{w} = (\mathbf{w_n})_{\mathbf{n} \in \mathbb{N}}$ are distinct sequence sucht that $\mathbf{w_n} = \mathbf{0}$ or 1 and $\mathbf{z_n} = \mathbf{0}$ or 1 then $\mathbf{B}(\mathbf{z}, 1/_4) \cap \mathbf{B}(\mathbf{w}, 1/_4) = \emptyset$. If $\mathbf{l}_{\mathbb{H}}^{\infty}$ has a countable dense subset D then $\mathbf{B}(\mathbf{z}, 1/_4) \cap \mathbf{D} \neq \emptyset$ for all $\mathbf{z} = (\mathbf{z_n})_{\mathbf{n} \in \mathbb{N}} \in \mathbf{l}_{\mathbb{H}}^{\infty}$ where $\mathbf{z_n} = \mathbf{0}$ or 1. Hence D is uncountable, a contradiction. Hence we have the claim. Thus $\mathbf{C_0}$ is not left isomorphic to $\mathbf{l}_{\mathbb{H}}^{\infty}$. Hence $\mathbf{C_0}$ is not left isomorphic to $\mathbf{C_0}^{\times}$.

Theorem 2.29 (Open Mapping Theorem) Let V, W be LNLS's (RNLS's) which are also Banach space and F: V w a continuous left (right) linear map which is onto. Then F is open.

Proof: Let $U \subseteq V$ be a nonempty open set. Must show that F(U) is open in W. Let $y \in F(U)$ therefore there exists an $x \in U$ such that y = F(x). Since U is open in V, there exists an open ball $B(x;\delta) \subseteq U$. Hence $F(B(x;\delta)) \subseteq F(U)$ and $y \in F(B(x;\delta))$. If we can show that there exists an open ball $B(y;\epsilon)$ in W such that $B(y;\epsilon) \subseteq F(B(x;\delta))$, then we are done. Claim that if we can show that there exists an open ball $B(0;r) \subseteq F(B(0;1))$, then we get that there exists an open ball $B(y;\epsilon) \subseteq F(B(x;\delta))$. To prove this claim, Note that if there exists an open ball $B(0;r) \subseteq F(B(0;1))$ then given r' > 0 therefore F(B(0;r')) = F(r'(B(0;1)) = r'F(B(0;1)) $\supseteq r'B(0;r') = B(0;r'r)$ therefore $B(0;r'r) \subseteq F(B(0;r'))$ for all r' > 0.

Now, $B(x;\delta)-x=B(0;\delta)$ therefore $F(B(x;\delta)-x)=F(B(x;\delta))-F(x)$.

But $F(B(x;\delta)-x)=F(B(0;\delta))\supseteq B(0;\delta r)$. Hence $F(B(x;\delta))\supseteq B(0;r\delta)$ $+F(x)=B(F(x);r\delta)=B(y;r\delta)$. Hence to finish the theorem we only to show that there exists an open ball $B(0;r)\subseteq F(B(0;1))$. Since $V=\bigcup_{n\in\mathbb{N}}B(0;n/2)=\bigcup_{n\in\mathbb{N}}nB(0;1/2)$ and F is onto, $W=F(V)=\sum_{n\in\mathbb{N}}F(\bigcup_{n\in\mathbb{N}}nB(0;1/2))=\bigcup_{n\in\mathbb{N}}nF(B(0;1/2))$. By corollary 0.19., there $n\in\mathbb{N}$ exists a closed ball B in W and there exists an $n_0\in\mathbb{N}$ such that $B\cap_0F(B(0;1/2))$ is dense in B. Hence $B\cap_0F(B(0;1/2))$ contains an open ball in B. Since $B\cap_0F(B(0;1/2))$ is homeomorphic $B\cap_0F(B(0;1/2))$ therefore $B\cap_0F(B(0;1/2))$ is homeomorphic $B\cap_0F(B(0;1/2))$ is homeomorphic $B\cap_0F(B(0;1/2))$ therefore $B\cap_0F(B(0;1/2))$ is homeomorphic $B\cap_0F(B(0;1/2))$ is homeomorphic $B\cap_0F(B(0;1/2))$.

 $B(a;r) \subseteq \overline{F(B(0;1/2))}$. Claim that $B(0;r) \subseteq \overline{F(B(0;1))}$. To prove this claim, we'll first show that

 $F(B(0;1/_2) \ominus F(B(0;1/_2)) \subseteq 2F(B(0;1/_2)) \text{ where}$ $A \ominus B = \left\{a-b \mid a \in A, b \in B\right\}. \text{ Let } x \in \overline{F(B(0;1/_2))} \ominus \overline{F(B(0;1/_2))}.$ $Then \quad x = y-z \quad \text{where } y, z \in \overline{F(B(0;1/_2))}. \text{ Hence there exist sequences}$ $(y_n)_{n \in \mathbb{N}} \text{ in } F(B(0;1/_2)) \text{ and } (z_n)_{n \in \mathbb{N}} \text{ .in } F(B(0;1/_2)) \text{ such that}$ $\lim_{n \to \infty} y_n = y \quad \text{and } \lim_{n \to \infty} z_n = z. \text{ Hence for each } n \in \mathbb{N} \text{ there exist } u_n,$ $v_n \in B(0;1/_4) \quad \text{such that } \frac{y_n}{2} = F(u_n) \text{ and } \frac{z_n}{2} = F(v_n). \text{ Since } v_n,$ $u_n \in B(0;1/_4) \quad \text{for all } n \in \mathbb{N}, -\frac{y_n}{2}, -\frac{z_n}{2} \in F(B(0;1/_4)) \text{ for all } n \in \mathbb{N}.$ $\text{Let } u = \frac{y}{2} \text{ and } v = \frac{z}{2} \text{ then } u = \lim_{n \to \infty} \frac{y_n}{2} = \lim_{n \to \infty} F(u_n) \in \overline{F(B(0;1/_4))}.$

Similarly, $v \in \overline{F(B(0;1/_4))}$. Now $x = y-z = 2(y/_2 - z/_2) = 2(u-v)$. Must show that $u-v \in \overline{F(B(0;1/_2))}$. Note that $u_n, v_n \in B(0;1/_4)$ for all $n \in \mathbb{N}$ therefore $u_n - v_n \in B(0;1/_2)$. So $F(u_n - v_n) \in F(B(0;1/_2))$. Now, $u = \lim_{n \to \infty} F(u_n)$ and $v = \lim_{n \to \infty} F(v_n)$. Given E > 0 there exists an $N_E \in \mathbb{N}$ such that $||u-F(u_n)|| < |E/_2|$ for all $n > N_E$ and there exists an $N_E \in \mathbb{N}$ such that $||v-F(v_n)|| < |E/_2|$ for all $n > N_E$. Let $M = \max\{N_E, N_E'\}$. Then if n > M we get that

 $||u-v-(F(u_n)-F(v_n))|| \le ||u-F(u_n)|| + ||v-F(v_n)||$ $< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

Therefore $u-v = \lim_{n \to \infty} F(u_n-v_n)$. Hence $B(0;r) = B(a;r)-a \subseteq \overline{F(B(0;1/2))}-a$ $\subseteq \overline{F(B(0;1/2))} \oplus \overline{F(B(0;1/2))}$ $\subseteq 2\overline{F(B(0;1/2))} = \overline{F(B(0;1))}$. Claim that

B(0;r/4) \subseteq F(B(0,1)). Let $y \in$ B(0;r/4) be arbitrary. Then $y \in \overline{F(B(0;1/4))}$ therefore there exists an $y_1 \in \overline{F(B(0;1/4))}$ such that $||y-y_1|| < r/2$ 3. Hence $y-y_1 \in B(0;r/8) \subseteq \overline{F(B(0;1/8))}$ therefore there exists an $y_2 \in \overline{F(B(0;1/8))}$ such that $||y-y_1-y_2|| < r/2$ therefore $y-y_1-y_2 \in B(0;r/8) \subseteq \overline{F(B(0;1/8))}$. By induction we get that for each $n \in \mathbb{N}$ there exists an $y_n \in \overline{F(B(0;1/2^{n+1}))}$ such that

 $\|y-\sum_{\alpha=1}^ny_\alpha\|< r/_2^{n+2} \text{. Since }y_n\in F(B(0;1/_2^{n+1})) \text{ for all }n\in \mathbb{N} \text{ we}$ get that for each $n\in \mathbb{N}$ there exists an $x_n\in B(0;1/_2^{n+1})$ such that $F(x_n)=y_n\text{. Since }x_n\in B(0;1/_2^{n+1}), \|x_n\|<1/_2^{n+1} \text{ for all }n\in \mathbb{N}.$ Consider the sequence $(\sum_{\alpha=1}^n x_\alpha)_{n\in \mathbb{N}}$. This is a cauchy sequence in V. Since m< n implies.

as m, $n \longrightarrow \infty$. Since V is a Banach space, there exists an $x \in V$

such that $x = \lim_{n \to \infty} \sum_{\alpha=1}^{n} x_{\alpha}$. Since

 $\|\mathbf{x}\| = \|\lim_{n \to \infty} \sum_{\alpha=1}^{n} \mathbf{x}_{\alpha}\| = \lim_{n \to \infty} \|\sum_{\alpha=1}^{n} \mathbf{x}_{\alpha}\| \leqslant \lim_{n \to \infty} \sum_{\alpha=1}^{n} \|\mathbf{x}_{\alpha}\| \leqslant \lim_{n \to \infty} \sum_{\alpha=1}^{n} \frac{1}{2^{\alpha+1}}$

= 1/2 < 1, $x \in B(0;1)$. Then $F(x) = F(\sum_{\alpha=1}^{\infty} x_{\alpha}) = F(\lim_{n \to \infty} \sum_{\alpha=1}^{\infty} x_{\alpha})$

 $= \lim_{n \to \infty} F(\sum_{\alpha = 1}^{n} x_{\alpha}) = \lim_{n \to \infty} \sum_{\alpha = 1}^{n} F(x_{\alpha}) = \sum_{\alpha = 1}^{\infty} y_{\alpha} = y. \text{ Hence}$

 $y = F(x) \in F(B(0;1))$. Thus $B(0;r/4) \subseteq F(B(0;1))$ and so we are done.

Corollary 2.30 Let V, W be LNLS's (RNLS's) which are also Banach space and T: $V \rightarrow W$ a 1-1, onto, continuous and left linear map. Then T^{-1} is continuous.

Theorem 2.31 (Closed Graph Theorem). Let V,W be LNLS's (RNLS's) which iare also Banach apace and $\varphi: V \to W$ a left(right) linear map and assume that $G = \{(x, \varphi(x))/x \in V\}$ is closed in the product topology. Then φ is continuous.

Proof: Give V × W then $\|\cdot\|_2$ left norm. Then this norm gives the product topology. Since G is closed in V × W, G is complete. Let F: $G \longrightarrow V$ be define by $F(v, \varphi(v)) = v$ for all $v \in V$. Then F is 1-1, onto and left linear. Claim that F is continuous. Let $v \in V$. Given E > 0. Choose $\delta = E$ therefore for all $w \in V$

$$\| (v, \varphi(v) - (w, \varphi(w)) \| = \| (v - w, \varphi(v) - \varphi(w)) \|$$

$$= (\|v - w\|^2 + \|\varphi(v) - \varphi(w)\|^2)^{\frac{1}{2}} < \delta$$

implies $\|\mathbf{v} - \mathbf{w}\| = \|\mathbf{F}(\mathbf{v}, \varphi(\mathbf{v})) - \mathbf{F}(\mathbf{w}, \varphi(\mathbf{w}))\| < \delta = \varepsilon$.

Hence F is continuous. Therefore F^{-1} is continuous [Corollary 1.27]. Let $F_1\colon G\longrightarrow W$ be defined by $F_1(v, \varphi(v))=\varphi(v)$ for all $v\in V$. By the same proof as above, F_1 is continuous left linear. Hence the map $F_1\circ F^{-1}$ is continuous. But $F_1\circ F^{-1}=\varphi$. So φ is continuous.

Theorem 2.32 (Banach-Sticnhaus) Let V be a LNLS (RNLS) which is also a Banach space, W a LNLS (RNLS) and $(F_{\alpha})_{\alpha \in I}$ a family of continuous left (right) linear and $(F_{\alpha})_{\alpha \in I}$ a family of continuous left (right) linear map from V to W. Then either there exists a M > 0 such that $||F_{\alpha}|| \leq M$ for all $\alpha \in I$ or $\sup_{\alpha \in I} \left\{ ||F_{\alpha}(x)|| \right\} = \infty$ for all $x \in V$ in some dense G_{δ} set in V (where G_{δ} is a countable intersection of open set).

 $x \mapsto \|F_{\alpha}(x)\|$ is continuous for all $\alpha \in I$, the map taking $x \mapsto \|F_{\alpha}(x)\|$ is lower semicontinuous. Since suppremum of set of lower semicontinuous is lower semicontinuous. By the definition of lower semicontinuous V_n is open for all $n \in \mathbb{N}$.

in V. Hence there exists a nonempty open set U in V such that $U \cap V_{n_0} = \emptyset$. Hence there exists an open ball B in V such that $U \cap V_{n_0} = \emptyset$. Hence there exists an open ball B in V such that $U \cap V_{n_0} = \emptyset$. Hence there exists a closed ball $\overline{B(x_0; r)}$ such that $\overline{B(x_0; r)} \cap V_{n_0} = \emptyset$. Hence if $||x|| \le r$, then $x_0 + x \notin V_{n_0}$, so $U \cap V_{n_0} = \emptyset$. Hence if $||x|| \le r$, then $||x|| \le r$, then $||x|| \le r$, so $||x|| \le r$. Since $||x|| \le r$, we get that

$$\begin{split} \|F_{\alpha}(x)\| &= \|F_{\alpha}[(x_{0}+x)-x_{0}]\| = \|F_{\alpha}(x_{0}+x)-F_{\alpha}(x_{0})\| \\ &\leqslant \|F_{\alpha}(x_{0}+x)\| + \|F_{\alpha}(x_{0})\| \leqslant 2n_{0} \quad \text{for all } \alpha \in I \text{ and for all} \\ \|x\| \leqslant r. \quad \text{Let } M = \frac{2n_{0}}{r} . \quad \text{Then we get that for all } \alpha \in I \\ \|F_{\alpha}\| &= \sup \Big\{ \|F_{\alpha}(x)\| / \|x\| = 1 \Big\} = \frac{1}{r} \sup \Big\{ \|F_{\alpha}(x)\| / \|x\| = r \Big\} \\ &= \frac{1}{r} \sup \Big\{ \|F_{\alpha}(x)\| / \|x\| \leqslant r \Big\} \leqslant \frac{2n_{0}}{r} = M \quad \text{i.e.} \end{split}$$

for all $\alpha \in I$ $\|F_{\alpha}\| \leq M$. So done.

Case 2. V_n is dense in V for all $n \in \mathbb{N}$. Then $\bigcap_{n \in |\mathbb{N}|} V_n$ is dense in V by Baire's theorem. Let $x \in \bigcap_{n \in |\mathbb{N}|} V_n$ then $x \in V_n$ for all $n \in \mathbb{N}$ therefore $\psi(x) = \infty$ i.e. $\sup_{\alpha \in \mathbb{N}} \left\{ \|F_{\alpha}(x)\| \right\} = \infty$. So done.