CHAPTER II

THEORY

2.1 Spouted-Bed Technigue

The spouted-bed technique is a variant of fluidization which ie
applied to solid materials that are too coarse_and uwniform in size for
good fluidization. The technique is accomplished by forcing fluid flow
upwards through a small orifice at the centre of the conical base of the
bed column. The particles along the axial zone of the column are then
forced to travel upwards and fall downwards in the annular zone. The

schematic diagram of a spouted bed is shown in Fig. 2.1 ¢

2,1.1 Conditions Necessary for Spouting, Stable spouting is dependent
[

on certain parameters: particle size and sige distribution, gas~inlet
diameter, columm diameter, cone angle, gas flow rate, and bed depth.
A1l these factors are interrelated. Unless these are satisfied, the
movement of solids become random, leading to a state of aggregate
fluidization, and with increase in air flow to slugging.

The conditions necessary for spouting are less serious for
coarser particles and for wider columns, In addition, uniformity of
particle size favours spouting stability, because the lower permeability
of a bed containing a ronge of sizes would tund to distribute the gos
more cffectively rathur than produce o jot action, Incrcase in particle
sige permits the toleranc: for sige non-uniformitye

The spouting vessel may be either cylindrical or conical in shapee.



¢

E.
4w
Z a
- -
& a
- [+ 4
< -
N 75 Y A
-
7
7
V22227227
N g
. A rREARS,
7
i 7
TR ol g 7z
/ F Y T g0 -
AR RN : umﬂn..r:_y rrﬁmﬁ LAY o AR B I LN H Te &.&w«, Lo
AR //////////////.////////////////////.?///////////////////////4////,/’/////./f/’/////////////////A///A’//’/;;af % b:
- 4
W
W
"4
O
(%]

hed

bed

Fige2.1 Schematic diagram of a g o



The former is preferable to have a short conical base tapering down to
the inlet orifice so that the solids in the annulus can slide into the
-gas~ jet region without forming any dead zone at the base. The suitable
included angle of the cone depends to some extent on the internal fric-
tion characteristics of the solids, but if the cone is too steepy; spout— -
ing become unstable since the entire bed tends to be lifted up by the
air jet. The limiting cone angle for most materials appears to be in
region of 40° y both for cylindrical columns with a conical base and
for entirely conical vessels. The exact design of the'gas-inlet can
slso have an important effect on spouting stability. More stable
spoﬁting is obtained with a converging nozzle slightly protruding into

the cone,

2,1.2 Pressure Drop, Spouting causes a pressure gredient (aP/daz) which

is not uniform along the bed height, it is small near the base, in-
creasing to a maximum value at the bed surface. The pressure drop
_arises from the parallel resistances, that is, the spout in which dilute
phase transport of particles is occurring and the annular which is a
dovnward moving packed bed with counter—current flow of gas. The res—
pective pressure @&rop gradients at various bed levels are in approximate
balance, except in the vicinity of the .gas inlet. At theAtop of a deep
bed, the pressure gradient approaches that necessary to support the
solids,; 1.4 1o fluidize the material. If the gas velocity in the
annulus becomes equal to the fluidization. This condition corresponds
to the maximum spoutable bed depth.

The total pressure drop across a spouted bed operating at its
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maximum depth is approximately equivalent to twowthirds of the wéight

of the bed, the ratio being lower for shallower bed.

2.1.2,1 Pressure Drop Versus Flow Rate. The change in pressure
drop across a bed of rape seed with varying air flow rate is chown.
pictorially in Fig. 2.2 and graphically in Tige 2.3.

From Fig 2.3, the high peak in OP of curve 1 which occurs be-
fore spouting sets in is associated with the entry of a high=velocity
gas jet into a bed of solids, Curve 2 ghows pressure drop measured
separately across the upper part of the same bed (above the cone)
while A P across the cone itself, obtained by difference, is plotted
as curve 3., With increasing air flow, the curve for the upper part
remains substantially linear until the spout breaks through the bed
(part A ). The curve for the lower part rises much more steeply be-
cause of the high air velocity near the inlet and goes through a maxi-
mum as an internal spout develops in that region. With decreasing aif
flow, starting with a spouting bed, once the spout has collapsed (point
B);A Pu@per'follows exactly the same curve as before, but the curve
for A P]ower'now sits very much below its previous level since the
energy required by the air jet to rupture the golids is no longer ex-—
pended during the collapse of the interval spout, the pressure drop

being entirely due to friction dwage.

2.1.2+2 Peak Pressgure ﬁrop. To be able to estimate the peak

pressure drop is of practical importance for designing the gas~delivery

system of the spouting unite A P__ ° as being composed of a rupture
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pressure drop and a frictional pressure drop, was experimentally

deternined and is given in the following correlation:

£ [ 6.8 (Di) T ek 2 34.4 4o oy {2:1.1)
_tane * D
The angle of internal friction, «,'was measured by a method given

by 7Zenz and Othmer, : ke

2¢41.2.3 Sgouting Pressure Drop, Because of the flaring out of
gas into the annulus as it travels upwards, the vertictl pressure gra-
dient in a spouting bed increases from zero at the baz: to a maximum
near the bed top. The pressure variation with height Z has been found

generally to follow a cosine curves

P = APcos (r2/2H) (2:1:2)

A% the maximum spoutable bed depth Hsm the pressure gradiert ot
? . ;

the top is enough to fluidige the annulus solids, and hence at the top,

- mn ey (V) (201.3)

Differentiating equation (2.1.2) with respect to Z and substitu—

ting the result into eguation (2.1.3) after putting 2 = H = Hsm’ we get

AP = 2H_ o Pge g/gc S ; eo) [ (2.1.4)

Thus the total spouting pressure drop at Hsm bears a ratio of 2/'7T

(=0.64) to the corresponding value for fluidization. However, the maximum



experimental values reported for this ratio range between 0.7 and 0.8

2.1.3  Mininum Spouting Velocity. The minimum gas velocity at which a

bed will remain in the spouted state depends on solid and fluid proper—
ties on the one hand and bed geometry on the other. The following cor=

relation was proposed for cylindrical columns with a short conical base:

e <(3)B) 7 f2e o) 21.5)
f

For conical vessels, the following form was proposed:

a o C_ :
Re__ K« (ar) 7 (tany ) (%) : e

i
Reynolds number is based on particle diameter and air velocity
through the orifice at minimum spouting. The values of the constants

and exponents in equation (2,1.6) vary considerably, depending on the

range of variables studied,

2.1e4 Maximum Spoutable Bed Depthe Mathur and Gishler found that for

the given column, gas and particles, there ié & maximum bgd depth Hmax
which can be spouted. At bed depths less than this maximum, a stablé
spout may be maintained at flow rates higher than that required for
minumum épouting. But; at the maximum spoutable bed depth, increasze in
the air flow rate over the minimum spouting causes slugeging or agperga-—
tive fluidization (Fige 2.4).

i the‘minimum fludization velocity for a solid material is knowm,
itg wmaximum spoutable bed depth in a given column can be estimaicd by

subgitituting Umf for Ums in the minimum spouting velocity equation. For
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obtaining Umf’ it was made use of the Ergun packed bed eguation:
1,75 p.d 2, #1500, (1 =€ ) U ~dae p. g=0——i(2.1.7)
’ et g T o mf L g

The value of Hsm obtained by substituting Uﬁf calculated from
equation (2.1.7) into equation (2.1.5) agreed well with experimental
recults for several closelv-sized solids. Attemptes have been made to
relate Hsm'with the variables of,thé system; however, the above equa-

tion is simpler and more accurate,

2,1.5 Flow Pattern of Gag. The distribution of gas between spout and

annulug is important in assessing the effectiveness of gasfsolids con=
Tacts

Tige 2.5 shows that a substantial proportion of air cross—flows
into the snnulus within a short distance from the base:,’"l%he‘. iro’bortion'
being higher for larger columns. Experiments with 24ﬁ§;, diéﬁgter beds
of wheat using different cone angles (45°= 850),vinlet diameters (2 in -
4 in.) and air flows {up to 20 % above Uﬁs) showed that the maximum
proportion of air passing through the annulﬁs ig obtained with a small
cone angle, a large orifice size and small air flow rate, At higher
flow rates ‘the additional air flows through the spout without spread=—
ing into the annulus.

Velecity profiles at several bed levels, determined in a 15 cin

diameter X 33 cm deep wheat bed (Di = 1,4 cm, cone angle = 600) are shown

in Fig" 2060
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2.1.6 TFlow Pattern of Solids

2.1.6.1 In the Spout. Particles entering the gas jet near the

orifice from the annular region accelerate rapidly from rest to a peak
velocity within a short distance from the inlet, and then begin %o
slow down until they reach zero velocity at the spout top; The main
accelerating force is due to the frictional drag on the particles by
the gas stream, while deceleration is caused by gravity and by
collisions betweén the particles in the spout and those cénstituting'
the spout wall. The radial profile of particle velocity in the spout
at any level is parabolic, the difference between velocities at the
axis and the spout wall decreasing with inoreasing distance from the

air-inlet (Fige. 2.7).

2.1.6.2 In the Annulus. It was observed that a particle
starting from any radial position‘at the bed surface travels down the
annulus along an approximately patabolic path, with a radial movement
towards the spout. If and when it reaches the lower path of the bed,
its path is deflected by the..conical base. Thus only for bed lewvels
above the cone region is the downward particle velocity at the
circumference of the column similar to the solids velqcity acrcss the
whole section. In the case of a large column the fraction of total

marticles which cross-flow into the spout is very much smaller. The

flow pattern of gas and solids is shown in Fig. 2.8.
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2.1.7 GCycle Time

Since the proportion of time spent by a particle in the spout
ig insignificant compared with that spent in the annulué, particle
cyole times can be deduced from solids flow in the annulus. The Cata
for wheat in 6 in. to 24 in. diameter columns, H = 24 in. - 72 in.,
Di/Do = 0,17, cone angle = 90o and 1800, were correlaied by the

following equation:

09 - 21«/%?.('%&) ----------- - - = = (2.1.8)




2.2 Mathematical Derivation of Diffusion Drying

Since the drying mechanism of shelled corn(lo)is diffusion, and
it is assumed that the kernel of corn is a sphere of homogeneous
material(ll), the following mathematical solution is of unsieady-state
molecular diffusion from a sphere,

Assumptions

(a) At the start of diffusion (6=0), the concentration of mois=
ture (component A) is uniform at C,o throughout the sphere.

(b) The resistance to transfer in the medium surrounding the
gsphere is negligible, so that the surface concentration of the sphere
is constant at CAS in equilibrium with the entire continuous phase,

(¢) Diffusion occurs radially, and physical properties are
unchangeda.

(d) Air humidity is neglected.

As

- atC

Diffusion of A .

o

Fig. 2,9 Section ofr cr-h®rr in which mass transfer is occurring

by unsteady-state molecular diffusion

Congider the section of a sphere in Fige. 2.9 The origin of co=
ordinates is ;at the center of the sphere; the concentration at the spheri-

cal surface of radius r will be CA’ and at the spherical surface of



radius r+dr it will be CAijA

by: these two surfaces at r and r+dr.

e. A control volume is defined as bounded

The rate of moisture input is

wlltdvat 2%y (2.2.1)
or
and the rate of moisture output is

- .({7[41' (r+dr)2] acﬂ-l*__?(_a_f_e.;)dz}(z.z.e)

R e

Subtracting equation (2.2.2) from equation (2,241) and neglecting

second- and third=order differentials gives

22
4v (%3 C,dr + 2r aCA dr) (2.2.3)
) r:a o T

Equation (2.2,3) is the net flow rate of moisture into the control
volume, The rate of cumulation of moisture in the control volume is
2 \3C -
( 4r r%.ar )24 (2.2.4)
20

Then the mass balance around the control volume is obtained by equating

the expressions (2.2.3) and2(2.2.4). The result is

c
3 Bruen@itifagy BniveRSH) (2.2.5)
26 G R R

r
vith the houndary conditions following from the assumptions:

Culri0) = ©,4

CA(rs’ 0l - CAs

lim C, (r,8) = bounded
r+0
where Ty is radius of the sphere.

In order to simplify the boundary conditions, the change of varialle

Fow kg * U
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is made., Then equation (2.2.5) becomes ;
1y =DE%y, +22%) (2.246)
20 3r°  Tar .

with the boundary conditions

y(r,0) = CAO - CAs : s £2,2.T &)
y(r,0) =0 sl o
limy ( r ) = bounded oo (24247 c)
S 550

Agsume that the solution of equation (2.2.6) is of the form
y(r,® ) = R(z) T®) ' {2.2:8)

where R (r) is some function of r only, and T (@ ) is some function

of @ onlye.

Then
r = REE
20 ae
R R/
r dr
oT dr

and equation (2.2.8) becomes

22

1

2ar =1 (&R, +2.4R) = - (2.2.9)
Q)Tde R dr rooar !
where - l2 is a constante.
Solving the first differential equation gives
T = C, exp - = ) {2,2.10)
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The second differential equation is

&k + 288 %29 W 0 -_ (2.2.11)
dr2 r dr

’

Let rR = B 4 then

»
&R = =-_° +148 (2s2412)
dr r2 r dr
2 8 2
R = 28 -248 +14°8 (2.2.13)
dr2 r3 rzdr iy dr2

Substituting equations (2.2.12) and (2.2,13) into equation (2.2411)
gives

e 4 /%

dr2

This equation has the solution of the form

B = C.8inX r + C., cos Ar

2 3
from which
C 4 ) C TN
R. »  2WainiNWLH V"R Videg (252514
T r

The boundary condition {8e2sT o) for R to »z finite at r = O requires

CBBO

Also, from the boundary condition (2.2.7 b) and equation (2.2.8),

R (r = rs) = 0 = C, sin Ar_ f2. 0350
P
8
Therefore
XA = nmw ¢ (2.2016)
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where n = 1,2,3,= = =
Bow oo gew (2R XY (232,1%)

r r :
s
Substituting equations (2.2,10) and (2.2.17) into equation (2.2.8), we

obtain
-]
’\f = . s "
z An' A SIn(-I}-—LF-) exp -an “2. ) {2.5.189
n=1 T ™ o ——— S ——_t
] r82

The boundary condition (2.2.7 a), for y = Cpo = Cpg 8% @ = O gives

r (CAO- CAs) = nial A sin( nrvr r) fRu2ain)
s

m - - 51 * . - “ - S 3
This is a Fourier sine series for f£(r) r(CAo CAs)' so that An

may be evaluated as follows:
¥

s
A = 2 0/ I‘(CAO - Cls) sin(n m r) dr
r T
s s
o er e 1yl 5.5 5
-y (C,, - Oty | (2.2.20)

Then equation (2.2.18) becomesg

Cp= Oy + 27, (045 =Cp) Zp@)l .1 ‘sin(n.-...v_r.r“) exp
ki n ¥ i ™
) s

(—ﬂﬁf_@_ ) _ (2.2.21)

]

Evaluating b r, from equation (2.2.21) gives

or S
9 ;
CA w g [0 =g, ) & iaxe —g)ng 3129
i : - AO AS
g r=17r rs nel 1r‘2

(268,28

e
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i

The rete of mass transfer at time © across the surface of the

gphere is

2 2my C '
4 1" N, (0) « - 4m réZJ( A);

Substituting equation (2.2.22) into equation (2.2.23) gives

: 2 2
4q ri v, (6) = 8= rD(c, - Cpg) El exp(—,_"(‘).. n_w 9)

2
r
8
(2.2.24)
'
The total mass transfer up to time © is NA,vwhere
5 ; ©
& 1
Ny = 4n r80/_ NAr(e) ae
2 o0
e g T s 3
( VAo~ "As-) 1L l-exp(—mn%l o )
n | S = )
n r
(2.2.25)

The total transfer per unit surface up to time € is

=
¥ M T ' =
S =P UREE AU AR R L= B 1 exp
4171‘:‘5" ( )3 [1;2 n.lnz 22 2
3

T nh=ln
(_Q:?Ze‘)] : : | (R, 0:08)

where it can be shown that

2 cacaame

n 6
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Substituting equation (2.2.27) into equation (2.2.26) gives

/
N, i ® |
—llp . o ( Cpm Aa);-‘g". 1-6, 3 1, exp (-;Q}nz wie )]
m T J
8

4™ ry n=l n
(2.2.28)

A material balance an the transfer up to time @ is

/
(¢, = T,) §,.ﬂr§ - N, (2.2.29)

‘in.whiohCA is the average concentration throughout the sphere at @,
Substitution of equation (2.2,28) into equation (2.2.29) and rear-

ransement give

: /
3N ® :
CAo ks 8&_ & A 2 l=-6 2 1 exp -Qng'n QEQ )
C, =2C 2nel 2
Ao T “As 41rr‘2 ( Copm CAs) ¥e R s
(242430)

The results similar to that obtained by Becker, Hall, and Hustrulid(ll)
(13)

are in terms of error functions and associated functions as follows:

; — ®r  (e041) rer
¢, = Cao* X0 0561 ) Ysies . - e1Po"
A —— Ag Ao’/ n=0
fi 2/ e
%_.] (2.2.31)
2/®e
and
‘a0 %% - 6)2B L +2 F ierfonrs}--B Do (2.2.32)
CAo' CAa r2 4 '739 r2
B L _ s
where £
ate = g f ety

/n O
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in which n'is any "dummy" variable, used merely to describe the

function to be integrated,

i :
erfc g = 2 [ exp(-n 2) dn = le-erf
/n &
ierfc & = / erfen dn
: £ V'
Let
X = 8 Vpe
v .
where V is the volume =~ to -~ surface ratioc. For the sbhere, Yo
S : S
Then
X = 5/p0 = 3/De
v r
s
Therefore, equation (2,2.32) becomes
- Tl x[;_ + 23 derfo in | =1 X
i - n=1 X 3
CaomCas /n

For X *»0 , we obtain, from equation {2.2.34)

Cm Gy s paig
C, =C s
Ao "As
where erf(0) = 0
and vt Lo}y 3312D
Let
T anelart oo 8uk
c A da
®a0” Cas Cpo= Cas
Then C = 1 =2 X as X = 0

Vu

T
g

- = loexp (~£ 2) =& erfot

(2,2,34%)

(2.2434)

(242435)

(2.2.36)
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or

] w,C msg at° X=0 (2.2437)
X v
(4)

This result gives a first approximation to a general solution,
valid in the neighborhood of © = 0, of the nonsteady-state differ—
ential diffusion equatioh. Note that the prescribed form of the

solution for ©.) 0 is
] = £(X) . (2.2.38)

To obtain & more accurate approximation, we assume thet f£(X) can
be represented, in the neighborhood of X=0, as a power series in

X; we find, (Maclaurin's series):

£(7) = £(0) +'f'(o)x+f"goz X2 $~mw~t £ LOLT
: ‘ 2'! n!

(2.2,.39)

From equation (2.2.36), we obtain
£f(0) = 1 (2.2440)
and £'(0) = -2 (2.2.41)

m
The higher derivatives, f"(0), etc., are dependent on solid

(4)

shape However, since the series should converge rapidly
near X=0, terms higher than f"(0) will be neglected, giving for
our final approximation

C = 1-2%x+z£"(0) X° (2.2.42)
/u 21 -
Equation (2.2.42) was derived for a solid of constant dimensions,

For such a solid, C is exactly equal to ﬁ; where

=1

- (f=m )/ (m, -m ) (2.2.43)
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AHowever, in most natural and synthetic polymers, moisture adds
its volume (as liquid water) to the volume of the solid. Since
it is not practicable to account for the resulting swelling, it
mugt be assumed that C = M in these cases also; The

resulting error should not be serious so long as(mo— ms)is

reagonably small compared with the specific volume of the solid

(in cm3/g).(4). Then equation (2.2.42) becomes

o= 1-23%+£"0) %° (2.2.44)
o 2}

Tenation (2.2.44) was derived for a drying partidle.
Let

M o= (m=m)/ (m =mn) : (242.45)

wher m = average moisture content of a statistical population of

/—‘.\\
/‘é"p@ 189

el o

_drying particles.

Therefore, equation (2.2.44) becomes

‘M =1 -2 +f"éo2 b
/n !

Substitution of M = ( m - ms) g m = ms) and X = S/I®

into equation (2.2.45) gives

- , 2
m - m
8 = 1-2.500 + f"go)(g Do (2.2.47)
m = m R 2} .V)
(o] 8

Upon rearrangement, equation (2.2,46) becomes

- - 2
s e Sy 0248
2.5/26 £ z(g)(%)me (2.2.48)

/n ¥V




mflt,iplying equation (2.2.46) by (mo- m Y Je s we get

% & 2 e
m=m -g.§/mm;mg-f(mfgmmngVG(&aw)
v B L, 2 .

/9 v/'ﬂ'
. : 2 :
Since \sl = ;a- s Iﬂsrs (242.50)

and the factor 4 nrz /8 dss shape factor commonly known as the

sphericity and denoted by ¢ , then equation (2.2.49) becomes

= ‘s ¥ _ : (2.2.51)

l 5 - o e
s -

3

Substituting equation (2.2.50) into equation (2.2,48) gives

: ” 2 -
m - m _ 255 v (mo- ms-)~'- fﬂgoz _}__)@(mo- ms) /0

/o /n - Fgy Tsy
(2.2.52)
For convenience, equation (2.2.51) is reduced to
k = k -b e (2.2.53)
This equation is sinilar to that obtained by Ecker; (4) .
where
b e _ (2.2.54)
Yo
ko BAE.'. .-1 ./£ ( mo- ms) (2'2.55)
/n rs‘i’
5 32X ) (2.2.56)
and e el ; (mem 2:2.56
-?‘-l (rs ¥ o

It is shown that equation (2.2,52) is a straight line equation with
intercept ko and slope «=.b o

g J "

The experiment is to be performed to evaluate f (0) from

experimental values of m. my, and © .
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