CHAPTER III

THE HAHN BANACH THEOREM AND ITS APPLICATION

In this chapter, we study about the Hahn Banach Theorem and
“its corollaries, and then, discuss its applications which will be
useful in the next chapters.
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Some materials are drawn from references (3], [50], [32J.

3,1 The Hahn Banach Theorem

3.1.1 Theorem. (The Hahn Banach théorem in analytic form)
Suppose

(1) M is a subspace of a real vector space X,

($13) 0 3 }{—~——9’W2 satisfies

p(x+y) ¢ p(x)+p(y) and p(tx) = tp(x) if x€ X,

vEX t O, :

(iii) £ : M—s TR is linear and f(x) 4 p(x) on M. Then there
exists a linear functional

A .t X—> R such that A x = £f(x) for x€ M and

-p(x) £ Ax ¢ p(x) for x € X.

Proof : We assume that M # X. Let xoe X, x04 M, and define

M'l ={x+txozx€M,tCTR% o

It is clear that M, is a vector space, -Since

1

£(x)+ f(Y)‘ = f(x+y) £ p(x+y) ¢ p(x;xo) ¥ p(xofy) :



we have
(1) f(x) ép(x-xo) < p(y+xo) «f{y) for 8ll &; ¥ in M.

Let ¢ = sup {f(x) -p(x—xb)i. Then & is a real number
x € M !

and f£(x) -p(x-xo) < . £ p(y+xo)-f(y). Therefore
(2) f(x) - @ £ p,(x-xo) for all x € M and

(3) £(y) + o¢ £ p(y=-xy) for all y &€ M.

Define f,] on r41 by

(W) f,](x-~+ txo) = £(x) + ta " for all x € M, e R »

Then f’l = f on M, and f1 is linear on M,]. Take t > O, replace x
by t”x in (2), replace y by t“’ly in (3), and multiply the resulting

inequalities by t. TFinally we have
(5) £(x) -t £ plx=txy), fy) + tx £ p(x+txo)

Combine (&), (5) we have f,l £ p on M.

' ' : 7 z /
Let Q/ be the collection of all ordered pairs (M , £ ), where I

is a subspace of X that contains I and f is a linear functlonal on M/.
that extends f and satlsfles £ /L p.on M . Par‘bmally ordered J by
declaring (M ,f )y & (M ,f ) to mean that M & M and f” = f/ on M/.
Let <1 be a tollaly ordered subcollection of J Let 1‘-"1‘9k 59 the union
of all those M/ for which (.M ,f Y& L2, and let £" be defined by
f*_(x) = f/(x) for all x & M/ and whenever (‘Ml ,f/) e 2 . It is now
easy to check that £ is well-defined on u', that £* is linear, and

* o % .
that £ £ p. Note that M is a vector subspace of X containing M.

&
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Thus (M ,f )€ is upper bound of ) ., 'By Zohn's lemma,qj has
. ~) s
a maximal element (M,-/L). If M is a proper subset of X, then
the first part of the proof would give a further extension of-/L,
‘ ~
and this would contradict to the maximality of L. Thus M = X.
Finaily'the inequality A 4Z p implies that
-p(=x) & -\A_(-x) = _A»(x) for all x ¢° X

This completes the proof.

3¢1,2 Definition. A set M of a vector space X is called a linear .

variety if M = x0+.MO where X is a fixed vector and Mo is a

subspace of X,

3¢143 Definition. A set H of a vector space X is called a

-homogeneous hyperplane if it is a maximal proper vector subspace

of X.

3.1.4 Definition. A set H of a vector space X is called a

hyperplane if it is a translation of a homogeneous hyperplane,

3¢7.5 Theoremp (Geometric Forms of the Haﬁn'Banacﬁ Theorem)

(i) Let X be a real topoiogical vector space, Aan open
convex set in X, M is a linear variety in X not meeting A. Then
there exists a qlosed hyperplane H in X thaf contains M and that
does not meet A, |

(ii) Let A be an open convex set in X, L a vector'subspéce
of X not‘meefingNA. Then there exists a continuous linear |
functional -/ on X such that _A. (L) = 0, _/_ (a) > 0,

Egggf :'(i) By translation, we may assume that M is'a vecto; subspace
of ¥+ Yot X, be a point in A and ¢ = A - X, and p =/AAC. Since O € ¢

and C is open, C is a neighborhood of 0., If x € Cy then by continuity
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of the mapping ™ F—> ({ X, 3 5‘) 0 such that o x € C whenever

o E (1-5, 1+5 ). Hence there exists t > 1 such that tx € C, 1.€.,

x & 4_C. Sop(x):infzt>0:tx6 C%C']. By 2.3.4,
t ,
p(x) =/6cc(x) £ 1 implies x ¢ C. So we have p(x) £ 1 if and only if

x &€ Ce

4

Since MN A =@ , p(y - xo)f}, 1 for y € M. Define the linear

functional f on M, = M + R x, by

f(y - &£ x

o) = X/ for all y & M.

If > 0, we then have

]

£y - & x4) X & (KD (.o%-xo) = p(y = & x5);5

and if K £ O

i

£y - oxg) =0 £ 0 £ p(y - Kxple

Thué f £ p at all points of.M,l, By 3.1.1, £ can be extended into

s linear functional. /A-on X such that ol x £ p(x) for all x € X.
Take ~ V = € {1 (~C),

If x& V, then x € C and x € -C, hence p(x) £ 1 and p(-x) £ 1.
Thus ._A,x( 1 and - Ax = A(-x) £ p(-x) { 1. So we have

‘J\_x] g [ T - PO A is bounded. By 2.2.5, /A is continuous.
Moreover H =\/VJ(J\.) is a closed hyperplane in X. Obviously M C' He

Finally, N z=0 for zinH and so

O=./Lz __/\.(z-_-xo)+./\_xo

Lt}

Nz - xp) + £(x))

Nz - XO)A -1 ¢ plz-x5) -1
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showing that p(z - xo) 21 for z € H which implies that z - XO‘?L’ G

L

hence z¥ A. So we have H 1A = d.

(ii) We apply (i) with L in place of M., In this case H is

a homogeneous hyperplane and, being closed.

Since H D L, so0 A(@) =0. since H f) A = @ and since A
is convex, by 2.1.9 -/ (A) must be an interval not containg o.
By changing the sign of A, if necessary, we can therefbre arrange -

that -A(a) > o.

3.‘1.6 Corollary. Let X be a real topological vector space, A an open
convex set in X, B a convex set in X, and suppose A B = @, Then
there exists a non-zero continuous linear functional A on ¥ and

a real number A such that —-—A-(‘A) <60, A(B)> & . (These |

inequalities may be reversed by changing A into --A ).

Proof : The set C = A ~ B is open and convex and does not contain O
Hence, by 3.1.5, there exists a non-zero continuous linear functional
A onx such that A (e)c o for AVESIGAEIC. S0 -2 Y & A(v)

for all - a € A, b €uBL

If X = supf( ._A.a:ae A},thenO( is finite, and

M) ¢ ¢ < A(b) for all a € 4, b€ B,
Claim that -A.(a)< ¢ for all a € A. To do this, it is enough to
prove that A (1) is an open interval.

Suppose _A a =0 for all a € A, Let Xq be a fixed element

in Ay A - x, is a neighborhood of O,

0
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By 2.1.16, for any x € X, there exists a positive integer n such

that xe€ n(A - XO). S50 there éxists a € A such that x = na - nXys {
Axanha-n —/on = 0 which contradicts to the fact that _A is
non-zero., Thus there exists a point ag€ A such that JL&O £ 0.

Let /3' be any element in —-/L(A), then there exists an a € A such that

p = Aa,

' Consider A - a which is a convex neighborhood of O. By 2.1.13,

there exists a convex balanced neighborhood U of O such that UC A - a.

Since A is non-zero, there exists a, € U such that JLa1 £ O.
Since a, e U implies -2, € U , 80 We may assume that A a, > .O‘.
Since U is convex, by 2.2.3 J_ (U) is convex. So /L (y) is an
open interval. Since -—A.a,] e M) and - ,f\_a,] e - (u), the open
interval (-,A.a,’, JLa,]) c A c A (a-a).

Put o= LA 8, So we have
L (=5,8) ST
i.c., (Na -5 " _A_a v2.) L (A,

Thus every point of J\.(A) is an interior point of ,-/L (A). That is

./\_ (A) is an open interval., This completes the proof.

§

3e1e7 Corollary. Let X be a real locally convex topological vector
space, A a compact convex set in X, B a closed convex set in X, and
suppose that Al B = #, Then there exists a continuous linear

functional A and a real number X such that ’,A.. (A £ D¢ - A (B) > & 4
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Proof s By 2.1.7. Thore exists a convex neighborhood U of O in X
such that (A +U) (1 (B + U) e @. Applying 3.1.6 to the set A + U
and B + U , we deduc_é the existence of a non-zero continuous linear

functional on X and a real number X such that

ANou+oca , LE+D>a .

Since B + Uand A + U are open convex sets. JL(A+I_J) and A (B+U)
are open intérvals. Since —A'(f'.'i-U) N A(B+y) = @, claim that

o %_A(Bﬂx). Suppose X eﬂ(BHI). There exists an open interval
.N s‘uch that NCJ‘L(BJrU). And since for any 5> Ol
(ol =5, o« +5MAAD)# @. So we have N N A(a+U) £ @. This implies
that (a+10) N A (B+U) # @, Now we have %_/L(B+U). Thus
A (a+0) Lo s A (B+U) >/o¢ o Hence A () Lo 3 AB) > o o

3.8 Corollafl. If X is a real topological vector-space, then points

of X erec separtated by the continuous linear functionals on X,

Proof : Suppose X, and'x2 are points in X and X, F'e Xy e Take P
A = )Zx,"g , B = { x2§ . Then A is compact convex and B is closed

0 g P * ¢ /
convex. By 3.1.7, there exists A e X and a real number o such

that A Xy £ a.(AxZ o Thus ,.A—x,l # ./\xz .

3149 Theorem. Suppose M is a subspace of a locally convex topological
vector space X and Xy € Xo' If Xq is not in ¥ (eclousure of M), then

& A
there exists _A € X such that _/on =1 but -ALx =0 for every

X £ Ma
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Proef : Take A = %XO% and B =1, By 3.1.8, there exists _/Le}{*
such that _/A X, and _A (M) are disjoint. Thus A an is a proper
subspace of scalar field. This forces JL(M) = {Oz; and JLxO # 0.
The d~es‘ired functional is obtaiped by deviding _A_ by ‘_./on.

361610 Theérem. If £ is a continuous linear function&l on a subsgpace

’ sk

M of a locally convex topological vector spabe X, there exiéts N e x

such that . on M.

Proof : Aséume, without loss of .g‘enerality, that f is not identically
,\-O on M. Put MO= {x& M: £(x) =.O.)5 and pick xo‘.e M such .that
f(xo) = 1, B8ince f is continuous, %5 ié not in the M~closure of MO"
there exists a néighborhood v of‘xo in X such that (VNM) N My = 2 ,
hence V My = #. Thus x is mot in ﬁo.’ By 3.1.9, there exists

A€ X such that J\_xo =1 anda A =0 on Mqe

If x€ M, then x - ‘f(x)xoe Mos since f(xo) = 1. Hence
Ax - £(x) = A x - £x) J\_xo = SMrx - f(x)xo) = 0. Thus

A =Ff on M.

3,2 Weak Topology

. 2.2o1 Definition. Let ¥ 1 and ‘52 be two topclogies on a set X, and
assume ‘Z_,' & ‘(2 that is, every ‘C,r- open set is also ZZ— open. ‘
Then we say that ¥, is weaker than T 5 1 or that ZZ‘ is stronger

than ¥ 1

3,2.,2 Definition. Let X be a set and % a nonempty family of mappings

gl 3 AR Yf where cach 'Yf is a topological space,
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Let Z be the collection of all unions of finite ‘intersection
of set f*’l(V), with f & \‘kand V be open in Y., i.e.y, G € Z if and
only if for any x & Q.there are f1, f2""' fhe jc and V'I' V2""'Vn

which are open in Y, 4, Y. se«e,Y.  such that et N W MY -ean
S AR R Iy o Arg b g RNy
f:‘ (Vn) C G. Then Z is a topology on X, and it is in faot the
4. /
weakest topology on ¥ that makes every f & je continuous : If I is

, /
any other topology with that property, then ¢ C { . This I is called

the weak topology on X induced by Je, or, more suceinctly, the

52 =topology of X.
7

3+.243 Definitior. Let X be. a vector space and X a vector space of‘
i / : y
linear functionalson X. X 'separates points of X if for any distinct

points X 90 X

4 A !
> in X, there exists f¢& X such that f(x,l) #£ f(xz).

3.2.4 Lemma. Suppose ./\.1, ‘A’Z""’J"n and A are ilinear

functionals on a vector space X. TLet

N —_‘-{ x @ ~A-,]x P —-A-Zx(.

H

soe =_./Lnx = O%.

The following three properties are then equivalent :

(%) ‘There are scalars K 8 S5y o(n' such that

1’ 2’

—\A. = “1-A—1+“2~/L2+oaa+a_n_4n.
(ii) There exists ¥ < »0 such that

.’Axléf'max lJ‘.ix{ for all x& X

14 i 4<n

(iii) .A_x = O for every x € N
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Proof : It is clear that (i) implies (ii) and (ii) implies. (iii).

Assume (iii) holds. TLet |K be the scalar field. Define

s Xeesn K* by ¢
rﬂ)(x) = ( -.A_,lX, _/\.2}(,..., AnX)

1l 4 //r(x) = (Ir(x,.) then (iii) implies Ax = -A.x/ = Since/ﬂl is a
linear mapping, ?’J (X) is a vector subspace of [K % Dpefine F on /ﬁ/(x)
by F(T(x)) = A x. Ve can see that T is well-—defined and linear on
/n) (X)._ Sinceﬂ} (‘X) has finite dimension, I is continuous linear

functional on T ). By 3.7.10, F can be extended to [K ",

Let . e, = (1, 0, 0,000y 0)
92 = (O, 1, O'ooo, O)
.en = (0, O, Oyeee, 1)

Then 2% 32, cees® . is the standard basis of lK n.

Put F (ej) i ogj
For any (u;]', u2,$-os un) S “(n

b((u,l Wogees ,un))

we have

f

F(u €4+ Uyl teesy + U € )

i

x1u1+ o(2u2+...f 0<niin .
| =
thus Ax = PV (x)) = WA x A sxeeeig A x))e 2 gy x
} ‘ * _ i=1 .

which is (i).
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— : - e
3.2+5 Theorem. Suppose X is a vector space and X is a separating
; : ’ b
vector space of linear functionals on X. Then the X -topology 4

; b4
makes X into a locally convex space whose dual space is X .

! : / : 1A
Proof : For any - € X , if we define p(x) = LJL x‘ then we can

see that those p form a separating family of seminorms on Xo Further
we can see that the topology generated by those'p is of course the

/ . ?
X -topology. By 2.3.7, X is locally convex with respect to this

. topology.

| / : R .
Obviously, by the definition of X -topclogy X ¢ X .

'

. * s
It remains to show that X € X . If A e&x s there exists a

neighborhood V of O in X such that fvﬂ_x ]( 1 for all x in V. Since

, .
the sets of type °

V = {x :(_A.ix }( Eri ,‘?fi>- 0 i= 1925000y n%’ where
4 ‘ : ’
_A_j.G X form a local base of X Wiﬁh respect to X ~topology.

So } J&ixl & Ty s 1 4l s 8yena, impiies (ﬂA_xl Z T

»

Let N = § X8 _Jqu =.,sz = giee =.JLnx = Og .

X
A &

Fix x € N, given € > O, we have =0 (_“ri & 2 152500048

hence l-A.(%)' L 15 $atn, {JQ_x{< € « Since Ei is arbitrary,

LJLX l:‘O, that is Ax=0 for all x in N. By 3.2.4, there exists

scalars o{,,l, 0(2,..., “n such that " g 0(1 —/L1+...+ O('n“ﬂ'n o

v 7/
Since ./Li.é X and X is a vector space, Nex . This completes

the proof.,
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B:246 Defiﬁition. ‘Suppose X is a topological vector space (with

*
\r

topology Z ) whose dual X* separates points on X. The X ~-topology

of X is called ‘the weak topology of X.

We shall let X denote X topologized by this weak topology Z&.

i *
3.20,5 implies that Xw is a locally convex space whose dual is also X .

Since every _A € X* is Z -continuous and since Zw is the :
weakest topology on X with that property, we have Zw € T. 1In this
contei:t, the given topology [ will often be called th’e original

topo;ggz of Xo

3.2.7 Definition. A sequence {xn-% in X is said to converge to 0
originally if for any origiﬁal neighborhood V of O, there exists N

such that for all n > N, xne V.

A sequence {xn% in X is said to converge to O weakly if for

any weakly neighborhood V of O,there exists N such that for all n > N,

'an Ve

3.2.8 Remark. A sequence { x_nl( weakly converges to O if and only if

. - | %
__/an converges to O for every A € X .
Proof : Since every weak neighborhood of O contains ‘a neighborhood
of the form.
V = { x:,./\,x‘.(g%,

Since gxn% weakly converges to O, given ¢ > O there exists N such

that xn@ V for all n » N, 1.0+, t.A_xn' (¢ for all n>» N. That is

{.J\.xn} converges to O, Conversely, if Jan converges to O for



L

i " ¢ & ‘ :
every A e x . Consider akﬂ, ../12,...,-11.-n and r1, rag..., rn.

Since.Jiixn converge to O for i = 1,2,.44s4 m, there exists Ni such

that lAixn f ¢ r; for all ny Ny

Take N = max{N,',Na,...,Nm%.

So for all n>,N, xné V = {x :(_/Lix[4' rig « Thus {xn% weakly
converges to O,

3¢2.9 Theorem. Suppose E is a convex subset of a locally convex
space X. Then the weak closure Ew of £ is equal to itfs original «

closure &,

Proof : ﬁw is weakly closed, hence originally closed, so that

B CZEW. To obtain the opposite inclﬁsion, choose x, € X, xoc% E.
3.1.7 shows that there exists /A & X* and a real number

such that

¢

.A-xdg_o( and..A-x>dc for all x & E.

The set %:x : Ax ¢ u.f is therefore a weak neighborhood of Xq

that does not intersect E. Thus x. is not in Ew. This proves

0
2. ¢C 8.
w .

3:2.10 befinition. Let X be a topological vector space whose dual

5 ‘
is X « For a fixed x in X define fx by

k3

£ (A) = Ax for a11 A e x",

A
we can see that fx is a linear functional on X . Let X be the

collection of all linear functionals:on X, If Nﬂ,q and .JLZ Belong

LS
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+s X' gna ~A41 £ _A.Z'; there exists x € X such that gAﬁx £ _A_ax,

A\
i.e., there exists f, @ X such that fx(-JL1) # fx(-JLZ). Thus

N * A ' .
X separates points of X . By 3.2.5, X can define a locally convex

* .k
vector topology for X . This topology is called the weak topology

£
of X =

3.3 Application on the Hahn Banach Theorem

Let B be aABanadh space and B* its dual. The elements of B are
denoted by X,¥se00. and those ofﬁB* by fy84000s The value of the

" functienal f at x  is prtFEén N Vhefern (£,%). ‘'The weak =

topology in B*!'is the weak tdpology induced by the elements of B

as functionals.

s N *
3031 Definition. A set F of B is called regularly convex if to

each QD#.E‘there exists an element X4 such that

(fo, xo) > sup (f, x

)
feF i

3¢3.2 Remark., (i) If F is a regularly convex set in B , F is
convex and weakﬁ-closed. |
(ii) If F is convex and weak - compact set in B*,

F is regularly convex,

Proof : (i) For each f'% F. By regularity of F, there exists

xo & B such that

& XO) > sup (g, XO)"
: Be I
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Thus, for any g, .h in F and a real number t such that 0 £ t £ 1,
(tg+(1-t)h,x5) = t(gyx0)+(1=) (hyx)) L E(£, %) +(1=8) (£,x5)=(£,x,),
- A f£¢tg + ('f-t)h for any g, h in 7,

So £ 7'! tF +(1-t)F, That is, F is convex.
; * ; e -
Next, we will show that F is w -closed. For any fOC-Z ¥ 5 by

regularity of F, there exists x. such that

0

(foi Xo) > SuP (f’ xo) =
/e

i
Y
.

]

- Let V = §f€ B3 ‘ (f,xo)( _— . . '(fo, xo)- a ;‘. Then

V is a weak*~neighborhood of O 3 hence V +'fo is a
weak*nneigthrhood of fo.‘
For cach £ & V, f*:o? Vety {(f, 2| <&
"E <(f, x0)< z k]
a'(f07xo) < (f!xo) < (foixo)—a ?
‘ i.eo, (f-f'fo, Xo) > 8. o

- 'So we have a weak -neighborhood V+fy of £, such that

c : o x
‘V+fo C F . That is F is weak -open.

3 3 * - : * .
(ii) Since B 1is a Banach space, B is locally convex,

: * ‘
For éa.ny_i‘O%~ Ts {(fO% is closed and convex in B . By 3.2.9 ,

< : % k3
{fo}. is weak*-closed. Since F is convex and weak -compact
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by 3.1.7., there exists xOEE B and a real number X such that
(fo, Xy) > X
5 xo) A for all f & T.

Phat is (., =) > sup. (2, 2.5 .
0] 0 fe F (6]

Thus T is regularly convex.

Daded Theor_ﬂ. If I and G are regularly convex disjoint sets
ES

of B* and if one of them is weak ~compact then there exists

an element X4 and a real number K  such that

(£, x,)A8 /0 ictor all £ in T

(& xo) < K for all ‘g in G .

Proof : ©Since T and G are regularly convex, by 3.3%.2 7 and G
% *
are weak ~closed convex scts, Assume & to be weak -compact.,
K
By 3.2.5, B is a locally convex topological vector space.

By 3.1.7, there exists Xq & 1B, a real number ¢ such that

“e

(fq %) 1> for all | £in T

(g,xo) { ¢ -for all g in G .

. 3.3.4 Definition. 4 set X in B is called a cone if x¢ X

implies Ax €1 for every real, non-negative number A. .

343.5 Remark, (i) A convex closed cone X determines a cone 7
in B by
(1) F:{f:(f,x)) 0 forallxin?{f.

(ii) A cone T is regularly convex,
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3e3.6 Romark. Let F be a cone determined by a closed convex
cone X, i.€ey F = §f : (£4x) 2 0O for all x in X%.

X € X if and only if (f,x) » O for all f in F.

Proof : If x € X, it is obvious that (f,x) 7 O for all £

ia F. Conversely, we prove by contrapositive, For eagh X5

which is not in X, {XO% is convex and compact. And X is closed

convex set. By 3.1.7, there exists f. & B* and a real number g

0
such that

.

(fo, xo) L & 3
(fo, x) > K for all x in X,

Since O € X, X must be negative. Furthermore (fo,x) > 0
for every x € X, since otherwise (fo, A x) would be less than
X for A sufficiently large. Hence fo must belong to F, and

for this £y, the value (fo,xo) is negative,

3¢3.7 Theorem. Let G be a weak*-compact regularly convex

set in.B* and X a closed convex cone in B with the following
properties : to each x € X there exists a 8 € G for which
(84%x) >» 0, then there exists a 8y € G such that for all x € X,

(goix) '7/ o°

Ik :
Proof : Let F be the cone in B determined by X according to (1).
This theorem states simply that F O G # B. Assume by
contradiction that F and ¢ have no point in common. Then by

3.3.3, there exists Xq and a real number (X such that (f,xo) b
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for all £ in ¥, (g,xo) { ¢ for all g in G. Since F

contains O, the number O( must be negative. Furthermore

(f,xo) > 0 for all f in 'y since otherwise for some large
. (Af,xo) would be less than & ., By 3.3.6,_3{0 must belong
to X, and since (g,xo) (o £ O for all g in G, the
qssumption of this theorem is contradicted., Thus F and G must

intersect. This completes the proof.
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