CHAPTER I

INTRODUCTION

The Algebra of Quaternions

Let 1,i,j and k denote the elements of the standard basis for \mathbb{R}^4 The quaternion product on \mathbb{R}^4 is then the \mathbb{R} -bilinear product with 1 as its multiplicative identity by the formulae $i^2 = j^2 = k^2 = 1$, ij = k = -ji, jk = i = -kj and ki = j = -ik. In this thesis we shall denote the \mathbb{R} -algebra of all quaternions by " \mathbb{H} ". See $\{3\}$.

Each quaternion $q = a_0 \cdot 1 + a_1 \cdot i + a_2 \cdot j + a_3 \cdot k$ ($a_n \in \mathbb{R}$ for all n) is uniquely expressible in the form Req + Puq, where Req = $a_0 \cdot 1 \in \mathbb{R}$ and Puq = $a_1 \cdot i + a_2 \cdot j + a_3 \cdot k \in \mathbb{R}^3$, Req being call the real quaternion part of q and Puq the pure quaternion of q.

The conjugate \bar{q} of a quaternion q is defined to be the quaternion Req - Puq. Hence $\bar{a}+\bar{b}=\bar{a}+\bar{b}$, $\bar{\lambda}\bar{a}=\lambda\bar{a}$, $\bar{\bar{a}}=a$ and $\bar{a}\bar{b}=\bar{b}\bar{a}$ for all a, b \in H and $\lambda\in\mathbb{R}$. Moreover, $\bar{a}\in\mathbb{R}$ if and only if $\bar{a}=a$, while Rea = $\frac{1}{2}$ (a+ \bar{a}) and Pua = $\frac{1}{2}$ (a- \bar{a}). See [3].

Definition 1.1 Let $C(H) = \{a \in H \mid ax = xa \quad \forall x \in H\}$.

Then C(H) is said to be the center of H. The center of H is R.

Proposition 1.2 Let $x = x_0 + x_1 i + x_2 j + x_3 k \in \mathbb{H}$. Suppose that $ix-\bar{x}i = jx-\bar{x}j = kx-\bar{x}k = 0$. Then $x_1 = x_2 = x_3 = 0$.

Proof: Obvious.

Proposition 1.3 Let $x = x_0 + x_1 i + x_2 j + x_3 k$, $y = y_0 + y_1 i + y_2 j + y_3 k \in \mathbb{H}$. Suppose $x + \overline{x} - (y + \overline{y}) = 0$. Then $x_0 = y_0$

Proof: Obvious.

Let $a = a_0 + a_1 i + a_2 j + a_3 k$ the non-negative number $|a| = (a\bar{a})^{\frac{1}{2}} = (\sum_{n=0}^{3} a_n^2)^{\frac{1}{2}}$ is call the absolute value of the quaternion a. If $a \neq 0$, then $|a| \neq 0$ and $\frac{a\bar{a}}{|a|^2} = \frac{\bar{a}a}{|a|^2} = 1$. So we have:

Proposition 1.4 H is a division ring

Proof. See [3].

Proposition 1.5 |a.b| = |a||b| for all a, b \in H.

Proof. See 3.

Proposition 1.6 H is complete with respect this absolute value.

Proof. Standard.

Proposition 1.7 Let $\mathbb{H}^n = \{(x_1, x_2, \dots, x_n) / x_\alpha \in \mathbb{H} \ \forall \alpha \leq n \}$.

Let $(x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{H}^n$. Then

$$(\sum_{\beta=1}^{n} \left| \mathbf{x}_{\beta} + \mathbf{y}_{\beta} \right|^{p})^{1/p} \leqslant (\sum_{\beta=1}^{n} \left| \mathbf{x}_{\beta} \right|^{p})^{1/p} + (\sum_{\beta=1}^{n} \left| \mathbf{y}_{\beta} \right|^{p})^{1/p}$$
 where

 $1 \leqslant p < \infty$. (Minkowski's Inequality) and

$$\sum_{\beta=1}^{n} |x_{\beta}| |y_{\beta}| \leq \left(\sum_{\beta=1}^{n} |x_{\beta}|^{p}\right)^{1/p} \left(\sum_{\beta=1}^{n} |y_{\beta}|^{q}\right)^{1/q} \quad \text{where}$$

 $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$ (Holder's Inequality).

Proof: If p=1 then Minkowski's Inequality is trivial. Suppose 1 . Then

$$\sum_{\beta=1}^{n} (|x_{\beta}| + |y_{\beta}|)^{p} = \sum_{\beta=1}^{n} (|x_{\beta}| + |y_{\beta}|)^{p-1} |x_{\beta}| + \sum_{\beta=1}^{n} (|x_{\beta}| + |y_{\beta}|)^{p-1} |y_{\beta}|.$$

Since

4

$$\sum_{\beta=1}^{n} \left| a_{\beta} b_{\beta} \right| \leq \left(\sum_{\beta=1}^{n} \left| a_{\beta} \right|^{p} \right)^{1/p} \left(\sum_{\beta=1}^{n} \left| y_{\beta} \right|^{q} \right)^{1/q} \quad \text{for all}$$

$$(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n) \in \mathbb{R}^n [4],$$

$$\sum_{\beta=1}^{n} (|x_{\beta}| + |y_{\beta}|)^{p} \leqslant (\sum_{\beta=1}^{n} |x_{\beta}|^{p})^{1/p} (\sum_{\beta=1}^{n} |x_{\beta}| + |y_{\beta}|)^{(p-1)q})^{1/q} +$$

$$\left(\sum_{\beta=1}^{n} |y_{\beta}|^{p}\right)^{1/p} \left(\sum_{\beta=1}^{n} |x_{\beta}| + |y_{\beta}|\right)^{q(p-1)}^{1/q}$$
.

Since $\frac{1}{p} + \frac{1}{q} = 1$, pq - q = p: we get that

$$\sum_{\beta=1}^{n} (|x_{\beta}| + |y_{\beta}|)^{p} \leqslant (\sum_{\beta=1}^{n} (|x_{\beta}| + |y_{\beta}|)^{p})^{1/q} (\sum_{\beta=1}^{n} |x_{\beta}|^{p})^{1/p} + (\sum_{\beta=1}^{n} |y_{\beta}|^{p})^{1/p} .$$

Divide both sides by $(\sum_{\beta=1}^{n}(|\mathbf{x}_{\beta}|+|\mathbf{y}_{\beta}|)^p)^{1/q}$ we get that

$$\left(\sum_{\beta=1}^{n}\left|x_{\beta}+y_{\beta}\right|^{p}\right)^{1/p}\leqslant\left(\sum_{\beta=1}^{n}\left|x_{\beta}\right|^{p}\right)^{1/p}+\left(\sum_{\beta=1}^{n}\left|y_{\beta}\right|^{p}\right)^{1/p}.$$
 Clearly

$$\sum_{\beta=1}^{n} |x_{\beta}| |y_{\beta}| \qquad \leq \left(\sum_{\beta=1}^{n} |x_{\beta}|^{p}\right)^{1/p} \left(\sum_{\beta=1}^{n} |y_{\beta}|^{q}\right)^{1/q} \cdot$$

Proposition 1.8. $Q^4 = \{(x_1, x_2, x_3, x_4)/x_{\alpha} \in Q \ \alpha = 1, 2, 3, 4\}$ is dense in H.

Proof: Standard.

Linear Algebra over IH

Definition 1.9 A left vector space V over H is a set of elements which the operation of addition and scalar multiplication on the left defined. If x and y are in V and α , $\beta \in \mathbb{H}$. Then

- 1. V is an abelian group under addition
- 2. $\alpha(x+y) = \alpha x + \alpha y$
- 3. $\alpha(\beta x) = (\alpha \beta) x$
- 4. 1.x = x
- 5. $(\alpha+\beta)x = \alpha x + \beta x$.

A right vector space V over H is defined dually. A vector space V over H is a left vector and right vector space over H such that $\alpha(x\beta) = (\alpha x)\beta$ for all $x \in V$ and for all α , $\beta \in H$.

<u>Proposition</u> 1.10 Let V be a vector space over H. Then $\alpha x = x\alpha$ for all $x \in V$ and for all $\alpha \in \mathbb{Q}$. Furthermore if V has a topology such that both scalar multiples are continuous then $\alpha x = x\alpha$ for all $\alpha \in \mathbb{R}$.

Proof: Standard.

Example of vector space over H

(i)
$$\mathbb{H}^n$$
. (ii) $S = \{(x_n)_{n \in \mathbb{N}} \text{ in } \mathbb{H} \}$.

(iii)
$$C = \{(x_n)_{n \in \mathbb{N}} / x_n \in \mathbb{H} \ \forall n \in \mathbb{N} \text{ and } (x_n)_{n \in \mathbb{N}} \text{ converges} \}$$

Definition 7.11 Let V be a left vector space over H and A \subseteq V. Then A is said to be left linear subspace of V if and only if $\alpha x + \beta y \in A$ for all x, $y \in V$ and for all α , $\beta \in H$.

Right linear subspace are defined dually. If V is vector space over H. Then A is said to be linear subspace of V if and only if A is a left and right linear subspace.

Definition 1.12 Let V be a left vector space over $\mathbb H$ and $\mathbb A \subseteq \mathbb V$. Then A is said to be left convex if and only if $\alpha x + \beta y \in \mathbb A$ for all $x, y \in \mathbb V$ and $\alpha, \beta \in \mathbb R$ such that $\alpha, \beta \geqslant 0$ and $\alpha + \beta = 1$.

12

Right convex is defined dually. Hence every left (right) linear subspace is left (right) convex. If V is a vector space over H. Then a subspace V is convex if and only if V is both left and right convex.

Definition 1.13 A subset $(v_{cl})_{cl} \in I$ of a left vector space V is said to be left linearly independent if and only if for any finite

 v_{α_1} , v_{α_2} , v_{α_n} , v_{α_m} v_{α_m} v_{α_m} = 0 implies β_m = 0 for all m.

(v_{α}) is left linearly dependent if and only if it is not linear independent.

Right linearly independent and right linearly dependent are defined dually .

Definition 1.14 A left (right) linear independent set spanning a left (right) vector space V is called a left (right) basis or

left (right) base of V.

Then every left (right) nonzero vector space has a basis

<u>Definition</u> 1.15. Let V, W be left vector space over H and $f: V \longrightarrow W$ a map. Then f is said to be a left linear map if and only if $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ for all x, $y \in V$ and for all α , $\beta \in H$.

If V, W are right vector space over H then right linear is defined dually.

If V, W are vector space over H $f: V \longrightarrow W$ is a map then f is said to be a linear map if and only if f is both left and right linear.

Definition 1.16 Let V be a left vector space over H and $f: V \longrightarrow H$ a map. Then f is said to be left-conjugate if and only if $f(\alpha x + \beta y) = f(x)\overline{\alpha} + f(y)\overline{\beta}$ for all $x, y \in V$ and for all $\alpha, \beta \in H$.

If V is a right vector space over H. Then f is said to be right-conjugate if and only if $f(x\alpha+y\beta)=\bar{\alpha}f(x)+\bar{\beta}f(y)$ for all x, $y\in V$ and for all α , $\beta\in H$.

Topological Prerequisites

Theorem 1.17 (Baire's theorem) Let X be a complete metric space, and assume that X is the union of closed subset of S_n neN. Then some S_n contain a non-empty open ball

Proof: See [4].

Corollary 1.18 Let X be a complete metric space and (M_n) a $n \in \mathbb{N}$ sequence of open dense sets. Then the intersection $\bigcap_{n \in \mathbb{N}} M_n$ is not empty.

Proof: See[4].

Corollary 1.19 Let X be a metric space and (M_n) a sequence $n \in \mathbb{N}$ of subset of V such that $V = \bigcup_{n \in \mathbb{N}} M_n$. Then there exists a closed $n \in \mathbb{N}$ ball B in V and there exists an $n_0 \in \mathbb{N}$ such that $B \cap M_n$ is dense in B.

Proof: See [4].

Definition 1.20 Let (X,d) be a metric space. Let $A = \{f:X \to H\}$ is said to be equicontinuous if and only if given $\{E\}$ 0 there exists a $\{A\}$ 0 such that for all $\{X\}$ 1 $\{X\}$ 2 d($\{X\}$ 3, $\{X\}$ 4 d($\{X\}$ 4, $\{X\}$ 5) implies $\{\{X\}$ 6 for all $\{X\}$ 6.

Definition 1.21 A metric space X is said to be totally bounded if for any $\xi > 0$, there is a finite covering of X by sets of dimemeter less than ξ .

Definition 1.22 Let (X, \mathbb{S}) is said to have the BW property if and only if every sequence in X has a convergent subsequence which converges to a point of X.

Theorem 1.23 Let (X,d) be a metric space. Then the following statements are equivalent:

(i) (X,d) has the BW property

(ii) (X,d) is complete and totally bounded (iii) (X,d) is compact

Proof: See[4].

Theorem 1.24 Let (X,d) be a compact metric space. Let $C(X) = \{f: X \longrightarrow H / f \text{ is continuous}\}$. The function d^* defined on $C(X) \times C(X)$ by

 $d^*(f,g) = \sup \left\{ |f(x)-g(x)| / x \in X \right\} \text{ is a metric on } C(X)$ and $(C(X),d^*)$ is complete.

Proof: Let (f_n) be a cauchy sequence in C(X) i.e. for each $\epsilon > 0$ there exists a N_{ϵ} such that $d^*(f_n, f_m) < \epsilon$ for all $m, n > N_{\epsilon}$. Hence for each $x \in X$, $(f_n(x))$ is a cauchy sequence of H. Since H is complete, there exists an $y_x \in H$ such that $\lim_{n \to \infty} f_n(x) = y_x$. Define $f: X \to H$ by $f(x) = y_x$ for all $x \in X$. To show 1) $\lim_{n \to \infty} f_n = f$ with respect to d^* .

2) $f \in C(X)$.

Let $\mathcal{E}>0$ there exists a N_0 such that $|f_n(x)-f_m(x)|<\mathcal{E}_2$ for all m, $n>N_0$ and for all $x\in X$. Fix $n>N_0$ and let $n\to\infty$ in $|f_n(x)-f_m(x)|$ we get that $|f_n(x)-f(x)|\leq \mathcal{E}_2$ for all $n>N_0$ and for all $x\in X$. Hence sup $\{|f_n(x)-f(x)|/x\in X\}<\mathcal{E}$ for all $n>N_0$. This prove 1). To prove 2) Let $x\in X$ and let $\mathcal{E}>0$ be given. By 1)

there exists an $n_1 \in \mathbb{N}$ such that $d'(f_n - f) < \frac{\epsilon}{3}$ for all $n \geqslant n_1$ therefore $|f_{n_1}(t) - f(t)| < \frac{\epsilon}{3}$ for all $t \in X$. But $f_{n_1} \in C(X)$, hence it is continuous at x therefore there exists a $\delta > 0$ such that for all $y \in X$ $d(x,y) < \delta$ implies $|f_{n_1}(x) - f_{n_1}(y)| < \frac{\epsilon}{3}$. If $d(x,y) < \delta$ then $|f(x) - f(y)| \leq |f(x) - f_{n_1}(x)| + |f_{n_1}(x) - f_{n_1}(y)| + |f_{n_1}(y) - f(y)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \frac{\epsilon}{3}$.

Definition 4.25 A subset A of a metric space is said to be bounded if diameter A is finite.

Theorem 1.26 (Alzela'-Asoli) A closed subspace of C(X) is compact if and only if it is bounded and equicontinuous.

Proof: Let $F \subseteq C(X)$ be compact therefore F is totally bounded, so F is bounded. Let E > 0 therefore there exist F_1, F_2, \cdots ..., F_n such that $\binom{n}{m} = F$ and diam $(F_m) < \binom{E}{3}$ for all $m = 1, 2, \cdots$..., n. Assume $F_m \neq 0$ for all $m = 1, 2, \cdots, n$. For each $m \leqslant n$ choose an element $f_m \notin F_m$. Therefore for any $f \in F$, $f \in F_m$ for some m, hence $\binom{K}{3} = \binom{K}{3}$. Since f_1, f_2, \cdots, f_n belong to $F \subseteq C(X)$ they are uniformly continuous on K. For $m = 1, 2, \cdots, n$ there exists a $\binom{K}{3} = \binom{K}{3} = \binom{K}{3}$

Hence

$$|f(x)-f(y)| \leq |f(x)-f_k(x)| + |f_k(x)-f_k(y)| + |f_k(y)-f(y)|$$

$$< \frac{\xi}{3} + \frac{\xi}{3} + \frac{\xi}{3} = \xi \quad \text{so F is equicontinuous.}$$

Conversely, suppose F is bounded and equicontinuous. show that F is compact. Since F is closed in a complete metric space, hence F is complete. To show F is totally bounded. F is totally bounded if and only if every sequence in F contains a cauchy sequence [4]. Let (f_n) be a sequence in F. Claim that there exists a K > 0 such that $|f(x)| \leq K$ for all $x \in X$ and for all $f \in F$. Since F is bounded there exists a $K_1 > 0$ such that $d^*(f,g) \leq K_1$ for all f, $g \in F$ therefore $|f(x)-g(x)| \leqslant K_1$ for all $x \in X$ and for all f, $g \in F$. Let $g_0 \in F$ there exists a $K_2 > 0$ such that $|g_0(x)| \leq K_2$ for all $x \in X$. Choose $K = K_1 + K_2$. Let $f \in F$, so $|f(x) - g_0(x)| \leq K_1$ for all $x \in X$ therefore $|f(x)| \leqslant |f(x)-g_0(x)| + |g_0(x)| \leqslant K_1+K_2$ = K. So we have the claim. Since X is compact, X is totally bounded, hence X separable [4], so there exists a D = $\{x_1, x_2, \cdots\}$ such that $\overline{D} = X$. Since $(f_n(x_1))_{n \in \mathbb{N}}$ is a bounded sequence of \mathbb{R} which has the BW property it contains a convergent subsequence, call it $(f_{1n}(x_1))$ therefore $(f_{1n})_{n \in \mathbb{N}}$ is a subsequence of $(f_n)_{n \in \mathbb{N}}$. Since (f_{1n}(x₂)) is a bounded sequence of H, it contains a convergent subsequence, call it $(f_{2n}(x_2))_{n \in \mathbb{N}}$ therefore $(f_{2n})_{n \in \mathbb{N}}$ is a subsequence of $(f_{1n})_{n\in\mathbb{N}}$. By induction, for each $k\in\mathbb{N}$ we get a

sequence $(f_{kn})_{n \in \mathbb{N}}$ which is a subsequence of $(f_{k-1})_{n \in \mathbb{N}}$ (and hence is a subsequence of $(f_n)_{n\in\mathbb{N}}$ such that $(f_{kn}(x_k))_{n\in\mathbb{N}}$ converges to some $P_k \in \mathbb{H}$. Consider $(f_n)_{n \in \mathbb{N}}$ which is a subsequence of $(f_n)_{n \in \mathbb{N}}$. For each $x_k \in D$, $(f_{nn}(x_k))_{n \in \mathbb{N} \setminus \{1,2,\dots,k-1\}}$ is a subsequence of the sequence $(f_{kn}(x_k))_{n \in \mathbb{N}}$ therefore $(f_{nn}(x_k))_{n \in \mathbb{N}}$ converges. Hence $(f_{nn}(x_k))_{n \in \mathbb{N}}$ is cauchy. Claim that $(f_{nn})_{n\in\mathbb{N}}$ is cauchy. Let $\xi>0$ there exists a M_k such that $|f_{nn}(x_k)-f_{mm}(x_k)| < \frac{\varepsilon}{6}$ for all m, n > M_k . Since F is equicontinuous, there exists a $\delta > 0$ such that for each x, y $\in X$ and for all $f \in F$ $d(x,y) < \delta$ implies $|f(x)-f(y)| < \frac{\epsilon}{6}$. Claim that $\{B_d(x_m,\delta)/x_m \in D\}$ is an open cover X. Let $x \in X$ therefore $B_d(x;\delta) \cap D \neq \emptyset$, so there exists an $x_m \in D$ such that $x_m \in B_d(x;\delta)$ hence $x \in B_d(x,\delta)$, so $x \in \bigcup_{m \in \mathbb{N}} B_d(x_m,\delta)$ therefore $X \subseteq \bigcup_{m \in \mathbb{N}} B_d(x_m,\delta)$ and thus we have the claim. Since X is compact, there exists an $n_0 \in N$ such that $\{B_d(x_m; \delta)/m = 1, 2, \dots, n_0\}$ cover X. Choose N = max $\{M_1, M_2, \dots\}$..., M_n . Let m, n > N and let $x \in X$ then $x \in B_d(x_\alpha, \delta)$ for some a∈{1,2,...,no}.

 $|f_{mm}(x)-f_{nn}(x)| \le |f_{mm}(x)-f_{mm}(x_{\alpha})| + |f_{mm}(x_{\alpha})-f_{nn}(x_{\alpha})| + |f_{nn}(x_{\alpha})-f_{nn}(x)|$ $< \frac{\epsilon}{6} + \frac{\epsilon}{6} + \frac{\epsilon}{6} = \frac{\epsilon}{2} \cdot \text{so d}^{*}(f_{mm}, f_{nn}) < \epsilon .$

Hence $(f_n)_{n \in \mathbb{N}}$ contains a cauchy sequence $(f_{nn})_{n \in \mathbb{N}}$. Thus F is totally bounded, hence F is compact.

Definition 1.26 A subset M of a topological space X is said to be relatively compact in X if and only if \overline{M} is compact.

Definition 1.27 Let f be a real (or extended-real) function on a topological space. If $\left\{x/f(x)>\alpha\right\}$ is open for every real α , f is said to be lower semicontinuous. If $\left\{x/f(x)<\alpha\right\}$ is open for every real , f is said to be upper semicontinuous.