REFERENCES

- (1) ประคิษฐ**์ รังสฤษฏ์กุล และ นที่ทิพย์ กระสิณ. 2516.**<u>การผลิฅและการค้าข้าวโพค</u> กรมเศรษฐกิจการพาณิชย์.

 กระทรวงพาณิชย์ พระนคร : ข้าวพาณิชย์.
- (2) อำพน เสนาณรงค์. 2515. <u>การปลูกข้าวโพค</u> เอกสารทางวิชาการที่ 4 กรมส่งเสริมการเกษตร พระนคร: ซุมนุมสหกรณ์การขายและการ ซื้อแห่งประเทศไทย.
- (3) ANDERSON, J.A. and ALCOCK, A.W. 1954. Storage of Cereal

 Grains and Their Products. Chapter IX by HUKILL, W.V.

 Minnesota: The American Association of Cereal Chemists.
- (4) BECKER, H.A. 1959. A Study of Diffusion in Solids of Arbitrary

 Shape with Application to the Drying of the Wheat Kernel.

 Journal of Applied Polymer Science, 1: 212 226.
- (5) BECKER, H.A. 1961. An Investigation of Laws Governing the Spouting of Coarse Particles. Chemical Engineering Science, 13: 245 262.
- (6) BECKER, H.A., and SALLANS, H.R. 1956. A Study of the Desorption Isotherms of Wheat at 25°C and 50°C.

 Cereal Chemistry, 33(2): 79 91.
- (7) BECKER, H.A., and SALLANS, H.R. 1960. Drying Wheat in a Spouted Bed on the Continuous, Moisture Diffusion Controlled Drying of Solid Particles in a Well-mixed, Isothermal Bed. Chemical Engineering Science, 13(3): 97 112.

- (8) DAVIDSON, J.F., and HARRISON, D. 1971. Fludization.

 New York: Academic Press, Inc.
- (9) DREW, T.B., and others. 1974. Advances in Chemical Engineering.

 Vol. 9. New York: Academic Press.
- (10) HALL, C.W., and RODRIGUEZ ARIAS, J.H. 1958. Application of Newton's Equation to Moisture Removal from Shelled Corn at 40-140°F. Journal of Agricultural Engineering Research, 3: 275 280.
- (11) HUSTRULID, A., and FLIKKE, A.M. 1959. Theoretical Drying

 Curve for Shelled Corn. Transaction of the ASAE,

 2: 112 114.
- (12) PERRY, J.H. 1963. Chemical Engineers' Handbook, 4th. ed.

 Tokyo: Mc Graw Hill Book Company.
- (13) PIPE, L.A., and HARVILL, L.R. 1970. Applied Mathematics for

 Engineers and Physicists. 3rd. ed. Tokyo: McGraw-Hill

 Book., Co., Inc.
- (14) REDDY, K.V.S., FLEMING, R.J., and SMITH, J.W. 1968. Maximum Spoutable bed Depths of Mixed Particle-Size Beds. The Canadian Journal of Chemical Engineering, 46: 329 334.
- (15) SKELLAND, A.H.P. 1974. Diffusional Mass Transfer. New York:

 John Wiley & Sons, Inc.
- (16) SLIBECK, H.E. 1974. Operational Manager, Continental
 Overseas Corporation. Bangkok. Personal Communication.

- (17) THAILAND. 1974. Office of the Under-Secretary of State,

 Division of Agricultural Economics. Statistical

 Data of Agriculture. Ministry of Agriculture. Bangkok.
- (18) United States Department of Agriculture. 1971. Drying Shelled Corn and Small Grains. Farmers' Bulletin No. 2214.

BIBLIOGRAPHY

- BABBITT, J.D. 1949. Observations on the Adsorption of Water Vapor by Wheat. Canadian Journal of Research, 27F: 55 72.
- BECKER, H.A., and SALLANS, H.R. 1955. A Study of Internal Moisture

 Movement in the Drying of the Wheat Kernel. Cereal Chemistry,

 32(5): 212 226.
- BECKER, H.A., and SALLANS, H.R. 1956. A Study of the Relation between Time, Temperature, Moisture Content, and Loaf Volume by the Bromate Formula in the Heat Treatment of Wheat and Flour. Cereal Chemistry. 33(7): 254 265.
- Phenomena, New York: John Wiley & Sons, Inc.
- CLARK, D.M. Tips on Successful Grain Drying. Grain and Feed Journals. Chicago.
- EPSTEIN, N., and MATHUR, K.B. 1971. Heat and Mass Transfer in Spouted Beds A Review. The Canadian Journal of Chemical Engineering. 49(8): 467 476.
- GAMSON, B.W., and others. 1943. Heat, Mass, and Momentum Transfer in the Flow of Gases through Granular Solids. Trans. American Institution of Chemical Engineers. 39:1-35.
- JONES, C.R. 1951. Evaporation in Low Vacuum from Warm Granular

 Material (Wheat) during the Falling-Rate Period. J. Sci. Food.

 Agric. 2: 565 571.

- MADONNA, L.A., and LAMA, R.F. 1960. How to Calculate Pressure Drop in Spouted Beds. Industrial and Engineering Chemistry.

 52(2): 169 172.
- MARTIN, J.E., and others. 1958. Drying Wheat and Corn on North

 Carolina Farms. Technical Bulletin No. 128. Raleigh: North

 Carolina State College.
- MATHUR, K.B., and GISHLER, P.E. 1955. A Study of the Application of the Spouted Bed Technique to Wheat Drying. Journal of Applied Chemistry. 5: 624 636.
- MATHUR, K.B., and GISHLER, P.E. 1955. A Technique for Contacting Gases with Coarse Solid Particles. American Institute of Chemical Engineering Journal. 1(2): 157 164.
- PETERSON, W.S. 1962. Spouted bed Drier. The Canadian Journal of Chemical Engineering. 40: 226 230.
- SIMMONDS, W.H.C., and others. 1953. The Drying of Wheat Grain Part 1:

 The Mechanism of Drying. Trans. Institution of Chemical

 Engineers. 31(3): 265 278.

APPENDICES

APPENDIX A

NOITENCLATURE

a = Coefficient in equation 3.6

Ar = Archimedes number = g.d³ $(\rho_s - \rho_f) / \mu_f^2$. ρ_f

b = Coefficient in equation 3.6

CA = Concentration of diffusing substance A at a point in a solid, gn/cm³

 \overline{C}_A = Average concentration of A in a solid, ga/cm³

CAO = Intial, uniform concentration, gn/cm³

CAS = Concentration of A at the bounding surface, gm/cm3

C = Heat capacity of dry corn, cal/gn. °C

Cp = Heat capacity of dry air, cal/gn. CC

Cw = Heat capacity of water, cal/gm.°C

d = Particle diameter, cm

D, Dc = Column diameter, cm

Di = Diameter of gas-inlet orifice, cm

Dv = Particle diameter measured as the diameter of an equi-volumed sphere, cm

 \mathcal{D} = Diffusion coefficient, cm²/sec

 \mathcal{Q}_0 = Diffusion constant in Arrhenius equation, cm²/sec

E = Activation energy, cal/mole

f = Function

f', f'', ..., = First, second, derivatives of f

g = Acceleration of gravity, cm/sec²

G = Mass dry air velocity, gm/cm².sec

h_{fg} = Latent heat of vapourization, cal/gm

 \bar{h}_{d} = Average net heat of desorption, cal/gm

H = bed depth, cm

H_{sm} = Maximum spoutable bed depth, cm

K = Coefficient in equation 3.6

m = Average moisture content of a drying particle, dry basis, gm/gm

= Average moisture content of a statistical population of drying particles, dry basis, gn/gm

m = Initial, uniform moisture content, dry basis, gm/gm

m = Moisture content at the bounding surface, dry basis, gm/gm

 \overline{M} = free moisture ratio = $\overline{m} - m$ s m - m o s

P = Pressure at any point, gm/cm²

 $\Delta P = \text{Pressure drop across bed, } gm/cm^2$

Δ P = Peak pressure drop, prior to spouting, gm/cm²

r = Special coordinate, cm

r = Radius of a particle measured as that of an equi-volumed sphere, cm

R = Gas constant = 1.9872 cal/mol. OK

 $Re_{ms} = Reynolds number at minimum spouting = \frac{u_i \cdot d \cdot \rho_f}{\mu_f}$

s = Special coordinate, cm

S = Exposed surface area of a solid, cm²

t = Temperature, °C

t_e = Equilibrium temperature of air and particles leaving the heater, ^oC

t; = Temperature of air entering the heater, °C

t = Initial temperature of particles; temperature of particles entering the heater, °C

T = Absolute temperature, OK

U = Minimum fluidizing velocity-superficial, cm/sec

U = Minimum spouting velocity-superficial, cm/sec

V = Volume of a solid, cm³

W = Feed rate, gm/ sec

Z = Verticle distance from gas-inlet orifice (bed level), cm

Θ = Time, sec

e = Particle cycle time in bed, sec

γ = Included cone angle

 ρ = Density of moist solid, gm/cm³

of = Fluid density, gm/cm3

Bulk density of particulate solids, gm/cm³

Particle density or moisture-free density, gm/cm³

μ = Fluid viscosity, gm/cm.sec

 α = Angle of internal friction of solids

E - Fractional voids in loosely packed bed

 ψ = Surface sphericity

APPENDIX B

CALCULATION

1. Screen Analysis

Opening (cm.)	Dn Mean diameter (cm.)	$\Delta \not p_n$ Wt. fraction	$\Delta \not p_n / \overline{\mathbb{D}}_n$
0.952/0.792	0.872	0.0704	0.081
0.792/0.635	0.714	0.3401	0.476
0.635/0.475	0.555	0.5895	1.062

$$\sum_{n=1}^{n_{T}} \Delta \phi_{n} / \overline{D}_{n} = 1.619$$

$$\overline{D}_{V} = \frac{1}{\frac{n_{T}}{\Sigma}} \Delta p_{n} / \overline{D}_{n} = \frac{1}{1.619} = 0.6187 \text{ cm}$$

2. Minimum Spouting Velocity

2.1 Experimental

The air flow rates measured with the rotameter were 8.5-9.5 cm. readings. From the calibration curve in Appendix D, the readings are equivalent to 1270-1370 lit./min. The column diameter was 4 inches; so the cross-sectional area was $\frac{\pi}{4} \times \frac{4^2}{144}$ or 0.0873 ft².

Therefore, the experimental spouting velocity at a flow rate of 1270 lit/min was

1270
$$\frac{1 \text{ lit}}{\text{min}} \times \frac{1}{60} \frac{\text{min}}{\text{sec}} \times 0.03532 \frac{\text{ft}^3}{\text{lit}} \times \frac{1}{0.0873 \text{ ft}^2}$$

= 8.56 ft/sec.

Similarly, the spouting velocity at a flow rate of 1370 lit/min was 9.23 ft/sec.

2.2 Theoretical

From equation (2.1.5),

$$U_{ms} = \left(\frac{d}{D}\right) \left(\frac{Di}{D}\right)^{1/3} \sqrt{\frac{2 \cdot g \cdot H \left(\rho_{s} - \rho_{f}\right)}{\rho_{f}}}$$

Since d = 0.6187 cm or 0.6187/30 ft

D = 4 in. or 4/12 ft

Di = 0.5 in. or 0.5/12 ft

 $g = 32 \text{ ft/sec}^2$

H = 20 cm or 2/3 ft

 ρ = 78.7 lb/ft³

 $\rho = 0.0694 \text{ lb/ft}^3 \text{ at 1 atm, } 45^{\circ}\text{C}$

$$U_{\text{ms}} = \frac{0.6187/30}{4/12} \left(\frac{0.5}{4}\right)^{1/3} \sqrt{\frac{2\times32\times20\times78.7}{0.0694\times30}}$$

= 6.73 ft/sec

Therefore, the theoretical, minimum spouting velocity of the experiment was 6.73 ft/sec.

3. Drying Equation

The experimental data were first plotted to show k= $(m_0 - m)/\sqrt{e}$ as a function of \sqrt{e} at different operating temperatures (Fig. B-1, B-2, and B-3) according to equation (4.51). The result was found to be linear in the neighbourhood of e=0. The slope -b and the intercept k were therefore calculated statistically (Table B-4)

The dynamic surface moisture content, given by equation (4.54) was next calculated at each temperature. Fig B-4 shows that k is a linear function of initial moisture contents ranging from 0.20 to 0.26 gm/gm.Statistical calculation of the intercept k = 0 gave surface moisture contents of 0.1495 - 0.1535gm/gm(Table B-5). The slope -b was also found to be a linear function of the initial moisture contents (Fig. B-5) and statistical calculation of the intercepts at b=0 gave nearly equal surface moisture contents averaging 0.1640gm/gm(Table B-5). The apparent disagreement here with the values obtained from k is negligible according to practical considerations.

To evaluate the diffusion coefficient, the mean value of $k_{\rm o}/$ $(m_{\rm o}-m_{\rm s})$ was first calculated for each temperature and then diffusion coefficients were calculated from equation (4.54) (Table B-6). The relation between the diffusion coefficient and the absolute temperature (Fig B-6) follows the Arrhenius-type equation:

$$\mathcal{Q} = \mathcal{Q}_{o} \exp(-E/\Re T)$$

where $\mathcal{Q}_{o} = 4080 \text{ cm}^2/\text{ sec and E} = 13.93 \text{ k.cal/mole}$

The diffusion constant, f" (0), in equation (4.54) was then evaluated. The calculation followed equation (4.55). The mean value

of $\frac{f^n(0)}{2}$ = 0.236 calculated at each temperature was obtained in Table B-7. The diffusion equation for spouted-bed drying of corn kernel in the neighbourhood of θ = 0 is therefore

$$\overline{M} = 1 - \frac{2}{\sqrt{\pi}} X + 0.236 X^{2}$$
 where $X = \frac{S}{V} \sqrt{D Q}$

The correlation is used in designing the performance of a spouted-bed dryers for shelled corn.

Table B-l
Calculation of k(*)at 40°C

	m_= 0.260	m = 0.2605 gn/gn d.b.		9 gm/gm d.b.	m_= 0.2191 gn/gm d.b.	
√0 sec ^{1/2}	m (gn/gn d.b.)	10 ⁴ k (sec ^{-1/2})	m (gn/gn d.b.)	10 ⁴ k (sec ¹ / ₃)		10 ⁴ k (sec ⁻¹)
18.9736	0.2343	13.81	0.2246	11.75	0,2032	8.38
24.4949	0.2269	13.72	0.2180	11.80	0.2001	7.76
30.0000	0.2193	13.73	0.2130	11.30	0.1952	7.97
34.6411	0.2147	13.22	0.2082	11.17	0.1918	7.88
38.7298	0.2108	12.83	0.2051	10.79	0.1911	7.23
42.4264	0.2056	12.94	0.2007	10.89	0.1860	7.80
60.0000	0.1863	12.37	0.1842	10.45	0.1755	7.27

*k = (m_o - m) / ./e

1

Table B-2
Calculation of k at 45°C

	m _o = 0.2462	gn/gn d.b.	m _o = 0.2339gn/gm d.b.		m _o = 0.2256gm/gm d.b.		m = 0.2038gm/gn d.b	
√ 9 (sec ²)	m (gn/gm d.b.)	10 ⁴ k (sec ^{-1/2})	m (gn/gn d.b.)	10 ⁴ k (sec - 2)	m (gn/gn d.b.)	10 ⁴ k (sec ⁻²)		10 ⁴ k (sec ⁻²)
18.9736	0.2199	13.86	0.2115	11.81	0.2060	10.33	0.1904	7.06
24.4949	0.2131	13.51	0.2065	11.19	0.2011	10.00	0.1856	7-43
30.0000	0.2071	13.03	0.2004	11.17	0.1958	9.93	0.1824	7.13
34.6411	0.2008	13.11	0.1952	11.17	0.1921	9.67	0.1795	7.01
38.7298	0.1963	12.88	0.1920	10.82	0.1897	9.27	0.1770	6.92
42.4264	0.1915	12.89	0.1885	10.70	0.1868	9.15	0.1753	6.72
60.0000	0.1753	11.82	0.1749	9.83	0.1728	8.80	0.1644	6.57

1

Table B-3
Calculation of k at 50°C

	m_= 0.2412	gr/gn d.b.	m = 0.2208	gm/gm d.b.	m _o = 0.2070	gm/gm d.b.	$m_0 = 0.201$	e gn/gm d.b
√0 ±.	m	10 ⁴ k	m	10 ⁴ k	m	10 ⁴ k	m	10 ⁴ k
(sec ^{1/2})	(gn/gn d.b.)	(sec 2)	(gr/gn d.b,)	(sec 2)	(gn/gm d.b.)	(sec (sec (sec (sec (sec (sec (sec (sec	(gn/gm'd.b.)	(sec 2)
18.9736	0.2118	15.49	0.1982	11.91	0.1876	10.22	0.1877	7.33
24.4949	0.2048	14.86	0.1916	11.92	0.1322	10.12	0.1829	7.63
30.0000	0.1967	14.83	0.1864	11.47	0.1767	10.10	0.1798	7.27
34.6411	0,1919	14.23	0.1817	11.29	0.1737	9.61	0.1762	7.33
38.7298	0.1870	13.97	0.1785	10.92	0.1698	9.61	0.1732	7.33
42.4264	0.1838	13.53	0.1736	11.12	0.1662	9.62	0.1712	7.16
60.0000	0.1663	12.48	0.1606	10.03	0.1540	8.83	0.1627	6.48

Fig. B-1 $k = (m_0 - \overline{m})/\sqrt{\theta}$ as a function of $\sqrt{0}$ and m_0 for the spouted-bed drying of corn at $40^{\circ}C$.

Fig. B-2 $k = (m_0 - \overline{m}) / \sqrt{\theta}$ as a function of $\sqrt{\theta}$ and m_0 for the spouted-bed drying of corn at 45° C.

Fig B-3 $k = (m_0 - m_0)/\sqrt{\theta}$ as a function of $\sqrt{\theta}$ and m_0 for the spouted-bed drying of corn at 50° C.

Table B-4

Values of $k_0^{(*)}$ and $b^{(**)}$ Obtained from Figures B1 - B3

$t = 40^{\circ}C$				$t = 45^{\circ}C$			$t = 50^{\circ}C$		
m _o	10 ⁴ k _o	10 ⁶ b	m _o	10 ⁴ k _o	10 ⁶ b	m _o	10 ⁴ k _o	10 ⁶ b	
(gn/gn)	(sec = 1/2)	(sec ⁻¹)	(gr/gr)	(sec 2)	(sec ⁻¹)	(gr/gn)	(sec 2)	(sec ⁻¹)	
0.2191	8.52	2.06	0.2038	7.64	1.84	0.2016	8.36	3.14	
0.2469	12.12	2.80	0.2256	10.79	3.31	0.2070	11.05	3.66	
0.2605	14.34	3.26	0.2339	12,26	3.68	0.2208	12.73	4.27	
	_	_	0.2462	14.50	4.11	0.2412	16.39	6.25	

* k = intercept

** b = slope

Fig. B-4 The intercept k_{o} as a function of initial moisture content and temperature.

Fig. B-5 The slope b as a function of initial moisture content and temperature.

Table B - 5

Dynamic Surface Moisture Contents in the Spouted-Bed Drying of Corn

t	m _s (gr	/gm)	-
(°c)	k _o = 0	b = 0	
40	041535	0.1630	
45	0.1525	0.1675	
50	0.1495	0.1615	
J	0.1518	0.1640	

Table B-6

Diffusion Coefficients in the Spouted-Bed Drying of Corn

t (°°)	10 ³ /T	m _o (gm/gm)	10 ⁴ k _o (sec ¹ / ₂)	10 ² k(*) momo s ₁ (sec ²)	10 ⁷ $\mathcal{D}^{(**)}$ (cm ² /sec)
		0.2191	8,52	1.266	
40	3.195	0.2469	12.12	1.274	× 10
		0.2605	14.34	1.319	
				1.286	7.726
		0.2038	7.64	1.469	
	2.145	0.2256	10.79	1.462	
45	3.145	0.2339	12.26 14.50	1.493 1.536	
				1.490	10.36
		0,2016	8.36	1.679	
	2 006	0.2070	11.05	2.002	
50	3.096	0.2208	12.73	1.845	
		0.2412	16.39	1.833	
	1			1.839	15.80

*
$$m_s = 0.1518 \text{ gm/gm}$$

** $\mathcal{D} = \begin{bmatrix} \sqrt{\pi} & \frac{k_o}{(m_o - m_s)} & \frac{V}{S} \end{bmatrix}^2$

$$\frac{V}{S} = \frac{r_s}{3} \cdot \psi$$

Fig. B - 6 The diffusion coefficient as a function of the reciprocal of the absolute temperature.

Table B-7

Diffusion Constants in the Spouted-Bed Drying

t (°C)	10 ⁷ D (cm ² /sec)	$\frac{10^{5}b}{m_{o}-m_{s}}$ (sec ⁻¹)	f**(0) (*)
40	7.726	3.001	0.231
45	10.36	4.215	0,242
50	15.80	6.528	0.236
	-		0.236

*
$$\frac{f'(0)}{2} = \frac{1}{2} \cdot \frac{b}{(m_o - m_g)} \left(\frac{V}{S}\right)^2$$

APPENDIX C

THE PRACTICAL USE OF THE DRYING EQUATION

A problem illustrating the practical use of the correlation for drying corn in a spouted heater is given as follows:

A feasible heater for a practical drying consists of a column 60 cm in diameter with a 90° conical bottom and a 10 cm diameter air inlet. The heater is to be operated at a bed depth of 120 cm. Corn at 20°C with a moisture content of 0.230 gm/gm is to be dried to the maximum safe storage moisture of 0.163 gm/gm (14 per cent wet basis) and cooled to the maximum safe storage temperature of 10°C above the atmospheric temperature. At a moisture of 0.063 gm/gm, dry basis, the kernel diameter of corn is 0.6187 cm and the density 1.301 gm/cm³. The atmospheric temperature, pressure, and relative humidity are respectively 19°C, 760 mm. The gand 10 per cent. The minimum mass air velocity required to spout the heater bed, G, is 0.1 gm/sec. cm².

Problem

Find the maximum safe drying rate, the thermal energy requirements, and the inlet air temperature of the heater.

Solution

(I) Assume that the equilibrium moisture content is 0.063 gm/gm. The reduced free moisture content of the heater product is

Substituting M into the drying equation, we get

$$0.599 = 1 - 2.X + 0.236 X^{2}$$
 (2)

therefore, X = 0.39 (3)

or
$$\frac{s}{v}\sqrt{De} = 0.39$$
 (4)

Since the safe grain temperature of corn in the heater is 130°F or (17) 54°C, the outlet grain temperature is assumed to be 54°C or 327°K.

By the Arrhenius equation,

$$\mathcal{D} = \mathcal{D}_{0} \exp\left(\frac{-E}{RT}\right)$$
= 4080 \exp\left(\frac{-13930}{1.982 \times 327}\right)
= 1.9 \times 10^{-6} \text{cm}^{2}/\text{sec.} (5)

The volume-to-surface ratio of the corn is (the surface sphericity being = 0.75)

$$\frac{\mathbf{v}}{\mathbf{S}} = \frac{\mathbf{D}\mathbf{v} \cdot \mathbf{v}}{6} = \frac{0.6187 \times 0.75}{6}$$

$$= 0.07734 \text{ cm}$$
 (6)

By substituting eq's (5) and (6) into (4), we get

$$\Theta = \left(\frac{x \cdot y}{S}\right)^2 = \frac{(0.39)^2 (0.07734)^2}{1.9 \times 10^{-6}}$$

$$= 479 \text{ sec or } 7.98 \text{ min.}$$

(II) The volume of the heater bed is

$$A(L - 2.D) = \pi \times 30^{2}(120 - 2 \times 30)$$
$$= 2.83 \times 10^{5} \text{ cm}^{3}$$

The fraction void of a spouting bed is approximately 0.45⁽⁷⁾.

The volume of corn in the heater is

$$2.83 \times 10^{5} (1 - 0.45) = 1.56 \times 10^{5} \text{ cm}^{3}$$

The absolute density of the heater product is 1.301 gm/cm³ at a moisture content of 0.063 gm/gm dry basis.

The hold-up in the heater is $1.56 \times 10^5 \times 1.301$

= 2.03×10^5 gm, wet basis

or
$$\frac{2.03 \times 10^5}{1 + \overline{m}}$$
 = $\frac{2.03 \times 10^5}{1 + 0.163}$

= 1.75×10^5 gm, dry basis.

Therefore, the feed rate is $\frac{1.75 \times 10^5}{479}$ = 365 gm/sec, dry basis.

(III) The there energy requirements of the heater are

(a) To heat the feed to heater outlet temperature

$$W(C_{c} + m_{o}C_{w}) (t_{e} - t_{e}) = 365 (0.17 + 0.230 \times 1.0) (54 - 19)$$

$$= 5110 \text{ cal/sec.}$$

where W i the feed rate, gm/sec.

(b) To evarorate moisture in the heater, $h_{fg} = 560 \text{ cal/gm}$, (12)

$$W(m_0 - \bar{m}) (h_{fg}) = 365 (0.230 - 0.163) \times 560$$

= 13695 cal/sec.

Therefore, the total energy requirements = 5110 + 13695 = 18805 cal/sec.

(IV) Allowing 10% excess air, the total air flow to the heater is

GA =
$$1.1 \times 0.1 \times \times 30^2$$

= 311 gm/sec.

The heater inlet air temperature is

Therefore, the heater inlet air temperature is 253°C.

CALIBRATION CURVE OF ROTAFFFFF

APPENDIX D

VITA

Name

Miss Warunee Yongskulrote

Education

Bachelor of Science (2 nd Class Honors)

in Chemical Engineering, 1969

Chulalongkorn University,

Bangkok, Thailand.

Position and Site of the Employee

Lecturer in the Chemistry Department,

the Faculty of Science, Ramkhamhaeng University.

