CHAPTER I

SOME THEOREMS FROM METRIC SPACES

1. Metric spaces

- 1.1 <u>Definition</u>. Let M be a nonempty set. A metric d on M is a function of M×M into TR (≥ 0) satisfying
 - (1) d(x, y) = 0 if and only if x = y for all x and $y \in M$,
 - (2) d(x, y) = d(y, x) for all x and $y \in M$,
 - (3) $d(x, z) \leq d(x, y) + d(y, z)$ for all x , y and $z \in M$.

Then (M, d) is called a metric space.

2. Complete Metric spaces

- 2.1 <u>Definition</u>. In a metric space (M, d), a sequence $\{x_n\}$ is a <u>Cauchy sequence</u> if $\lim_{m,n\to\infty} d(x_m, x_n) = 0$; that is, given any $\varepsilon > 0$, there exists $n \in \mathbb{Z}$ (> 0) such that for all $m \ge n_0, n \ge n_0, d(x_m, x_n) < \varepsilon$.
- 2.2 <u>Definition</u>. A metric space is <u>complete</u> **if** every Cauchy sequence converges.
- 2.3 <u>Definition</u>. An open ball with center x and radius r > 0 is defined as the set

 $B(x, r) = \left\{ y \in M \mid d(x, y) < r \right\}.$

3. Baire's Theorem

3.1 Lemma. If (M, d) is a complete metric space and if $V_1 \supset V_2 \supset \dots$ is a sequence of nonempty closed subsets of M such that the diameters of V_n converges to 0 as $n \rightarrow \infty$, then $\bigcap_{n=1}^{\infty} V_n$ is a singleton.

<u>Proof.</u> Let $\{x_n\}$ be a sequence in V_1 such that $x_i \in V_i$ for $i = 1, 2, \ldots$. Let $\varepsilon > 0$ be given. Since diameter $(V_n) \rightarrow 0$ as $n \rightarrow \infty$, there is $n_0 \in \mathbb{Z}$ (> 0) such that diam $V_n < \varepsilon$ for all $n \ge n_0$. For any $m \ge n_0$, $n \ge n_0$, we may assume $m \ge n$ so that $V_m \subset V_n$ and $d(x_m, x_n) \le \sup \{d(x, y) \mid x \in V_n, y \in V_n\}$ = diam $V_n < \varepsilon$. Hence $\{X_n\}$ is a Cauchy sequence of M, which is complete. There is $x \in M$ such that $x = \lim_{n \to \infty} x_n$. And this x belongs to V_1 since V_1 is closed. Next we will show that x belongs to V_n for all n. Suppose $x \notin V_{n_0}$ for some n_0 and since V_n is closed then there is r > 0 such that $B(x, r) \cap V_n = \Phi$. For any x_n in V_n , x_n does not belong to B(x, r). This implies that $d(x_n, x) \ge r$ which contradicts the fact that x is the limit of $\{x_n\}$. Finally, we will show that x is unique. Suppose there exists y in V_n for all n and y distincts from x. We have, for all n,

 $0 \leq d(x, y) \leq \sup \{ d(x', y') \mid x', y' \in V_n \} = \operatorname{diam} V_n,$ which contradicts the fact that diam $V_n \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof. 3.2 <u>Theorem</u>. (<u>Baire's Theorem</u>) If (X, d) is a complete metric space, the intersection of every countable collection of dense open subsets of X is dense in X.

<u>Proof.</u> Suppose V_1, V_2, \ldots are dense open subsets of X. Let W be any nonempty open set in X. We have to show that $\bigcap_{n=1}^{\infty} V_n$ has a point in W. Let $\overline{B}(x, r)$ be the closure of B(x, r).

Since V_1 is dense, $W \cap V_1$ is a nonempty open set. There exist x_1 and r such that 2 > r > 0, $B(x_1, r) \in W \cap V_1$. Let $r_1 = \frac{r}{2}$, $1 > r_1 > 0$ such that $\overline{B}(x_1, r_1) \in B(x_1, r) \subset W \cap V_1$. If $n \ge 2$ and x_{n-1} and r_{n-1} are chosen, the denseness of V_n shows that $V_n \cap B(x_{n-1}, r_{n-1})$ is not empty, and we can therefore find x_n and r_n such that

 $\overline{B}(x_n, r_n) \subset B(x_{n-1}, r_{n-1}) \cap V_n \text{ and } 0 < r_n < \frac{1}{n}$.

By induction, this process produces a non-increasing sequence of nonvoid closed sets $\overline{B}(x_n, r_n)$ in X such that diameters of $\overline{B}(x_n, r_n) \leq \frac{2}{n} \rightarrow 0$ as $n \rightarrow \infty$. By Lemma 3.1, $\bigcap_{n=1}^{\infty} \overline{B}(x_n, r_n)$ is a singleton, say $\{x\}$. By construction, x belongs to $W \cap V_n$ for all n and $W \cap \bigcap_{n=1}^{\infty} V_n$ is not empty. This completes the proof.

3.3 <u>Definition</u>. A set E C X is <u>nowhere dense</u> if its closure E contains no nonempty open subset of X.

Any countable union of nowhere dense sets is called a <u>set of</u> the first category.

5

3.4 Theorem. The following statements are equivalent :

- (1) A is nowhere dense in X.
- (2) $\overline{\mathbf{A}}$ is nowhere dense in X.
- (3) $X \setminus \overline{A}$ is dense in X.

Proof. (1) implies (2) is clear.

(2) implies (3).

Assume \overline{A} is nowhere dense. Then we have int $(\overline{A}) = \phi$ and int $(\overline{A}) = \overline{A^{c}}^{c}$. Take complement of equality $\overline{\overline{A}^{c}}^{c} = \phi$ we have $\overline{\overline{A}^{c}} = X$ or $\overline{X \setminus \overline{A}} = X$. This ends the proof.

(3) implies (1).

Assume X \overline{A} is dense in X then we have $\overline{\overline{A}^{c}} = X$. By taking the complement we have $\overline{\overline{A}^{c}} = \phi$ and int $(\overline{A}) = \overline{\overline{A}^{c}}^{c}$ so that int $(\overline{A}) = \phi$. This ends the proof.

3.5 <u>Theorem</u>. Complete metric space (X, d) is not of the first category.

Proof. Let \mathscr{F} be any countable family of nowhere dense subsets of X. For each $A \in \mathscr{F}$, by Theorem 3.4, $(\overline{A})^{C}$ is a dense open subset of the complete metric space X. Since \mathscr{F} is countable, by Theorem 3.2 (Baire's Theorem), there is a $p \in X$ such that $p \in (\overline{A})^{C}$ for every $A \in \mathscr{F}$. In particular, we have $p \notin \overline{A} \supset A$ for all $A \in \mathscr{F}$. Hence X is not the union of the family \mathscr{F} . The proof is complete.