CHAPTER II

THREE PEARLS OF BANACH SPACE TECHNIQUES

1. Banch Spaces

- 1.1 Definition. A complex vector space X is said to be a normed linear space if to each x C X there is a nonnegative real number | x | , called the norm of x, such that
 - (a) $\|x + y\| \le \|x\| + \|y\|$ for all x and $y \in X$,
 - (b) $\|\alpha x\| = |\alpha| \|x\|$ if $x \in X$ and α is a complex number,
 - (c) ||x|| = 0 implies x = 0.
- 1.2 Theorem. Let X be a normed linear space. Then d(x, y) = ||x y|| is a metric on X.

Proof. Let x, y, z be any elements in X. d(x, y) = ||x - y|| is always nonnegative real number. By (a) in Definition 1.1, we have

$$\|x-z\| \leq \|x-y\| + \|y-z\|$$

so that $d(x, z) \leqslant d(x, y) + d(y, z)$.

By taking 0 = 0 in (b) in Definition 1.1, we have

x = 0 implies ||x|| = 0

and (c) in Definition 1.1, show that

x = y if and only if d(x, y) = 0.

Finally, by taking ∞ = -1 in (b) in Definition 1.1, we have

so that d(x, y) = d(y, x). This completes the proof.

1.3 <u>Definition</u>. A <u>Banach</u> space is a normed linear space which is complete in the metric defined by its norm.

1.4 Example (a).

For any fixed n, the set R of all n-tuples

$$x = (x_1, x_2, ..., x_n),$$

where x_1 , x_2 ,..., x_n are real numbers, is a real Banach space if additive and scalar multiplication are defined by

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

where $x = (x_1, x_2, \dots, x_n)$, $y = (y_1, y_2, \dots, y_n)$; for any x and $y \in \mathbb{R}^n$,

$$\alpha x = (\alpha x_1, \alpha x_2, \dots, \alpha x_n)$$

where $x = (x_1, x_2, ..., x_n)$; for any $x \in \mathbb{R}^n$ and any $\alpha \in \mathbb{R}$,

and if
$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$
.

Proof. Since R, under these operations, is clearly a real normed linear space with the norm | . | , we only need to show completeness.

Let $\{x^m\}$ be any Cauchy sequence in TR^n where x^j is of the form $(x_1^j, x_2^j, \ldots, x_n^j)$, $x_i^j \in TR$ for $i = 1, 2, \ldots, n$, $j \in \mathbb{Z}$ (>0). For any $\{E\}$ 0, there exists $n \in \mathbb{Z}$ >0) such that for all $m_1 \geqslant n_0$, $m_2 \geqslant n_0$, $\|x^1 - x^2\| \leqslant E$. For each $i = 1, 2, \ldots, n$, we have

$$\begin{vmatrix} x_{i}^{m_{1}} - x_{i}^{m_{2}} \end{vmatrix} = \sqrt{(x_{i}^{m_{1}} - x_{i}^{m_{2}})^{2}} \langle \sqrt{\sum_{i=1}^{m} (x_{i}^{m_{2}} - x_{i}^{m_{2}})^{2}} \rangle \langle \sqrt{\sum_{i=1}^{m} (x_{i}^{m_{2}} - x_{i}^{m_{2$$

for all $m_1 > n_0$, $m_2 > n_0$. This shows that, for i = 1, 2, ..., n, $\left\{x_i^m\right\}$ is a Cauchy sequence in \mathbb{R} , which is complete. There exists $x_i \in \mathbb{R}$ such that $x_i^m \to x_i$ as $m \to \infty$ for i = 1, 2, ..., n. Let $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$. We claim that $x_i^m \to x_i$ as $m \to \infty$. It follows from $x_i^m \to x_i$ as $m \to \infty$, for i = 1, 2, ..., n, that there exists $n_0^i \in \mathbb{Z}$. 0 such that for any $m > n_0^i$, $\left|x_i^m - x_i\right| < \frac{\mathcal{E}}{\sqrt{n}}$.

Let $n^* = \max \{ n_0^i | i = 1, 2, ..., n \}$.

For any m > n*, we have

$$\|\mathbf{x}^{m} - \mathbf{x}\| = \sqrt{\frac{n}{\Sigma}(\mathbf{x}^{m} - \mathbf{x}_{i})^{2}} < \sqrt{\frac{n}{\Sigma} \frac{\varepsilon^{2}}{i=1}} = \varepsilon.$$

This completes the proof.

1.5 Example (b).

For any fixed n, the set (x_1, x_2, \dots, x_n) ,

where x_1, x_2, \dots, x_n are complex numbers, is a Banach space if addition and scalar multiplication are defined componentwise, as usual, and if

$$\|\mathbf{x}\| = \sqrt{\sum_{i=1}^{n} |\mathbf{x}_i|^2}$$

Proof. The proof follows the same pattern as in proof of (a).

2. Bounded Linear Transformation

2.1 Definition. A transformation T from a normed linear space X into a normed linear space Y is called linear if

$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$$

for any x, y \in X and any α , $\beta \in \mathbb{C}$.

2.2 Theorem . Let X and Y be normed linear spaces. The set \mathcal{G} (X, Y) of all linear transformations of X into Y is a complex vector space, under the operations defined in the proof.

Proof. For any f, g \in $\mathcal{L}(X, Y)$, any $x \in X$ and any $\infty \in \mathbb{C}$, we define

$$(f + g)(x) = f(x) + g(x),$$
$$(\alpha f)(x) = \alpha f(x).$$

For any f, $g \in \mathcal{L}(X, Y)$, any $x, y \in X$ and any α, λ , $\beta \in \mathbb{C}$, we have

$$(f + g)(\propto x + \beta y) = f(\propto x + \beta y) + g(\propto x + \beta y)$$

$$= \propto f(x) + \beta f(y) + \propto g(x) + \beta g(y)$$

$$= \propto (f + g)(x) + \beta(f + g)(y)$$

so that $f + g \in O(X, Y)$ and

$$(\lambda f)(\alpha x + \beta y) = \lambda (f(\alpha x + \beta y))$$

$$= \lambda (\alpha f(x) + \beta f(y))$$

$$= \alpha (\lambda f)(x) + \beta(\lambda f)(y)$$

so that $\lambda f \in \mathcal{L}(X,Y)$. This completes the proof.

2.3 <u>Definition</u>. For any T in $\mathcal{L}(X,Y)$, T is called a <u>bounded</u>

<u>linear transformation</u> if there is a nonnegative real A such that

that $||Tx|| \leq A ||x||$ for all $x \in X$.

The smallest such A is denoted by ||T||, called the <u>norm of</u> \underline{T} ; in particular, $||Tx|| \le ||T|| ||x||$ for all $x \in X$.

2.4 Theorem. The set $B \mathcal{O}(X,Y)$ of all bounded linear transformations of X into Y is a complex vector subspace of the complex vector space $\mathcal{O}(X,Y)$.

Proof. By definition of B $\mathcal{L}(X,Y)$ and $\mathcal{L}(X,Y)$, we see that B $\mathcal{L}(X,Y)$ is a subset of $\mathcal{L}(X,Y)$. Consider for any $f,g\in B\mathcal{L}(X,Y)$, any $x\in X$, we have

where $A_1 = (\|f\| + \|g\|) \in \mathbb{R}(>0)$, so that $f + g \in BO(X,Y)$ and for any $Q \in \mathbb{C}$,

 $\|(\alpha f)(x)\| = \|\alpha(f(x))\| = \|\alpha\|\|f(x)\| \le \|\alpha\|\|f\|\|x\|$ = $A_2\|x\|$,

where $A_2 = |\alpha| ||f|| \in \mathbb{R}(\)$ 0), so that $\alpha f \in Bdb(X,Y)$. Then Bdb(X,Y) is closed under vector addition and scalar multiplication which are defined in the complex vector space dbdb(X,Y). Hence dbdb(X,Y) is a complex vector subspace of complex vector space dbdb(X,Y). The proof is complete.

2.5 Theorem. Let T be any element in B $\mathcal{S}(X, Y)$; that is, there is a nonnegative real A such that $||T(x)|| \le A ||x||$ for all $x \in X$. The following formulations of ||T|| are equivalent:

(1) || T || = Inf $\{A \in \mathbb{R}(>0) \mid || T(x) || \leq A || x || \text{ for all } x \in X \}$.

(2) $||T|| = \sup \left\{ \frac{||T(x)||}{||x||} | x \in X \setminus \{0\} \right\}.$

(3) $||T|| = \sup \{ ||T(x)|| | x \in X, ||x|| = 1 \}.$

Proof. (1) implies (2).

From equation (1), $||T|| > \frac{||T(x)||}{||x||}$ for $x \in X \setminus \{0\}$ so that $||T|| \ge \sup \left\{ \frac{||T(x)||}{||x||} \mid x \in X \setminus \{0\} \right\}$. It remains to show that $||T|| \le \sup \left\{ \frac{||T(x)||}{||x||} \mid x \in X \setminus \{0\} \right\}$. If ||T|| = 0 then $||T|| \le \sup \left\{ \frac{||T(x)||}{||x||} \mid x \in X \setminus \{0\} \right\}$. If ||T|| = 0 then $||T|| \ge \sup \left\{ \frac{||T(x)||}{||x||} \mid x \in X \setminus \{0\} \right\}$. If ||T|| > 0 then, for any ||T(x)|| > 0 such that ||T(x)|| > 0 (||T|| > 0), since ||T|| is the infimum of ||T|| > 0 such that $||T(x)|| \le A \mid ||x||$, there is a ||T|| > 0 is that ||T|| > 0. Then we have ||T|| > 0, so that ||T|| > 0. Then we have ||T|| > 0, so that ||T|| > 0 and ||T|| > 0. This completes the proof of (1) implies (2).

Next, we want to show that equations (2) and (3) are equivalent. This follows, since for any $y \in X \setminus \{0\}$, $y = \alpha x$ for some $\alpha \in \mathbb{C}$ and for some $x \in X$ such that $\|x\| = 1$, so that the following equalities hold:

$$\sup_{\mathbf{y} \in \mathbf{X}} \frac{||\mathbf{T}(\mathbf{y})||}{||\mathbf{y}||} = \sup_{\mathbf{x} \in \mathbf{X}} \frac{||\mathbf{T}(\mathbf{x})||}{||\mathbf{x}|| = 1} = \sup_{\mathbf{x} \in \mathbf{X}} \frac{|\alpha| ||\mathbf{T}(\mathbf{x})||}{||\mathbf{x}|| = 1}$$

=
$$\sup_{x \in X} ||T(x)||$$
.

The theorem will be proved when we show that equation (2) implies equation (1). From equation (2), we have $||T|| > \frac{||T(x)||}{||x||}$ for all $x \in X \setminus \{0\}$ and for any $A \in TR$ (>0) such that A > ||T||, $||T(x)|| \le A ||x||$ for all $x \in X$. Hence $||T|| = \inf \{ A \in TR (>0) | ||T(x)|| \le A ||x|| \text{ for all } x \in X \}$. Now, the proof is complete.

- 2.6 Theorem. For any linear transformation T of a normed linear space X into a normed linear space Y, the following three conditions are equivalent:
 - (1) T is bounded.
 - (2) T is continuous.
 - (3) T is continuous at one point $x_0 \in X$.

Proof. (1) implies (2).

If ||T|| = 0 then T is the zero transformation which is continuous. Assume $||T|| \in TR(>0)$. For any $\epsilon > 0$, let $\delta = \frac{\epsilon}{||T||}$, for any x, x₀ in X such that $||x - x_0|| < \delta$ implies $||T(x) - T(x_0)|| < ||T|| ||x - x_0|| < ||T|| = \epsilon$.

- (2) implies (3) is trivially.
- (3) implies (1).

Given any $\xi > 0$, there is a $\delta > 0$ such that $||x - x_0|| < \delta$

implies $\|T(x) - T(x_0)\| < \mathcal{E}$. In other words, $\|x\| < \mathcal{E}$ implies $\|T(x_0 + x) - T(x_0)\| = \|T(x)\| < \mathcal{E}$ or $\|\bar{x}\| \le 1$ implies $\|T(\bar{x})\| \le \frac{\mathcal{E}}{S}$. Hence, $\|T\| = \sup_{\|\bar{x}\| = 1} \|T(\bar{x})\| \le \frac{\mathcal{E}}{S}$ implies that T is bounded.

2.7 Theorem. B $\mathcal{L}(X,Y)$ is a normed linear subspace of the linear space $\mathcal{L}(X,Y)$.

<u>Proof.</u> Note that $B\mathcal{B}(X,Y)$ is a complex vector subspace of the linear space $\mathcal{B}(X,Y)$. For any $T \in B\mathcal{B}(X,Y)$, we define

$$||T|| = \sup_{\mathbf{x} \in X} ||T(\mathbf{x})||.$$

We claim that $B \mathcal{O}(X,Y)$ with the above norm is a normed linear space. By Theorem 2.5, we see that ||T|| is a nonnegative real number. For any $T_1, T_2, T \in B \mathcal{O}(X,Y)$, any $\alpha \in \mathbb{I}$, we have

$$||T_{1} + T_{2}|| = \sup_{\substack{x \in X \\ ||x|| = 1}} ||(T_{1} + T_{2})(x)|| = \sup_{\substack{x \in X \\ ||x|| = 1}} ||T_{1}(x) + T_{2}(x)||$$

$$||T_{1}(x)|| + \sup_{\substack{x \in X \\ ||x|| = 1}} ||T_{2}(x)|| = ||T_{1}|| + ||T_{2}||,$$

and $\| \alpha T \| = \sup_{x \in X} \| (\alpha T)(x) \| = |\alpha| \sup_{x \in X} \| T(x) \| = |\alpha| \| T \|$.

If ||T|| = 0, we have $||T(x)|| \le ||T|| ||x|| = 0$, for all $x \in X$. This implies that T(x) = 0 for all $x \in X$; that is , T is a zero transformation. The proof is complete.

2.8 Theorem. If Y is a Banach space then $B\mathcal{L}(X,Y)$ is a Banach space. Proof. Let $\{f_n\}$ be a Canchy sequence in $B\mathcal{L}(X,Y)$. Let E>0 be given. There is a $n \in \mathbb{Z}$ (>0) such that $\|f_m-f_n\| < \frac{E}{3}$

for all m > n_o, n > n_o. By the definition of ||·|| in $B\mathscr{B}(X,Y)$, we have for any x such that ||x|| = 1, $||f_m(x) - f_n(x)|| < \frac{\varepsilon}{3}$ for m > n_o, n > n_o. This shows that $\{f_n(x)\}$ is a Cauchy sequence in Y, which is complete, hence $\{f_n(x)\}$ converges to an element $f(x) \in Y$. This is also true for any $x \in X$ since we can write $x = \lambda y$ with ||y|| = 1 and $\lambda = ||x||$, hence $f_n(x) = \lambda f_n(y)$ tends to a limit $f(x) = \lambda f(y)$.

The linearity of f follows since

$$f(x + y) = \lim_{n \to \infty} (f_n(x + y)) = \lim_{n \to \infty} (f_n(x) + f_n(y))$$

$$= \lim_{n \to \infty} f_n(x) + \lim_{n \to \infty} f_n(y)$$

$$= f(x) + f(y), \qquad 0.04814$$
and
$$f(\alpha x) = \lim_{n \to \infty} (f_n(\alpha x)) = \lim_{n \to \infty} \alpha f_n(x)$$

$$= \alpha \lim_{n \to \infty} f_n(x) = \alpha f(x).$$

The boundedness of f can be proved as follows. Since $\left\{f_n(x)\right\}$ converges to f(x), there is $n_1 \in \mathbb{Z}(0)$ such that for all $n \geqslant n_1$, $\|f_n(x) - f(x)\| < \frac{\mathcal{E}}{3}$. For any $x \in X$ such that $\|x\| = 1$, let $\mathcal{E} = 3$, there is $n_2 \in \mathbb{Z}(0)$ such that $\|f_{n_2}(x) - f(x)\| < 1$, hence $\|f(x)\| < 1 + \|f_{n_2}(x)\| < 1 + \|f_{n_2}(x)\| < 1$ for all $x \in X$ such that $\|x\| = 1$. This inequality is still true for any $x \in X$ since we can write $x = \lambda y$ with $\|y\| = 1$

and $\lambda = ||x||$, hence $||f(x)|| = ||f(\lambda y)|| = ||\lambda f(y)|| = ||\lambda f(y)|| = ||x|||f(y)|| \le ||x|| (1 + ||f_{n_2}||)$ which implies that f is bounded.

We know that $\|f_n - f\| = \sup_{x \in X} \|(f_n - f)(x)\|$. There is a $\|x\| = 1$ $\|x\| = 1$

This completes the proof.

3. The Open Mapping Theorem.

3.1 Theorem. (The Open Mapping Theorem) Let U and V be the open unit balls of the Banach spaces X and Y, respectively. To every bounded linear transformation T of X onto Y there corresponds a δ > O such that

(1) T(U) O S V .

Note the symbol $\$ stands for the set $\left\{\delta\,y\,:\,y\,\in\,V\right\}$; that is, the set of all $y\,\in\,Y$ with $||\,\,y\,\,||\,<\,\delta$.

Let us now explain the name of the theorem. Let W_1 be any open ball in X with center at x_0 and radius r > 0; that is , the set of all $x_0 + rx$ where $x \in U$. From the linearity of T, we have $T(x_0 + rx) = T(x_0) + r T(x)$. It follows from (1) that

there is a $\delta > 0$ such that $T(U) \supset \delta V$; that is, $T(W_1) \supset \left\{ Tx_0 + r_1 y \mid y \in V, r_1 = r \delta > 0 \right\}$. Hence the image of every open ball in X, with center at x_0 , say, contains an open ball in Y with center at Tx_0 . Thus the image under T of every open set is open; that is, T is an open mapping.

Here is another way of stating (1): To every y with $||y|| < \delta$ there corresponds an x with ||x|| < 1 so that ||x|| = y.

Proof. Given $y \in Y$, there is an $x \in X$ such that Tx = y; if ||x|| < k, it follows that $y \in T(kU)$. Hence Y is the union of the sets T(kU), for $k = 1, 2, \ldots$. Since Y is complete, Theorem 1.3.5 implies that Y is not a countable union of nowhere dense sets. There exists a T(kU) of Y such that T(kU) is not nowhere dense. By the definition of nowhere dense set, we have the closure T(kU) contains a nonempty open subset W of Y.

This means that every point of W is the limit of a sequence $\{ \operatorname{Tx}_i \}$, where $\operatorname{x}_i \in \operatorname{kU};$ from now on, k and W are fixed.

Since W is open, we can choose y \in W and $\eta > 0$ so that $y_0 + y \in$ W if $||y|| < \eta$. For any such y there are sequences $\{x_i'\}$, $\{x_i''\}$ in kU such that

(2) $\text{Tx}_{i}' \rightarrow \text{y}_{o}$ and $\text{Tx}_{i}'' \rightarrow \text{y}_{o} + \text{y}$ as $i \rightarrow \infty$.

Setting $\text{x}_{i} = \text{x}_{i}'' - \text{x}_{i}'$, we have $||\text{x}_{i}|| \leq ||\text{x}_{i}''|| + ||\text{x}_{i}'|| < 2k$ and $\text{Tx}_{i} \rightarrow \text{y}$. Since this holds for every y with $||\text{y}|| < \eta$, the linearity of T shows that the following is true if

To each $y \in Y$ and to each E > 0 there corresponds an $x \in X$ such that

(3)
$$||x|| \le \delta' ||y||$$
 and $||y - Tx|| < \epsilon$.

This is almost the desired conclusion, as stated just before the start of the proof, except that there we had $\mathcal{E}=0$.

Fix $y \in SV$, and fix E > 0. By (3) there exists an x_1 with $||x_1|| \le |S||y|| < |S||S| = 1$ and

(4)
$$\|y - Tx_1\| < \frac{1}{2} \delta \epsilon$$

which follows from (3) that

$$\left\| \frac{2x_1}{8} \right\| \leqslant \frac{5}{8} \left\| \frac{2y}{8} \right\| \text{ and } \left\| \frac{2y}{8} - \frac{T2x_1}{8} \right\| < \mathcal{E};$$
 that is, $\left\| y - Tx_1 \right\| < \frac{8\xi}{2}$.

Suppose x1,..., x are chosen so that

(5)
$$\|y - Tx_1 - Tx_2 - \dots - Tx_n\| < 2^{-n} \delta \varepsilon$$
.

Use (3), with y replaced by the vector on the left side of (5), to obtain an \mathbf{x}_{n+1} so that (5) holds with n+1 in place of n, and

(6)
$$||x_{n+1}|| \le \delta ||y - Tx_1 - Tx_n|| = \delta^2 z^{-n} \delta \epsilon = z^{-n} \epsilon$$
, for $n = 1, 2, 3, ...$

If we set $S_n = x_1 + \cdots + x_n$, (6) shows that $\{S_n\}$ is a Cauchy sequence in X. Since, for any $E_1 > 0$, choose $n \in \mathbb{Z}(>0)$ such that for any positive integer $p, 2 > \frac{E}{E_1}$ $(1 + 2^{-1} \cdot \cdot \cdot + 2^{-p+1})$ and for any $n > n_0$,

$$\| s_{n+p} - s_n \| = \| x_{n+1} + \cdots + x_{n+p} \| \le \| x_{n+1} \| + \cdots + \| x_{n+p} \|$$

$$\leq 2^{-n} \xi + \dots + 2^{-(n+p-1)} \xi = 2^{-n} \xi (1 + 2^{-1} + \dots + 2^{-p+1})$$

 $\leq 2^{-n} \xi (1 + 2^{-1} + \dots + 2^{-p+1}) < \xi_1.$

Since X is complete, there exists an $x \in X$ so that $S_n \to x$ as $n \to \infty$. The inequality $||x_1|| < 1$, together with (6), shows that

$$\| \mathbf{x} \| = \| \sum_{n=1}^{\infty} \mathbf{x}_n \| \le \sum_{n=1}^{\infty} \| \mathbf{x}_n \| < 1 + 2^{-1} \xi + \dots + 2^{-n} \xi + \dots$$

$$= 1 + 2^{-1} \xi (1 + 2^{-1} + 2^{-2} + \dots) = 1 + 2^{-1} \xi \left(\frac{1}{1 - \frac{1}{2}} \right) = 1 + \xi.$$

Since T is continuous, $TS_n \rightarrow Tx$. By (5) $TS_n \rightarrow y$. Hence

Tx = y. We have now proved that

(7)
$$T((1 + E) U) \supset \delta V$$
,

or

(8)
$$T(U) \supset (1+E)^{-1} \S V$$
,

for every $\xi > 0$. The union of the sets on the right of (8), taken over all $\xi > 0$, is ξV . This proves (1).

- 3.2 <u>Corollary.</u> If X and Y are Banach spaces and if T is a bounded linear transformation of X onto Y which is also one-to-one, then there is a $\delta > 0$ such that
 - (1) $||\operatorname{Tx}|| \geqslant \delta || \times || \quad (x \in X).$

Proof. If δ is chosen as in (3) in the proof of the Open Mapping Theorem. In (3) of that theorem, Tx = y has already been proved and T is now one-to-one, shows that

$$||Tx|| \ge \delta ||x|| \quad (x \in X).$$

- 4. The Banach-Steinhaus Theorem or the Uniform Boundedness
 Principle
- 4.1 <u>Definition</u>. Let f be an extended real-valued function on a topological space. f is said to be <u>lower semicontinuous</u> if the set $\{x: f(x) > X\}$ is open for every real X. f is said to be <u>upper semicontinuous</u> if the set $\{x: f(x) < X\}$ is open for every real X.
- 4.2 <u>Lemma</u>. (a) An extended real-valued function f is continuous if and only if it is both upper semicontinuous and lower semicontinuous.
 - (b) The suppremum of any collection of lower semicontinuous functions is lower semicontinuous.

Proof of (a). Assume f is continuous. Then the set $\{x: f(x) \ge \alpha\}$ is open for every real α so that f is lower semicontinuous. Similarly, f is upper semicontinuous.

21

any $x \in g^{-1}(\alpha,\infty]$, we have $\alpha < \sup_{n \ge 1} f_n(x)$ and there exists $m \in \mathbb{Z}$ (>0) such that $\alpha < \sup_{n \ge 1} f_n(x) - \epsilon \le c$ f_m(x) $\le +\infty$ where $\epsilon = (\sup_{n \ge 1} f_n(x) - \infty)/2$. Hence x is $n \ge 1$ in U f_n(α,∞) so that $g^{-1}(\alpha,\infty] \subset U$ f_n(α,∞). For $n \ge 1$ any $x \in U$ f_n(α,∞), we have $\alpha < f_m(x) \le \sup_{n \ge 1} f_n(x) \le \infty$ for some $m \in (>0)$ so that $x \in g^{-1}(\alpha,\infty]$. Hence $0 \in (>0)$ so that $0 \in g^{-1}(\alpha,\infty)$ and $0 \in (<0,\infty)$ and

- 4.3 Theorem. (The Banach-Steinhous Theorem or the Uniform Boundedness Principle). Suppose X is a Banach space, Y is a normed linear space, and $\{T_\infty\}$ is a collection of bounded linear transformations of X into Y, where ∞ ranges over some index set A. Then either there exists an M < ∞ such that
 - (1) $||T_{\alpha}|| \leq M$, for every $\alpha \in A$, or
 - (2) $\sup_{X \in A} ||T_{X}|| = \infty$, for all x belonging to some dense $x \in A$ Generally support to some dense of X.

Proof. Put $\varphi(x) = \sup_{\alpha \in A} || \mathbb{T}_{\alpha} x ||$ for all $x \in X$. Let $V_n = \{x : \varphi(x) > n\}$ (n = 1, 2, ...).

Since each T_{∞} is continuous and the norm of Y is a continuous function on Y, each function $x \mapsto ||T_{\infty} x||$ is continuous on X. By Lemma 4.2, ψ is lower semicontinuous, and

each V is open.

If one of those sets, say $V_{N^{\bullet}}$ fails to be dense in X, then there exist an $x_0 \in X$ and an r > 0 such that $||x|| \le r$ implies $x_0 + x \notin V_N$; this means that $\Psi(x_0 + x) \le N$, or

$$\left|\left|T_{\alpha}\left(x_{0}+x\right)\right|\leq N$$

for all $x \in A$ and all x with $||x|| \le r$. Since $x = (x_0 + x) - x_0$, we then have

$$\begin{split} \|T_{\alpha} \times \| & \leq \|T_{\alpha} (x_{o} + x)\| + \|T_{\alpha} x_{o}\| \leq 2 N. \\ \text{Hence,} \quad \|T_{\alpha}\| & = \sup_{\|x\| = 1} \|T_{\alpha} x\| \leq \frac{2N}{r} = M, \text{ for all } \alpha \in A. \end{split}$$

The other possibility is that every V_n is dense in X. In that case , $\bigcap V_n$ is a dense G_s in X, by Baire's theorem. Moreover $\Psi(x) = \infty$ for every $x \in \bigcap V_n$. Hence the theorem is completely proved.

5. The Hahn-Banach Theorem

- 5.1 Proposition. Let V be a complex vector space.
 - (a) If u is the real part of a complex-linear functional f on V, then
 - (1) f(x) = u(x) iu(ix) for all $x \in V$.
 - (b) If u is a real-linear functional on V and if f is defined by (1), then f is a complex-linear functional on V.
 - (c) If V is a normed linear space and f and u are related as in (1), then ||f|| = ||u||.

<u>Proof.</u> If α and β are real numbers and $z = \alpha + i\beta$, then the real part of iz is - β . Thus for all complex number z,

(2) z = Re z - i Re (iz)

Since

- (3) Re (if(x)) = Re f(ix) = u(ix),
- (1) follows from (2) with z = f(x). Under the hypothesis (b), we have that f(x + y) = u(x + y) iu(i(x + y)) = u(x) + u(y) iu(ix) iu(iy) = f(x) + f(y) and f(x) = u(x) iu(ix) = u(x) iu(x) iu(x) iu(x) = u(x) iu(x) iu(x) iu(x) iu(x) = u(x) iu(x) iu

But we also have

(4) f(ix) = u(ix) - iu(-x) = u(ix) + iu(x) = i (f(x)), which proves that f is a complex-linear functional on V.

Since $|u(x)| \le |f(x)| \le ||f|| ||x||$, for all $x \in X$, we have $\sup_{x \neq 0} \frac{|u(x)|}{||x||} \le ||f|| \text{ so that } ||u|| \le ||f|| \text{ on the other hand,}$ to every $x \in V$ there corresponds a complex number α , $|\alpha| = 1$ so that α f(x) = |f(x)|. Then

- (5) $|f(x)| = f(\alpha x) = u(\alpha x) \le ||u|| || \alpha x || = ||u|| ||x||$, so that $||f|| \le ||u||$. Thus the part (c) is proved.
- 5.2 <u>Definition</u>. Let M be a subspace of a normed space X. Let F and f be bounded linear functional on X and M, respectively.

F is an extension of f if the domain of F includes the domain of f and F(x) = f(x) for all x in the domain of f. In this case, f is also called a restriction of F.

The norm ||F|| and ||f|| are computed relative to the domains of F and f, explicitly;

$$\|f\| = \sup \left\{ \frac{|f(x)|}{\|x\|}, x \in M \setminus \{0\} \right\},$$

$$\|F\| = \sup \left\{ \frac{|F(x)|}{\|x\|}, x \in X \setminus \{0\} \right\}.$$

5.3 Theorem. (The Hahn-Banach Theorem) If M is a subspace of a normed linear space X and if f is a bounded linear functional on M, then f can be extended to a bounded linear functional F on X so that ||F|| = ||f||.

<u>Proof.</u> We first assume that X is a real normed linear space and, consequently, that f is a real-linear bounded functional on M. If || f || = 0, the desired extension is F = 0. We may assume that $|| f || \neq 0$. First we shall deal with the case where || f || = 1.

Choose $x_0 \in X$, $x_0 \notin M$, and let M_1 be the vector space spanned by M and x_0 . Then M_1 consists of all vectors of the form $x + \lambda x_0$, where $x \in M$ and λ is a real scalar. If we define $f_1(x + \lambda x_0) = f(x) + \lambda \alpha$, where α is any fixed real number. Then $f_1(x) = f(x)$ for all $x \in M$ and for any β_1 , β_2 , λ_1 , $\lambda_2 \in TR$, $x_1, x_2 \in M$,

$$f_{1} \left[\beta_{1}(x_{1} + \lambda_{1}x_{0}) + \beta_{2}(x_{2} + \lambda_{2}x_{0}) \right] = \beta_{1}f_{1}(x_{1} + \lambda_{1}x_{0}) + \beta_{2}f_{1}(x_{2} + \lambda_{2}x_{0});$$

that is, f_1 is a linear functional on M_1 extending f. The problem is then reduce to choose \propto so that the extended functional still has norm 1. This will be the case provided that

(1)
$$|f(x) + \lambda \alpha| \leq |x + \lambda x_0| \quad (x \in M, \lambda \text{ real}).$$

Replace x by - λ x and divide both side of (1) by $|\lambda|$. The requirement is then that

(2) $|f(x) - \alpha| \le ||x - x_0|| \quad (x \in M),$ that is, that $A_x \le \alpha \le B_x$ for all $x \in M$, where

(3) $A_x = f(x) - ||x - x_0||$ and $B_x = f(x) + ||x - x_0||$. There exists such an α if and only if all the intervals $\begin{bmatrix} A_x, B_x \end{bmatrix}$ have a common point; that is, if and only if

(4) $A_x \leq B_y$ for all x and y $\in M$.

To prove this equivalence, suppose that there exists x and $y \in M$ such that $B_y < A_x$. We have $A_y \le B_y < A_x \le B_x$. This implies that $\begin{bmatrix} A_y, B_y \end{bmatrix} \cap \begin{bmatrix} A_x, B_x \end{bmatrix} = \phi$ or not all the intervals $\begin{bmatrix} A_x, B_x \end{bmatrix}$ for all $x \in M$ have a common point. Conversely, suppose that $A_x \in M$ have a common point. Conversely, suppose that $A_x \in M$ have a common point. Conversely, suppose that $A_x \in M$ have a common point. Conversely, suppose that $A_x \in M$ have a common point. Conversely, suppose that $A_x \in M$ have a common point. Conversely, suppose that $A_x \in M$ have a common point. Conversely, suppose that $A_x \in M$ such that $A_x \in M$ if A_x

 $f(x) - f(y) = f(x - y) \le ||x - y|| \le ||x - x_0|| + ||y - x_0||.$

We have now proved that there exists a norm-preserving extension f_1 of f on M_1 .

Let \hat{V} be the collection of all ordered pairs (M, f'), where M' is a subspace of X which contains M and where f' is a real-linear extension of f to M', with $\|f\| = 1$.

Partially order $\mathcal P$ by declaring $(M', f') \leq (M'', f'')$ to mean that $M' \subset M''$ and f''(x) = f'(x) for all $x \in M'$. The axioms of a partial order are satisfied, $\mathcal P$ is not empty since it contains (M, f), and so the Hausdorff maximality theorem asserts the existence of a maximal totally ordered subcollection Ω of $\mathcal P$.

Let Φ be the collection of all M such that (M, f') $\in \Omega$. Then Φ is totally ordered, by set inclusion, and therefore the union M of all members of Φ is a subspace of X. If $x \in M$, then $x \in M'$ for some $M' \in \overline{\Phi}$; defined F(x) = f'(x), where f' is the function which occurs in the pair (M, f') $\in \Omega$. F is welldefined since, for any $x \in \widetilde{M}$, suppose there exist M, M" such that $x \in M'$ and $x \in M''$ where (M', f') and $(M'', f'') \in \Omega$. By the totally ordering of Ω , we may assume M'CM" so that f"(x) = f'(x) = F(x). F can easily be checked to be a linear functional. || F || = 1, since for any $x \in \widetilde{M}$ there exists $x \in M'$ where $(M, f') \in \Omega$ such that $||F(x)|| = ||f'(x)|| \le ||f'|| ||x|| = ||x||,$ that is $\|F\| \leq 1$, and for any ϵ > 0, there exists $x \in M' \setminus \{0\}$ such that $||x||(1 - E) \le ||f'(x)|| = ||F(x)|| \le ||F|||x||$. This implies that $||F|| \geqslant 1$ and ||F|| = 1. F is an extension of f on \widetilde{M} since we have (M, f) \leq (M', f') for all (M', f') $\in \Omega$ and $(M', f') \leq (\widetilde{M}, F)$ for all $(M', f') \in \Omega$. This implies that F(x) = f(x) for all $x \in M$.

Suppose $\widetilde{\mathbb{M}}$ is a proper subspace of X. Let $x_1 \in X \setminus \widetilde{\mathbb{M}}$. As in the first part of the proof, let $\widetilde{\mathbb{M}}_1$ be the vector space spanned by $\widetilde{\mathbb{M}}$ and x_1 . $\widetilde{\mathbb{M}}$ is a proper subspace of $\widetilde{\mathbb{M}}_1$. We define $F_1(\widetilde{x} + \lambda_1 x_1) = F(\widetilde{x}) + \lambda_1 x_1$ where $\widetilde{x} \in \widetilde{\mathbb{M}}$, $\lambda_1 \in \mathbb{R}$ and $x_1 \in \mathbb{K}$ and $x_2 \in \mathbb{K}$ is a fixed real number which is chosen so that $||F_1|| = ||F|| = 1$. Finally we arrived at a pair $(\widetilde{\mathbb{M}}_1, F_1) \geqslant (\widetilde{\mathbb{M}}, F)$ and $(\widetilde{\mathbb{M}}_1, F_1)$ is a totally ordered subset of $(\widetilde{\mathbb{M}}_1, F_1)$ which contradicts the maximality of $(\widetilde{\mathbb{M}}_1, F_1)$. This shows that $\widetilde{\mathbb{M}}_1 = X$.

If f is a real-linear bounded functional on M such that $\| f \| = R \text{ where } R \text{ is a positive real. Let } g = \frac{f}{R} \text{ so that } \| g \| = 1, \text{ there exists a real-linear bounded functional extension G on X such that } \| g \| = \| g \| = 1. \text{ Let } F = RG \text{ then } F \text{ is an extended real-linear functional of f on X so that } \| F \| = \| f \| .$

If now f is a complex-linear functional on the subspace M of the complex normed linear space X, let u be a real part of f, use the real Hahn-Banach theorem to extended u to a real-linear functional U on X, with $\|U\| = \|u\|$, and define

(5) F(x) = U(x) - i U(ix) for all $x \in X$.

By Proposition 5.1, F is a complex-linear extension of f, and

$$|| F || = || U || = || u || = || f ||$$
.

This completes the proof.

6. Classical Banach Space $L^p(\Psi)$ (1 $\leq p \leq \infty$)

Anticipating the construction of chapter III, let $\frac{1}{2}$ be the (1-dimensional) torus and μ the Lebesgue measure on it. We may visualize $\frac{1}{2}$ as the set $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ = 1.

6.1 Definition. If $1 \le p < \infty$ and f is a complex-valued, Lebesgue measurable function on \P , define

$$\|f\|_{p} = \left(\int |f|^{p} d\mu\right)^{1/p}.$$

Then $L^p(\P)$ consists of all measurable complex functions f on \P for which $||f||_p < \infty$ and we call $||f||_p$ the L^p -norm of f.

Actually, $\|\cdot\|$ satisfies all the axioms of a norm except that $\|f\|_p = 0$ may not implies that $\|f\|_p = 0$.

- 6.2 <u>Definition</u>. A property is said to hold a.e. or for almost all x in T if it holds everywhere on T except on a measurable set of measure zero.
- 6.3 Definition. Suppose $g: T \mapsto [0,\infty]$ is measurable. Let S be the set of all real ∞ such that

$$\mu$$
 (g⁻¹ ((∞ , ∞])) = 0.

If
$$S = \phi$$
, put $\beta = \infty$. If $S \neq \phi$, put $\beta = \inf S$. Since
$$g^{-1}((\beta,\infty)) = \bigcup_{n=1}^{\infty} g^{-1}((\beta+\frac{1}{n},\infty)),$$

and since the union of a countable collection of sets of measure

zero has measure zero, we see that $\beta \in S$. We call β the essential supremum of g.

If f is a complex measurable function on \P , we define $\|f\|_{\infty}$ to be the essential supremum of $\|f\|$, and we let $L^{\infty}(\P)$ consists of all f for which $\|f\|_{\infty} < +\infty$. The functions in $L^{\infty}(\P)$ are sometimes said to be essentially bounded.

6.4 Proposition. $|f(x)| \le \lambda$ holds for almost all x if and only if $\lambda > ||f||_{\infty}$.

<u>Proof.</u> Assume first that $|f(x)| \le \lambda$ holds for almost all x. That is, there is a measurable set $E = |f|^{-1} (\lambda, \infty)$ so that $|f(x)| \le \lambda$ for $x \in E$ and $\mu(E) = 0$. By definition of $||f||_{\infty}$, we have $||f||_{\infty} \le \lambda$.

Conversely, if $\|f\|_{\infty} \le \lambda$ then $\mu(\|f\|^{-1}(\|f\|_{\infty}, \infty)) = 0$. But $\|f\|^{-1}(\lambda, \infty)$ is a subset of $\|f\|^{-1}(\|f\|_{\infty}, \infty)$ which implies that $\mu(\|f\|^{-1}(\lambda, \infty)) = 0$. Then $\|f(x)\| \le \lambda$ holds for almost all x.

- 6.5 Theorem. I^P (\P) is a complex vector space for $1 \le p \le \infty$.

 Proof. We must show the following properties:
 - (1) If $f, g \in L^p$ (\mathbb{T}) then so is f + g, and $\|f + g\|_p \le \|f\|_p + \|g\|_p$.
 - (2) If $f \in L^p$ (\mathcal{P}) and ∞ is a complex number then $\alpha f \in L^p$ (\mathcal{P}). In fact, $\|\alpha f\|_p = |\alpha| \|f\|_p$.

For 1 , (1) follows from Minkowski's inequality.

For p = 1, (1) is a consequence of the inequality $|f + g| \le |f| + |g|$.

For $p = \infty$, (1) follows from

$$\begin{split} \left|f(\mathring{x}) + g(\mathring{x})\right| &\leq \left|f(\mathring{x})\right| + \left|g(\mathring{x})\right| & \text{for all } \mathring{x} \text{ in } \widetilde{T} \\ &\leq \left|\left|f\right|\right|_{\infty} + \left|\left|g\right|\right|_{\infty} & \text{for almost all } \\ &\mathring{x} \text{ in } \widetilde{T} \;. \end{split}$$

By Proposition 6.4 we have

(2) follows from the equality

$$\left(\int_{\mathbf{p}}^{|\alpha f|^{p}} d\mu\right)^{1/p} = |\alpha| \left(\int_{\mathbf{p}}^{|f|} d\mu\right)^{1/p} \text{ for } 1 \leq p < \infty.$$

and

$$|\alpha f| = |\alpha||f|$$
 for $p = \infty$.

This completes the proof.

Suppose f,
$$g \in L^p$$
 (\mathbb{T}), for $1 \le p \le \infty$, define $d(f, g) = ||f - g||_p$.

Then d satisfies all the axioms of a metric except that d(f,g) = 0 might not imply f = g.

Let us write $f \sim g$ if and only if d(f, g) = 0. This is easily seen to be an equivalence relation in $L^p(P)$ which partition $L^p(P)$ into equivalence classes. If F and G are two equivalence classes, choose $f \in F$ and $g \in G$, and define d(F, G) = d(f, g); note that $f \sim f_1$ and $g \sim g_1$ implies

$$d(f, g) \leq d(f, f_1) + d(f_1, g_1) + d(g_1, g) = d(f_1, g_1)$$

and similarly, $d(f_1,g_1) \leq d(f,g)$. Hence $d(f,g) = d(f_1,g_1)$ so that d(F,G) is well defined.

The set of all equivalence classes of $L^p(\Psi)$ is now a metric space by defining $d(F,G)=d(f,g)=\|f-g\|_p$. Note that it is also a vector space, since $f \sim f_1$, $g \sim g_1$ imply $f+g \sim f_1+g_1$ and $\propto f \sim \alpha f_1$. From now on we shall denote the set of all equivalence classes by $L^p(\Psi)$ as well.

6.6 Theorem. $L^p(T)$ is a complete metric space for $1 \le p \le \infty$. Proof. Consider $1 \le p < \infty$.

Let $\{f_n\}$ be a Cauchy sequence in L^p ($\frac{1}{T}$). Take $\mathbf{E} = \frac{1}{2}$, there exists $\mathbf{n}_1 \in \mathbb{Z}$ (>0) such that $\|\mathbf{f}_n - \mathbf{f}_n\|_p < \frac{1}{2}$ for all $n \ge n_1$. Suppose we have obtained a sequence $\mathbf{n}_1 \le n_2 \le \cdots \le n_k$. Then letting $\mathbf{E} = \frac{1}{2}\mathbf{k}$, there exists $\mathbf{n}_k > \mathbf{n}_{k-1}$ in \mathbb{Z} (>0) such that $\|\mathbf{f}_n - \mathbf{f}_n\|_p < \frac{1}{2}\mathbf{k}$ for all $n > n_k$. Hence, there is a subsequence $\{\mathbf{f}_{n_1}\}$, $n_1 \le n_2 \le \cdots$, such that

(*)
$$||f_{n_{i+1}} - f_{n_i}|| \le 2^{-i}$$
 for $i = 1, 2, ...$

Define

$$g_k = \sum_{i=1}^k \left| f_{n_{i+1}} - f_{n_i} \right|, g = \sum_{i=1}^\infty \left| f_{n_{i+1}} - f_{n_i} \right|.$$

Since (*) holds, the Minkowski's inequality shows that, for any $k \in \mathbb{Z}(>0)$,

$$|| g_{k} ||_{p} = \left(\int_{\mathbb{P}} |g_{k}|^{p} d\mu \right)^{1/p} = \left(\int_{\mathbb{P}}^{g} d\mu \right)^{1/p} \leq \sum_{i=1}^{k} \left(\int_{\mathbb{P}}^{f} f_{i+1} - f_{i} \right)^{p} d\mu$$

$$= \sum_{i=1}^{k} || f_{i+1} - f_{i} ||_{p} < \sum_{i=1}^{k} 2^{-i} < \sum_{i=1}^{\infty} 2^{-i} = 1.$$

Hence an application of Fatou's lemma to $\left\{\mathbf{g}_{k}^{\mathbb{P}}\right\}$ gives

$$\|\mathbf{g}\|_{p} = \left(\int_{\mathbf{p}}^{\mathbf{p}} d\mu\right)^{1/p} = \left(\int_{\mathbf{k} \to \infty}^{\lim_{k \to \infty} \mathbf{g}_{k}^{p}} d\mu\right)^{1/p} \leq \lim_{k \to \infty} \left(\int_{\mathbf{p}}^{\mathbf{p}} d\mu\right)^{1/p} \leq 1.$$

And $g \in L^p$ (\mathbb{T}) implies g is finite a.e. on \mathbb{T} , so that the series Σ (f_{n-1+1}) converges absolutely a.e. on \mathbb{T} . Then i=1

the series

$$(**) \qquad f_{n_1}(\dot{x}) + \sum_{i=1}^{\infty} (f_{n_{i+1}}(\dot{x}) - f_{n_i}(\dot{x}))$$

converges absolutely a.e. on T. We denote the sum of (***) by f(x), for those x at which (***) converges, put f(x) = 0 on the remaining set of measure zero. Since

$$f_{n_1}(\hat{x}) + \sum_{i=1}^{k-1} (f_{n_{i+1}}(\hat{x}) - f_{n_i}(\hat{x})) = f_{n_k}(\hat{x}),$$

we see that

$$f(\hat{x}) = \lim_{k \to \infty} f(\hat{x})$$
 a.e. or $f(\hat{x}) = \lim_{k \to \infty} f(\hat{x})$ a.e. .

Since $\{f_n\}$ is a Cauchy sequence in L^p (T). For any

given $\xi > 0$, there exists $N \in \mathbb{Z}$ (>0) such that

We conclude from (***) that $f - f_m \in \Gamma$ (T), hence that

 $f \in L^p$ (\P), and finally that $\|f - f_m\|_p \longrightarrow 0$ as $m \longrightarrow \infty$. This completes the proof for the case $1 \le p < \infty$.

In L^{oo}(Φ), suppose $\{f_n\}$ is a Cauchy sequence in L^{oo}(Φ), let A_k and $B_{m,n}$ be the sets where $|f_k(x)| > ||f_k||_{\infty}$ and $|f_n(x)| - |f_m(x)| > ||f_n - |f_m||_{\infty}$, and let E be the union of these sets, for k,m,n = 1,2,3,.... Then $\mu(E) = 0$, and we show that on the complement of E the sequence $\{f_n\}$ converges uniformly to a bounded function. For any $x \in E^c$, $\{f_n(x)\}$ is a Cauchy sequence in C, which is complete, so that $\lim_{n \to \infty} f_n(x) = f(x)$. For any E > 0, there exist n_0 , $n_1 \in \mathbb{Z}(>0)$ such that for all $n > n_0$, $|f_n(x)| - |f(x)| < \frac{E}{3}$ and for all $m > n_1$, $n > n_1$, $|f_n - f_m||_{\infty} < \frac{E}{3}$. Let $n' = \max(n_0, n_1)$. For any n > n' there is a $x \in E^c$ such that

$$\sup_{\dot{x} \in E^{c}} |f_{n}(\dot{x}) - f(\dot{x})| \le |f_{n}(\dot{x}_{0}) - f(\dot{x}_{0})| + \frac{\varrho}{3}$$

$$\le |f_{n}(\dot{x}_{0}) - f_{n}(\dot{x}_{0})| +$$

$$+ |f_{n}(\dot{x}_{0}) - f(\dot{x}_{0})| + \frac{\varrho}{3}$$

$$< \varrho,$$

and for any $x \in E^c$,

$$\begin{split} |f(\mathring{x})| & \leq |f(\mathring{x}) - f_{n_0}(\mathring{x})| + |f_{n_0}(\mathring{x})| < \xi + |f_{n_0}(\mathring{x})| \leq |f_{n_0}(\mathring{x})| \\ & \leq ||f_{n_0}||_{e^q} < \infty \ . \end{split}$$

Define f(x) = 0 for $x \in E$. Then $f \in L^{\infty}(\Psi)$ and $\|f_n - f\|_{\infty} \longrightarrow 0$ as $n \longrightarrow \infty$.