CHAPTER III

DEGREE SEQUENCE

3.1 Degree Sequence

Let (d_1, d_2, \ldots, d_p) be a sequence of non-negative integer. If there exists a hypergraph H with vertices v_1, v_2, \ldots, v_p such that $d_H(v_i) = d_i(d_H^r(v_i) = d_i)$ we say that $\pi = (d_1, d_2, \ldots, d_p)$ is the degree sequence (r-degree sequence) of H. If $d_1 \!\!>\! d_2 \!\!>\! \ldots \!\!>\! d_p$ we say that $\pi = (d_1, d_2, \ldots, d_p)$ is non-increasing degree sequence (non-increasing r-degree sequence) of H.

Havel and Hakimi [4], as cited in [1], found that if we let $\pi = (d_1, d_2, \ldots, d_p)$ be a sequence of non-negative integer in which $d_1 \geqslant d_2 \geqslant \ldots \geqslant d_p$ then π is a degree sequence of 2-graph if and only if $\pi' = (d_2^{-1}, d_3^{-1}, \ldots, d_{d_1^{+1}}^{-1}, d_{d_1^{+2}}, \ldots, d_p)$ is a degree sequence of 2-graph.

The question "which sequence of non-negative integers are r-degree sequence?" is answered by A.K.DEWDNEY [3]. We state and prove this result in theorem 3.1.2. First we prove the following lemma.

Lemma 3.1.1 Let $\pi = (d_1, d_2, \dots, d_p)$ be a non-increasing r-degree sequence. Then there exists an r-graph $H = (X, \mathcal{E})$ with vertices v_1, v_2, \dots, v_p such that

(3.1.1.1) If has degree sequence π and

(3.1.1.2) H' = (X', ξ '), where X' = X \ {v₁}, ξ ' = $\{E \setminus \{v_1\}/v_1 \in E \text{ and } E \in \xi\}$, has a non-increasing (r-1)-degree sequence.

Proof Let $H^* = (X^*, \xi^*)$ be an r-graph with vertices v_1, v_2, \ldots, v_p such that

$$d_{i}^{r}$$
 (v_i) = d_i, i = 1,2,...,p

Let $H^{*'} = (X^{*'}, \xi^{*'})$, where $X^{*'} = X^{*} - \{v_1\}, \xi^{*'} \in [E^{*}, v_1] / v_1 \epsilon$ E*

and $E^{*} \epsilon \xi\}$, Thus $H^{*'}$ is an (r-1)-graph, whose (r-1)-degree sequence is $(d_{H^{*'}}^{r-1}(v_2), \dots, d_{H^{*'}}^{r-1}(v_p))$. If $(d_{H^{*'}}^{r-1}(v_2), d_{H^{*'}}^{r-1}(v_3), \dots, d_{H^{*'}}^{r-1}(v_p))$ is not a non-increasing sequence, let k^{*} be any integer for which

$$d^{r-1}_{\mathbb{R}^{*}}(v_{\mathbf{k}}) < d^{r-1}_{\mathbb{R}^{*}}(v_{\mathbf{k}+1}) \qquad \dots (3.1.1.3)$$

hence there exists (r-2) subset S_1 of $X^{*'}$ - $\{v_k, v_k\}$ such that $S_1 \cup \{v_k\}$ and $S_1 \cup \{v_k\}$ and $S_1 \cup \{v_k\}$ and $S_1 \cup \{v_k\}$ be $\{v_k\}$. Let $Y_1 = S_1 \cup \{v_1\}$. Since $S_1 \cup \{v_k\}$ and $\{v_k\}$ and $\{v_k\}$ is therefore $v_k\}$ and $\{v_k\}$ an

$$d_{\dot{\mathbf{H}}}^{\mathbf{r}}(\mathbf{v_i}) = d_{\dot{\mathbf{H}}}^{\mathbf{r}-1}(\mathbf{v_i}) + d_{\dot{\mathbf{H}}}^{\mathbf{r}}(\mathbf{v_i}) \dots (3.1.1.4).$$

In particular, for the case $i = k^*$ and $i = k^*+1$, we have

$$d_{*}^{r}(v_{*}) = d_{*}^{r-1}(v_{*}) + d_{*}^{r}(v_{*}) + \dots (3.1.1.5)$$

$$d_{*}^{r}(v_{*}) = d_{*}^{r-1}(v_{*}) + d_{*}^{r}(v_{*}) \dots (3.1.1.6)$$
H k +1 H k +1

From the assumption that (d_1, d_2, \dots, d_p) is non-increasing we have

$$d^{r}_{*}(v_{*}) \ge d^{r}_{*}(v_{*}) \dots (3.1.1.7)$$

From (3.1.1.5), (3.1.1.6), and (3.1.1.7) we have

$$d_{*}^{r-1}(v_{*}) + d_{*}^{r}(v_{*}) \ge d_{*}^{r-1}(v_{*}) \ge d_{*}^{r-1}(v_{*}) + d_{*}^{r}(v_{*})...(3.1.1.8)$$

From (3.1.1.3) and (3.1.1.8), we get

$$d^{r}_{*}(v_{*}) > d^{r}_{*}(v_{*}),$$

thus there exists an (r-1)- subset of T_2 of $X''-\{v_k, v_k\}$ such that $T_2 \cup \{v_k\} \in \mathcal{E}^{*''}$ and $T_2 \cup \{v_k\} \notin \mathcal{E}^{*''}$. Let $E_k^* = T_2 \cup \{v_k\}$ and $E_k = T_2 \cup \{v_k\} \in \mathcal{E}^*$ and $E_k = T_2 \cup \{v_k\} \in \mathcal{E}^*$ and $E_k = T_2 \cup \{v_k\} \in \mathcal{E}^*$.

Construct a new r-graph $H = (X, \xi)$ where $X = X^*$ and $\xi =$

$$= (\xi^* \setminus \{E_*^*, E_*^*\}) \cup \{E_*, E_*\}.$$

Hence H is a r-graph with degree sequence (d_1, d_2, \dots, d_p) . And construct a new (r-1)-graph H' = (X', ξ') where $X' = X - \{v_1\}$ and $\xi' = \{E - \{v_1\}/v_1 \in E \text{ and } E \in \xi'\}$. From definition of ξ' we see that $S_1 \cup \{v_k *\} \in \xi'$ and $S_1 \cup \{v_k *_{k+1}\} \notin \xi'$. So H' is a (r-1)-graph in which all vertices have the same (r-1)-degree excepts two vertices v_k and v_k . i.e. $d_{H'}^{r-1}(v_k)$ has increased by unity, while $d_{H'}^{r-1}(v_k)$ has decreased by unity. Inspecting the formula $d_{H'}^{r-1}(v_k)$ has decreased by unity. Inspecting the formula $d_{H'}^{r-1}(v_k)$ has $d_{$

the term $k^* \cdot d_{H^!}^{r-1}(v_k^*)$ has increased by k^* , while the next term $(k^*+1) \cdot d_{H^!}^{r-1}(v_k^*)$ has decreased by k^*+1 . Hence $\sum_{i=2}^{p} i \cdot d_{H^!}^{r-1}(v_i^*)$ has decreased by 1. If the new sequence $(d_{H^!}^{r-1}(v_2^*), d_{H^!}^{r-1}(v_3^*), \ldots, d_{H^!}^{r-1}(v_p^*))$ in H' is not non-increasing then we can find a new integer k such that

$$d_{H'}^{r-1}(v_k) < d_{H'}^{r-1}(v_{k+1})$$
,

and continuing the same process on H'. Each time we work the $\sum_{i=1}^{p} i \cdot d_{H'}^{r-1}(v_i) \text{ has decreased by 1. Since } \sum_{i=2}^{p} i \cdot d_{H'}^{r-1}(v_1) \text{ is a positive integer. So } \sum_{i=2}^{p} i \cdot d_{H'}^{r-1}(v_i) \text{ has decreased until we arrive at an } (r-1)-\text{graph in which the sequence } (d_{H'}^{r-1}(v_2), d_{H'}^{r-1}(v_3), \ldots, d_{H'}^{r-1}(v_p)) \text{ is non-increasing.}$

Theorem 3.1.2

A non-increasing sequence $\pi = (d_1, d_2, \ldots, d_p)$ is an r-degree sequence if and only if there is a non-increasing (r-1)-degree sequence $(d_1^i, d_2^i, \ldots, d_q^i)$ for which the following conditions hold:

(3.1.2.1)
$$\sum_{i=1}^{q} d_i' = (r-1)d_1$$

(3.1.2.2) $(d_2 - d_1', d_3 - d_2', \dots, d_{q+1} - d_q', d_{q+2}, \dots, d_p)$ is a r-degree sequence.

Proof we prove the sufficiency part.

Let H' = (X', ξ') be an (r-1)-graph with vertices v_2, \dots, v_{q+1} such that

$$d_{H^{i}}^{r-1}(v_{i}) = d_{i-1}^{i}, i = 2,3,..., q+1.$$

Let $H'' = (X'', \xi'')$ be an r-graph with vertices v_2, v_3, \dots, v_p such that

$$d_{H''}^{r}(v_{i}) = d_{i} - d'_{i-1}, i = 2,..., q+1$$

$$= d_{i}, i = q+2,...,p.$$

Let v_1 be a vertex not in X'. Define $\mathcal{E}''' = \{\{v_1\} \cup E' \mid E' \in \mathcal{E}'\}\}$ so |E| = r for every $E \in \mathcal{E}'''$.

Let $H = (X, \mathcal{E})$, where $X = \{v_1\} \cup X''$, $\mathcal{E} = \mathcal{E}'' \cup \mathcal{E}'''$. Since |E| = r for every $E \in \mathcal{E}$, then H is an r-graph. Observe that $d_H^r(v_1) = |\mathcal{E}'| = |\mathcal{E}'''|$. By remark 2.3.1, the number of (r-1)-edges in H' is $d_H^{r-1}(v_1) = d_H^{r-1}(v_1) = d_H^{r-$

Thus
$$d_{H}^{r}(v_{1}) = \frac{\sum_{i=2}^{q+1} d_{H}^{r-1}(v_{i})}{\sum_{r=1}^{q+1}}$$

$$= \frac{\sum_{i=2}^{q+1} d_{i-1}^{r}}{r-1},$$

$$= \frac{\sum_{i=1}^{q} d_{i}^{r}}{r-1},$$

thus
$$d_{H}^{r}(v_{1}) = \frac{(r-1) d_{1}}{r-1}$$

Hence
$$d_H^r(v_1) = d_1$$
.

For each i = 2,3,..., q+1, observe that

$$d_{H}^{r}(v_{i}) = d_{H''}^{r}(v_{i}) + d_{H'}^{r-1}(v_{i}),$$

$$= d_{i} - d'_{i-1} + d'_{i-1},$$

$$= d_{i}.$$

While for each i = q+2, q+3, ..., p,

$$d_{H}^{r}(v_{i}) = d_{H''}^{r}(v_{i}) = d_{i}$$
. Therefore $d_{1}, d_{2}, \dots, d_{p}$

is an r-degree sequence.

Next we prove the necessary part.

By lemma 3.1.1 there exists an r-graph H = (X, E) such that H has degree sequence \mathcal{T} with vertices $v_1, v_2, ..., v_p$, and $H' = (X', \xi')$ where $X' = X - \{v_1\}$ and $\xi' = \{E - \{v_1\} | v_1 \in E \text{ and } E \in \xi\}$ has a non-increasing (r-1)-degree sequence $(d_H^{r-1}(v_2), d_H^{r-1}(v_3), \dots)$.., $d_{H'}^{r-1}$ (v_D)). By remark 2.3.1 the number of (r-1)-edges in H' is $\sum_{i=2}^{p} d_{H^{\tau}}^{r-1} (v_i)$. Let q be the largest integer satisfying $d_{H^{\dagger}}^{r-1} (v_{q+1}) > 0$ thus 005069 $d_{H_i}^{r-1}(v_i) = 0$ for i > q+1 $\begin{array}{ccc}
 & p & & q+1 \\
 & \Sigma & d' & (v_i) & & \Sigma & d_{H'}^{r-1}(v_i) \\
\underline{i=2} & H' & & \underline{i=2} & & r-1
\end{array}$

By definition of ξ ', we observe that the number of (r-1)edges in H' is d_H^r (v_1), therefore

thus

$$\frac{q+1}{\sum_{i=2}^{\Sigma} d_{H^{i}}^{r-1}(v_{i})}{r-1} = d_{H}^{r}(v_{1}),$$

$$\frac{q+1}{\sum_{i=2}^{\Sigma} d_{H^{i}}^{r-1}(v_{i})} = (r-1)d_{H}^{r}(v_{1}),$$

$$= (r-1)d_{1}.$$
Define
$$d_{i}^{r} = d_{H^{i}}^{r-1}(v_{i+1}), \quad i = 1, 2, ..., q,$$

1 17491058

therefore $(d'_1, d'_2, \ldots, d'_q)$ is a (r-1) non-increasing degree

degree sequence of H' and
$$\sum_{i=1}^{q} d_i^r = \sum_{i=1}^{q} d_{H^r}^{r-1} (v_{i+1})$$
,
$$= \sum_{i=2}^{q+1} d_{H^r}^{r-1} (v_i)$$
,
$$= (r-1) d_1$$
,

thus the condition 3.1.2.1 is satisfies.

Let $X'' = X - \{v_1\}$ and let $\xi'' = \{E \mid E \in \xi \text{ and } v_1 \notin E\}$.

Hence $H'' = (X'', \xi'')$ is an r-graph.

Observe that for any vertex v_i , i = 2, 3, ..., p.

$$d_{H}^{r}(v_{i}) = d_{H'}^{r-1}(v_{i}) + d_{H''}^{r}(v_{i}),$$

$$d_{H''}^{r}(v_{i}) = d_{H}^{r}(v_{i}) - d_{H'}^{r-1}(v_{i}),$$
since
$$d_{H}^{r-1}(v_{i}) = 0 \quad \text{for } i > q+1$$
thus
$$d_{H''}^{r}(v_{i}) = d_{i} - d_{i-1}^{r}, \quad i = 2, ..., q+1$$

$$= d_{i}; \quad i > q+1$$

So the sequence $(d_2 - d_1', d_3 - d_2', \dots, d_{q+1} - d_q', d_{q+2}, \dots, d_p)$ is an r-degree sequence.