Chapter IV

DISCUSSION

IV.1 Dipolar Relaxation

The hamiltonian for dipole '-dipole interaction between spin

I and S can be written as

$$\mathbf{n} \mathcal{H} = \frac{\vec{\mathcal{M}}_{\mathbf{I}} \cdot \vec{\mathcal{P}}_{\mathbf{S}}}{\mathbf{r}^{3}} - \frac{3(\vec{\mathcal{M}}_{\mathbf{I}} \cdot \vec{\mathbf{r}})(\vec{\mathcal{M}}_{\mathbf{S}} \cdot \vec{\mathbf{r}})}{\mathbf{r}^{5}}, \quad (4.1)$$

where M = magnetic moment ,

r = distance between the two spins ,

or
$$h \in \mathbb{R} = \frac{3T h h^2}{7} [A + B + C + D + E + F]$$
, (4.2)
where $A = I_z S_z$ (1 - 3 cos²0),
 $B = -\frac{1}{4} [I_+ S_- + I_- S_+]$ (1-3cos²0),
 $C = -\frac{3}{2} [I_+ S_+ + I_z S_+]$ (sin0 cos0 e^{-i\vert \empty)},
 $D = -\frac{3}{2} [I_- S_z + I_z S_-]$ (sin0 cos0 e^{i\vert \empty)},
 $E = -\frac{3}{4} I_+ S_+ \sin^2 \theta e^{-i2\vert \empty}$,
 $F = -\frac{7}{4} I_- S_- \sin^2 \theta e^{i2\vert \empty}$.

Eq. (4.2) can be written in the form

$$\mathcal{H} = \sum F^{(q)} A^{(q)} , \qquad (4.3)$$

where F(q) = the random functions of the relative positions of two spins ,

 $A^{(q)}$ = the operators acting on the spin variables ,

and
$$F^{(1)} = \frac{\sin\theta \cos\theta e^{-i\phi}}{r^2}$$
, $A^{(1)} = \alpha \left[I_z S_+ + I_+ S_z \right]$,
$$F^{(2)} = \frac{\sin^2\theta e^{-2i\phi}}{r^3}$$
, $A^{(2)} = \frac{1 - 3\cos^2\theta}{r^3}$, $A^{(0)} = \alpha \left\{ -\frac{2}{3} I_z I_z + \frac{1}{6} (I_+ S_- + I_- S_+) \right\}$, where $\alpha = -\frac{3}{2} \mathcal{F}_I \mathcal{F}_S h$.

Assuming an isotropic random motion, then the autocorrelation function can be expressed as

$$F^{(q)}(t) F^{(q)}(t+q') = \delta_{qq'} G^{(q)}(q')$$
 , (4.4)

$$J^{(q)}(\omega) = \int_{0}^{\infty} G^{(q)}(\tau) e^{-i\omega \tau} d\tau . \qquad (4.5)$$

The unperturbed hamiltonian is given by

$$\mathcal{H}_{\circ} = -\vec{\mathcal{H}} \cdot \vec{\mathcal{H}}$$

$$= \omega_{\mathbf{I}} \mathbf{I}_{\mathbf{I}} + \omega_{\mathbf{S}} \mathbf{I}_{\mathbf{S}} \qquad (4.6)$$

In the case of like spins, the equation of motion of the longitudinal magnetizations is

$$\frac{d}{dt} \left\langle \mathbf{I}_{\mathbf{Z}} + \mathbf{I}_{\mathbf{Z}}' \right\rangle = \cdots \left(\mathbf{a}_{\mathbf{Z}} - \mathbf{a}_{\mathbf{0}} \right) , \qquad (4.7)$$
where
$$\mathbf{a}_{\mathbf{Z}} = \operatorname{tr} \left\{ \mathbf{A}_{\mathbf{Z}} \overset{*}{\diamond} \right\} ,$$

$$\mathbf{a}_{\mathbf{0}} = \operatorname{tr} \left\{ \mathbf{A}_{\mathbf{Z}} \overset{*}{\diamond} _{\mathbf{0}} \right\} ,$$

$$\mathbf{A}_{\mathbf{Z}} = \mathbf{1} \sum_{\mathbf{Q}, \mathbf{p}} \mathbf{J}_{\mathbf{Q}} (\omega_{\mathbf{p}}^{(\mathbf{q})}) \left[\mathbf{A}_{\mathbf{p}}^{(\mathbf{q})} \mathbf{A}_{\mathbf{p}}^{(\mathbf{-q})}, \mathbf{Q} \right] \right] ,$$

$$\mathbf{Q} = \mathbf{I}_{\mathbf{Z}} + \mathbf{I}_{\mathbf{Z}}' ,$$

$$\mathbf{A}_{\mathbf{Z}} = \frac{2\alpha^{2}}{3} \mathbf{I}(\mathbf{I} + 1) \left\langle \mathbf{I}_{\mathbf{Z}} + \mathbf{I}_{\mathbf{Z}}' \right\rangle \left\{ \mathbf{J}^{(1)}(\omega_{\mathbf{T}}) + \mathbf{J}^{(2)}(2\omega_{\mathbf{T}}) \right\} . \qquad (4.8)$$

Eq. (4.7) then becomes 22

where
$$\frac{d}{dt} \left\langle \mathbf{I}_{z} + \mathbf{I}_{z}' \right\rangle = -\frac{1}{T_{1}} \left\{ \left\langle \mathbf{I}_{z} + \mathbf{I}_{z}' \right\rangle - \left\langle \mathbf{I}_{z} + \mathbf{I}_{z}' \right\rangle_{0} \right\}, \quad (4.9)$$

$$\frac{1}{T_{1}} = \frac{3}{2} \int_{0}^{L} h^{2} \mathbf{I}(\mathbf{I} + 1) \left\{ \mathbf{J}^{(1)}(\omega_{\mathbf{I}})^{+} \mathbf{J}^{(2)}(2\omega_{\mathbf{I}}) \right\}. \quad (4.10)$$

The time dependence of magnetization in the plane perpendicular to the magnetic field H is described by the equation

$$\frac{d}{dt} \left\langle I_{x} + I_{x} \right\rangle^{23} = -\left\langle A_{x} \right\rangle^{*},$$

$$\frac{d}{dt} \left\langle I_{x} + I_{x} \right\rangle^{*} = -\frac{1}{T_{2}} \left\langle I_{x} + I_{x} \right\rangle^{*},$$
where
$$\frac{1}{T_{2}} = \lambda^{4} h^{2} I(I+1) \left\{ \frac{5}{8} J^{(2)}(2\omega_{I}) + \frac{15}{4} J^{(1)}(\omega_{I}) + \frac{3}{8} J^{(0)}(0) \right\}. (4.11)$$

IV.2 Spin Lattice Relaxation in Liquid Crystals

pincus 11 has proposed a model for NMR in liquid crystals; in which the elongated molecule has two identical nuclear spins located on the axis separated by a distance a. The mean intermolecular b is considered to be much larger than the nuclear separation a .

Accordingly, the interaction between the spins on the neighboring

A.Abragam , The Principles of Muclear Magnetism (Omford University Press London , 1961).

²³ indicates the interaction representation .

molecules can be neglected. In a smectic liquid crystal the molecular axes tend to be aligned parallel to one another along a direction labellel by the unit vector \vec{n}_0 . However, there exist thermal fluctuations of the unit vector $\vec{n}(r)$ about \vec{n}_0 . These fluctuations may cause nuclear relaxation through the modulation of the dipoledipole interaction of a pair of protons located on one molecule.

The principal mechanisms contributing to the nuclear relaxation are

1. the local fluctuation of the vector $\vec{n}(r)$,

and 2. the diffusite motion of the molecules.

By using Eq. (4.10) and assuming that the orientational fluctuations and diffusive motion are uncoupled, it follows that T_1 due to a dipolar interaction between nuclei on the same molecule, for the case with an external magnetic field H parallel to the molecular axis n_0 , is given by

$$\frac{1}{T_1} = \frac{\omega_D^2 k_B ST}{K} \frac{1}{\left[\omega(D + k/\eta)\right]^{\frac{1}{2}}}$$

where γ = the nuclear resonance frequency,

D = a constant depending upon the strength of the spin-spin interaction ,

 k_B = the Boltzmann constant ,

K = the elastic deformation constant ,

D = the diffusion constant,

= the viscosity ,

S = the order parameter .

Lubensky 24 has calculated the longitudinal nuclear relaxation rate 1/T₁ by assuming the same model for liquid crystal as that of Pincus, and also by introducing the density correlation function. By using the Eq. (4.10), the longitudinal nuclear relaxation rate is given by

$$\frac{1}{T_1} = \frac{k_B T s^2}{K} \frac{1}{[\omega(D + k/\eta)]/k} . \qquad (4.13)$$

The longitudinal nuclear relaxation rate obtained by Lubensky contains the factor S² while that obtained by Pincus contains the factor S. Blinc et al. 25 has calculated the nuclear relaxation rate 1/T₁ and found that it is similar to that of Pincus.

The theoretical value for 1/2, has mot been predicted yet.

IV.3 Chemical Nature of the Samples

IV.3.1 p-((p-Pentyloxycarbonyloxybenzylidene)amino)valerophenone
(PCBAV)

C_5H_1O-C CH=N-C-C_hH_0

The solid-smectic transition temperature is 80°C and the smectic-isotropic transition temperature is110.°C. The texture of

T.C. Lubensky, "Molecular Description of Mematic Liquid Crystals," Physical Review A,2(1970),2497.

^{25&}lt;sub>R.Blinc</sub>, D.L.Hogenboom, D.E O'Reilly and E.M. Perterson, "Spin Relaxation and Self Diffusion in Liquid Crystals," <u>Physical Review Letters</u>, 23(1969),969.

the smectic phase, as observed optically from a polarizing microscope is found to be fan-shaped. According to Sackmann and Demus²⁶, this substance is classified as smectic A.

Excluding the CH group at the center of the molecule, this molecule consists of three different proton groups. They are the benzene protons and the proton groups at the alkyl end chains, viz., pentyl protons and butyl protons.

IV.3.2 Diethyl 4,4-Azoxydibenzoate (DADB)

The solid-smectic transition temperature is 114°C. The smectic-isotropic transition temperature is 123°C. This substance shows the fan-shaped texture first when it is heated from the solid state and shows the polygon texture at the temperature near the smectic-isotropic transition. It is classified as smectic A.

The molecule consists of two different proton groups, benzene protons and the ethyl protons at the two end chains. The end chain protons are of the same kind.

A theoretical model²⁷ for the smectic A phase, based on an

H.Sackmann and D.Demus, Liquid Crystals, edited by Glenn H.Brown, C.J. Dienes and M.M. Labes (Gordon and Breach, Science Publishers, New York, London, Paris, 1967), pp. 341.

W.L. McMillan , "Simple Molecular Model for the Smectic A Phase of Liquid Crystals " Physical Review A , 4(1971), 1233 .

extension of the Maier-Saupe model 28, has been proposed by McMillan. This simple model exhibits three phases, viz., an isotropic liquid, a nematic, and a smectic A phase. This theoretical model leads to a satisfactory agreement with the existing experimental results. The calculated order parameter for the model which exhibits both the smectic A and the nematic phases shows no discontinuity at the smectic-nematic transition. This point is particularly interesting in connection with the present investigation.

IV.4 Concluding Remarks

The essential features of the curves of T₁ plotted versus temperature of PCBAV (Fig. 3.3) and of DADB (Fig. 3.7) are similar. These curves do not simultaneously increase or decrease as the temperature increases. However, the slope changes its sign at the solid-smectic and smectic-isotropic transitions. On the other hand, the magnitudes of T₁ of PCBAV and of DADB are slightly different. This is not surprising in view of the fact that the formula structures of the molecules of both organic compounds, although not exactly identical, are indeed very similar. The proton groups are located at the central rigid part of the molecule, at the benzene rings, and at the alkyl end chains which are presumably flexible ²⁷. It should also be noted that the pentyl and butyl chains of PCBAV are longer, and hence have more protons, than the ethyl chains

G. Maier and A. Saupe, in Liquid Crystals, edited by Glenn H. Brown, G.J. Dienes, and H.M. Labes (Gordon and Breach, Science Publishers, New York . London . Paris, 1967), pp. 195.

of DADB. The difference between PCBAV and DADB is that the molecule of PCBAV is asymmetric while that of DADB is symmetric.

Smectic phase

Starting with the theoretical value of T_1

$$\frac{1}{T_1} = \frac{\omega_D^2 k_B TS^2}{K} \frac{1}{[\omega(D + K/m)]^{\frac{1}{2}}}, \quad (4.13)$$

The viscosity η in this phase has been found to be related to the molecular order and to increase with decreasing temperature. The viscosity is highly anisotropic 30 , being low in the direction parallel to the layers. The elastic constant is known to depend upon the degree of molecular order. This dependence has been measured and found to vary as 3^2 . Thus the temperature and the frequency dependence of T_1 is of the form

$$\left[\left(\begin{array}{cc} s^2/_{\text{N}(+D)}\right]^{\frac{1}{2}}$$

The variation of S with temperature is found to be small 27 in the smectic phase . Consequently , for the case where the diffusion effects are small or when D $\langle\!\langle K/\!M\rangle\!\rangle$,

²⁹ C.G. Kartha and A.R.K.L. Padmini, "Ultrasonic and Viscous Behaviour of Polymesomorphic Liquid Crystals," Journal of the Physical Society of Japan, 31(1971),904

³⁰ S.V. Letcher and A.J. Barlow, "Dynamic Shear Properties of Some Smectic Liquid Crystals," Physical Review Letters, 26(1971),172.

³¹ A. Saupe , Z. Naturforsh. , 15a(1960),815 .

T, is proportional to

the intermolecular dipole-dipole interaction may reasonally be neglected since it is expected to be much reduced by the random thermal motion of the molecules of the main significant contributions are therefore the intramolecular dipole-dipole interactions. The characters of the temperature dependence of T₁ for PCBAV and for DADA are similar to that of the nematic liquid crystal PAA 17,25. The principal difference is that the measured value of T₁ of PAA is longer than those of PCBAV and of DADB. Thus, if in this phase the molecular relaxation is dominated at all frequencies by the elastic fluctuations of the local anisotropy 53, then the temperature and the frequency dependence of T₁ should be the same as that discussed above.

Temperature dependence of T_1

The temperature dependence of T_1 does not strictly follow the theoretical prediction. It appears that simple theoretical ideas cannot satisfactorily account for the temperature dependence of T_n . It is thus necessary to consider the positions of the proton groups in the molecule, viz., the benzene protons and the ethyl, pentyl or butyl protons. From the previous study 14 , it has been shown

Glenn H. Brown , J.W. Doane and Vernon D. Heff , CRC: A Review of Other Structure and Principal Properties of Liquid Crystals (Butterworths London , 1971), pp.50 .

³³ B. Cabane , Muclear Relaxation in Liquid Crystals (8th Colloquium on NMR Spectroscopy ,1971) .

that the end chain groups correspond to the temperature more than the bennene protons . Thus the temperature dependence of \mathbf{T}_1 might have an important contribution from short-range phenomena involved in the motions of ethyl protons in DADB or pentyl and butyl protons in PCBAV . Since ethyl ,pentyl and butyl protons are in a situation incompatible with the assumption used in deriving the expression for \mathbf{T}_1 , they must be considered separately and the foregoing theoretical results should apply to benzene protons only. But the motion of the alkyl groups at the end chain of each molecule might be too fast to cause the nuclear relaxation in the smectic phase. These motions dominate in the solid phase as Dong et al 13 has suggested for PAA . If we consider these motions in view of the collective motion of each cluster of molecules , the motions will be slow enough to contribute to the nuclear relaxation .

As the behavior of T₁ with varying temperature in the region of the top of the peak (Fig. 5.3) changes rather markedly, the reasonable interpretation is that the mechanisms contributing to T₁ are of several different kinds and it does not take a long time to change from one mechanism to another as the temperature increases. However, this does not necessarily mean that the different mechanisms always come from the different groups of protons.

Frequency dependence of T1

The theoretical idea proposed by Pincus 11, that the long-range order fluctuations cause the nuclear relaxation through the modulation of the dipole-dipole interaction, as has been discussed.

previously, predicts the square root frequency $\omega^{1/2}$ dependence for T_1 . The experimental results measured at 7.85, 10.25 and 11.65 MHz support this prediction. We have obtained a straight line on plotting T_1 versus $\omega^{1/2}$ (Fig. 3.8).

Isotropic

The interpretation of the results of the NMR measurements on protons in the isotropic liquid is not quite straightforward, since there are possibly many different contributions to the relaxation rate $1/T_1$, there are many inequivalent protons in molecule, viz., the benzene protons and the protons of two end chains of the molecule. Also it is not clear whether the motion of these molecules can reasonably be described by a model in which they are considered to be "rigid bodies".

The modulation through self diffusion of the intermolecular nuclear interactions is expected to give rise to a frequency independent contribution to 1/T₁. Futhermore, the experimental results show that in the region of the smectic-isotropic transition, T₁ does not depend linearly on the temperature. Presumably, this demonstrates the presence of the smectic short range order clusters. At high temperature the diffusion process is expected to provide the relaxation mechanism as in ordinary liquids:

Final conclusion

In view of the lack of experimental data on the diffusion constant D and viscosity η , it is not possible to state at the moment whether the theory and experiment agree quantitatively.

On the assumptions that the effect of diffusion is small and that the behaviors of the viscosity q is similar to those observed by Kartha and Padmini 28 as discussed above, we cannot conclude that, in the smectic phase , the thermal fluctuation of the smectic order is the only mechanism contributing to T_1 . A correct prediction of the temperature dependence alone cannot totally account for the experimental results . Also it is known that the rate of the slow mode for orientation fluctuation is about 103 sec 1 34, the reciprocal of which is longer than the magnitude of the period of the resenance of field . On the other hand , we cannot conclude that the orientational fluctuations are not contributing to $1/T_1$ at all , because the frequebcy dependence prediction fits the experimental results. Thus it is clear that these orientational fluctuations provide relaxation mechanisms contributing to $1/T_1$. Since the magnitude of T decreases as the temperature increases in the region before the smectic-isotropic transition occurs , we can conclude that in that region the orientational fluctuations are dominated.

The molecules of liquid crystals are comparatively long 27.

The molecule can have complicated internal degrees of freedom such as twisting of the plate aboutaaggivenddrection, stretching and bending. From Raman spectral evidence, there is present the

³⁴Group d'Etude des Cristaux Liquides (Orsay), "Dynamics of Fluctuations in Nematic Liquid Crystals," The Journal of Chemical Physics, 51(1969),816.

accordianlike longtudinal mode of molecules in the liquid crystals 35. In the NMR study, the collective molecular motions, can be considered in addition to the individual molecular motions, viz., a slow cooperative mode which has been proposed by Dong et al 13. There is also the mode involving the displacements of the smectic layers 4,36, in particular the local displacement of the neighboring layers without an angular rotation of the 3-direction. Thus, in the region that the theory cannot at present fully account for, there are many other possible mechanisms different from the orientational fluctuations which can contribute significantly to the relaxation.

The most probable modes are the modes that have the time orders of magnitude which are close to the period of the resonance frequency, viz., the o ientational fluctuations, the transl tion diffusion and the slow cooperative mode which includes the displacements of the layers.

We would like to comment in this regard that the viscosity that appears in the expression for $1/T_1$ is in fact not the total viscosity but only that related to the liquid crystal order . Hence, its temperature dependence will be more pronounced than

³⁵ Joel M. Schnur, "Raman Spectral Evidence for Conformational Changes in the Liquid-Crystal Homologous Series of the Alkowyazowybenzenes," Physical Review Letters, 29(1972),1141.

Moel A. Clark and P.S. Pershan, Light Scattering by Deformation of the Plane Texture of Smectic and Cholesteric Liquid Crystals, Light Scattering by Deformation of the Plane Texture of Smectic and Cholesteric Liquid Crystals, Light Scattering by Deformation of the Plane Texture of Smectic and Cholesteric Liquid Crystals, Light Scattering by Deformation of the Plane Texture of Smectic and Cholesteric Liquid Crystals, Liquid Crys

that of the total viscosity.

In the isotropic region the translational diffusion causes the relaxation except in the vicinity of the smectic-isotropic transition. The results of \mathbb{T}_2 in a smectic phase are of the order of 10 micro-seconds and show a clear break at the smectic-isotropic trasition.

APPENDIX

APPENDIX 1
T1(PCBAV) DATA

T₁ = Spin lattice relaxation time

T₁ = 1.063 7 null/ln 2

where 1.063 is the time scale correction 17

At the proton resonance frequency 7.85 MHz. .

January	18, 1973	2 24 5	Januar	y 20, 1973	
T(°C)	<pre>null(m sec)</pre>	T ₁ (m sec)	T(oC)	7 null(m sec)	T1(m sec)
109.5 107.5 106 104.5 96 93.5 92 88 85 82 80 81	250 230 235 240 220 200 190 150 145 130 100	384 353 361 368 338 308 292 230 223 199 153 184	110 109 107 103 102 100 98.5 97.5 95.5 98.8 85.8 81.5 80 79.78	. 190 200 215 220 225 230 240 230 205 185 170 150 130 120 150	282 307 330 338 345 355 368 353 315 284 261 230 199 184 230 246
Januar	y 19, 1973		January	21, 1973	
T(°)	f null(m sec)	T ₁ (m sec)	T(°)	¶null(m sec)	T ₁ (m sec)
110 107.5 105 102 100 99 97.5 92 88 85.5 83.5	190 210 220 230 240 245 230 200 185 160 140 120	282 322 338 353 368 376 353 307 284 246 215 184 238	110 106.5 104.5 102 100 99 98 95.5 92.5 89.5 84 81.25	192 210 220 230 240 245 220 200 190 180 140 120	295 322 338 353 368 376 338 307 292 276 215 184 168

	y 24, 1973		January	28, 1973	
T(°6)	ศ null(m sec)	T ₁ (m sec)	T(°C) T	null(m sec)	T ₁ (m sec)
109 105 102.5 101 999 96.5 94 90.5 66 63 82 80	198 210 225 25 25 245 220 210 200 170 150 145 140	302 338 345 361 376 338 322 307 261 230 219 215 184	110 107 103 101.5 100.5 99 90 96 92 67 84.5 61.75	195 215 225 240 240 243 235 210 200 190 160 130	299 330 345 353 368 373 360 322 307 293 246 200 169
70	190	292	79 77	130 140	199 215

January 26, 1973

T(OC)	Tnull(m sec)	$T_1(m \text{ sec}$)
110	192	295	
109	205	314	
106	210	322	
104	220	538	
101.5	230	353	
100	235	361	
99	205	376	
98.5	240	368	*
96.5	215	530	
93	200	367	
89	185	284	
199	200	307	
93	135	207	
81.5	125	102	
80	115	176	
70.25		230	
77	170	261	

APPENDIX 2

T₁(PCBAV) DATA

T₁ = spin lattice relaxation time

 $T_1 = 1.063$ 7 null/ln2

where 1.063 is the time scale correction 17

At the proton resonance frequency 10.25 MHz.

Jı	ine 30	, 1972		July 5,	1972	
T	(°C)	<pre> π null(m sec)</pre>	r ₁ (m sec)	T(°C)	% null(m sec)	T ₁ (m sec)
10 10 10	13.5 10 06 05 01: 99 89	185 175 180 210 244 265 265 255	284 268 276 322 374 406 406 391	130 125 122 143 116.5 115.5 114 112 105 103	290 288 270 265 230 210 210 202 178 180	445 442 414 391 353 322 322 313 275 276
J.	uly 2,	1972		July 7,	1972	
T	(°C)	q' null(m sec)	T ₁ (m sec)	T(OC)	ซ null(m sec)	T ₁ (m s ec)
1 1 1 1 3	21.1 18 16 10 02 96 91.5 90 87	270 265 250 195 200 225 238 230 222	414 406 384 298 307 345 365 353 338 305	124.6 120 114.5 112 109.5 106 104	290 178 250 230 198 200 170	445 426 384 353 320 353 261

January	14, 1973		January	15, 1973	
T(°C)	<pre> ⟨ null(m sec)</pre>	T ₁ (m sec)	T(°C)	7 null(m sec)	T ₁ (m sec)
109.5 108 106 104.5 102 101 100 .95 94 92 .90 88 85 82 80	230 240 258 300 260 280 270 260 220 210 200 180 160 145 140	352 368 396 460 445 430 414 399 338 322 307 276 245 222 214	109 107 104 101 99.5 96.5 94.5 93 90 88.5 87 82 80 76.5	210 215 220 240 250 230 210 200 190 180 170 160 140 140	321 330 338 369 384 353 321 307 292 276 261 246 215 256 321
			January	16, 1973	
T(°C)	7 null(m sec)	T ₁ (m sec)	T(°C)	7 null(m sec)	T(m sec)
80 81•5 84 38 89 90	170 180 190 200 220 240	261 276 292 307 338 368	110 107 104 101 99 97•5	210 215 220 240 250 230 210	307 330 338 369 384 353 321
35%	15, 1973		96.5 94.5	200	307
T(°C)	T'null(m sec)	T ₁ (m sec)	93 90	190 180	292 272
108 106.5 104 102 96 92.5 90 89	210 230 235 240 220 200 190 180	322 253 361 368 338 307 292 276 246	88.5 87 82 80 78 76.5	170 160 140 140 160 200	261 246 215 215 256 307

January 17, 1973		March 25,	1973	
T(°C) % null(m sec)	T ₁ (m sec)	Τ(°C) ~	null(m sec)	T ₁ (m sec)
108 210 104.5 230 103 235 101 250 98.5 260 96 240 93 220 90 200 87.5 190 84 180 80 170 79 130	321 351 361 384 399 368 338 307 292 276 261 276	120 119 118.25 117 116 115.5 113.75 112.25 111	320 295 285 275 265 250 235 225 218 210	452 437 422 406 384 361 345 334 321
March 15,1973				
T(°C) ~ null(m sec)	T ₁ (m sec)			
114 240 113 225 111 220 110 210 108 220 106.5 240 103 250 99 260 80 120	368 345 338 322 338 368 364 399 184			
March 25, 1973				
T(°C) 7 null(m sec)	T ₁ (m sec)			
116.5 260 115.75 250 114 235 113.5 230 111.5 225 110.5 215	399 384 361 353 345 330			

APPENDIX 3

T₁ (PCBAV) DATA

 $T_1 = Spin lattice relaxation time$

 $T_1 = 1.063$ 7 null/ln 2

where .1.063 is the time scale correlation 17

At the proton resonance frequency 11.65 MHz.

January	31, 1973		February 10, 1973	
T(OC)	7 null(m sec)	T ₁ (m sec)	$T(^{\circ}C)$ 7 null(m sec) $T_1(m \text{ sec})$	
110 108.25 104.8 103.8 101.8 99 98 95.5 92 87.5 84.5 82 80.5	245 250 260 265 275 290 285 260 240 210 180 160 145 138	376 384 399 406 422 445 437 399 368 322 276 246 222 212	110 225 345 107.5 235 360 103.5 250 383 102.5 255 391 100 270 414 99 285 436 97.75 250 384 96. 240 368 94.5 225 345 92 200 307 89 180 276 82.25 150 230 81.20 140 215 80 135 207 78.5 140 214	
Februar	y 9, 1973			
T(OC)	∀ null(m sec)	T ₁ (m sec)	February 11, 1973 T(OC) T null(m sec) T ₁ (m sec)
110 108.5 105.8 102.2 101.2 100.5 99 97.8 94.2 91.75 90.2 87.75 83.5 82	230 245 250 270 280 285 292 285 255 245 235 210 190 160 135	353 376 384 414 436 448 436 391 376 360 322 292 246 207	110 218 334 107.5 230 353 103.5 255 361 102 265 406 100.25 275 421 99 285 437 97.75 270 430 95.2 250 384 92.6 230 353 87 205 314 32.75 160 245 80 140 215 79.2 160 245	

February 12, 1973			February 14, 1973		
T(OC)	7 null(m sec)	T ₁ (m sec)	T(OC)	ซี null(m sec)	T ₁ (m sėc)
110 107 105 103.5 102 100 99 98 96.75 95.5 92 88 85.75	225 230 245 225 260 275 283 278 265 255 230 195 175	345 353 351 399 421 434 426 406 391 353 299 268 222	109.5 108.25 104.8 101 100 99 98 97.25 91.75 88.5 86 83.5	220 225 245 265 270 282 250 245 210 190 175 155 150	337 345 376 406 414 433 384 376 322 291 268 238 230
80 79	138 155	212 238		ry 14, 1973	
77.5 75.5	180 200	· 276 307	T(°C)	7 null(m sec)	
Februar	y 13, 1973		110 108 105	225 230 240	345 353 368
T(°C)	7 null(m sec)	T ₁ (m sec)	103 101 . 5	250 258	384 396
110 108.5 106.2 104 101 100 99 98 96 92.5 91 86.75 83 80.75 80 79 77	225 230 245 255 265 275 280 270 260 240 220 195 163 145 132 150 165	345 353 376 391 406 421 430 415 399 368 338 299 253 202 230 253 278	100.25 99 98.25 97 93 89.75 86 83.5 81.5 80 79 77.75 76	275 282 270 250 230 200 185 175 155 145 130 150 158 165 170	421 433 414 384 353 307 284 268 238 222 199 230 242 253 261

APPENDIX 4

T₁ (DADB) DATA

 $T_1 = Spin$ lattice relaxation time

 $T_1 = 1.063$ 7 null/ln 2

where 1.063 is the time scale correction. 17

At the proton resonance frequency 10.25 MHz.

September 1, 1972		January	7, 1973	
T(°C) { null(m sec)	T ₁ (m sec)	T(°C)	7 null(m sec)	T ₁ (m sec)
120 190 119 215 118 200 114 150 112 170	292 330 307 230 261	120 118 116 114 112	160 170 140 120 140	246 261 215 184 215
October 6, 1972		January	17, 1973	
T(°C) 7 null(m sec)	T ₁ (m sec)	T(°C)	7 null(m sec)	T ₁ (m sec)
120 200 119 220 117 240 116 210 114 190	307 338 368 311 292	118 116 115•5 114 113	110 90 85 80 95	169 138 130•5 123 146
January 7, 1973		January	17, 1973	
T(°C) 7 null(m sec)	T ₁ (m sec)	T(°C)	7 null(m sec)	T ₁ (m sec)
120 125 118 190 115,5 150 114,5 130 114 120 112 130 108 195	192 292 230 199 184 199 299	119 117 116 114 113	200 190 160 120 150	307 292 246 184 230

Februar	y 27, 1973		March 1	6, 1973	
T(°C)	7 null(m sec)	T ₁ (m sec)	T(°C)	7 null(m sec)	T ₁ (m sec)
120 119 118 116.5 114 113	190 210 200 180 140 155	291 322 307 276 214 238	126 125 124 123 121 119	220 210 190 160 180 200	338 322 291 246 276 307
Februar	ry 28, 1973		March 1	7, 1973	
T(°C)	7 null(m sec)	T ₁ (m sec)	T(°C)	7 null(m sec)	T ₁ (m sec)
120 119 117.5 116.5 114 113 111.5	195 215 195 175 130 150 165	299 330 299 268 199 230 253	131 130 129 128 127 126.5 125 123.5 123	350 335 310 280 250 240 230 170 150	537 475 430 384 368 353 261 230 276
T(°C)	7 null(msec)	T ₁ (m sec)	120 119	195 200	299 307
124.5 123 121.5 120 119 117.5 115	200 130 155 138 158 148 120	307 276 238 212 242 227 184 169	116.5 115.5 114 112.25	160 165 145 200	276 253 222 307

APPENDIX 5

T₁(DADE) DATA

T₁ = Spin lattice relakation time

 $T_1 = 1.063$ 7 null/ln 2

where 1.063 is the time scale correction. 17
At the proton resonance frequency 11.65 MHz.

February 16, 1973			February 17, 1973		
T(OC)	7 null(m sec)	T ₁ (m sec)	T(OC)	7 null(m sec)	T ₁ (m sec)
120 119 118 117.5 115.25 120 119 118 116.5 115	210 220 200 188 165 190 200 190 18 0 165	322 338 307 288 253 292 307 292 276 253	120 119 117.5 116.5 115.25 114.5 114	210 225 200 180 175 168 160	322 345 307 276 269 258 246
120 119 118 117•25 115•5	200 222 200 190 170	307 325 307 292 261			