CHAPTER III

CHARACTERIZATION OF THE ARC

A topological space is called an <u>arc</u> if it is homeomorphic to the unit interval subspace, [0, 1], of R.

3.1 Theorem. If A is an arc, then A is a compact, connected, metrizable space with exactly two non-cut points.

Proof. By theorem 2.25, [0, 1] is a connected subspace of \mathbb{R} ; by theorem 2.12, [0, 1] is a metrizable space, and by theorem 2.42, [0, 1] is a compact space. Thus, since connectedness, compactness and metrizability are topological properties, any arc is connected, compact and metrizable. By theorem 2.26, the open interval $\{x \mid 0 < x < 1\}$ is connected. By theorem 2.20, any set between a connected set and its closure is connected. Hence, $\{x \mid 0 \le x < 1\}$ and $\{x \mid 0 < x \le 1\}$ are connected. This means that 0 and 1 are non-cut points of [0, 1]. Now, let $0 . If <math>\mathbb{M} = \{x \mid 0 \le x < p\}$ and $\mathbb{N} = \{x \mid p < x \le 1\}$, then $[0, 1] - \{p\} = \mathbb{N} \cup \mathbb{M}$ separation and p is a cut point of [0, 1]. Since the property of being either cut point or non-cut points. #

Let p and q be points of a connected space S. A point x in S is said to separate p and q in S if there exists a separation $P_{\mathbf{x}} \cup Q_{\mathbf{x}}$ of S - $\{\mathbf{x}\}$ such that $p \in P_{\mathbf{x}}$ and $q \in Q_{\mathbf{x}}$. Thus, if x separates

p and q in S, x must be a cut point of S. Define E(p, q) to be $\{x \mid x = p, \text{ or } x = q, \text{ or } x \text{ separates } p \text{ and } q \text{ in S}\}.$

3.2 <u>Lemma</u>. Let S be a connected space; let p and q be two distinct points of S; let a and b be two distinct points of $E(p, q) - \{p, q\}$. Let $P_a \cup Q_a$ be any separation of $S - \{a\}$ such that $p \in P_a$ and $q \in Q_a$, let $P_b \cup Q_b$ be any separation of $S - \{b\}$ such that $p \in P_b$ and $q \in Q_b$. Then $P_a \cap P_b$ or $P_b \cap P_a$, where C denotes the proper subset relation.

Proof. Since $S - \{a\} = P_a \cup Q_a$ and $P_a \cap Q_a = \phi$ and $b \neq a$, $b \in P_a$ or $b \in Q_a$, but not both (a) Let $b \in P_a$. By corollary 2.32, $Q_a \cup \{a\}$ is a connected subset of S. Furthermore, since $b \neq a$ and $b \in P_a$, $b \notin Q_a \cup \{a\}$. Hence $Q_a \cup \{a\} \subseteq P_b \cup Q_b$. Since $q \in Q_a \cup \{a\}$ and $q \in Q_b$, the connected set $Q_a \cup \{a\} \subseteq Q_b$, by theorem 2.18. If Hence $(Q_a \cup \{a\}) \cap (P_b \cup \{b\}) = \phi$. Since $Q_a \cup \{a\} \cup P_a = S$, $P_b \cup \{b\} \subseteq P_a$. This means, since $b \notin P_b$, that $P_b \subseteq P_a$. (b) Let $b \in Q_a$. Since $Q_a \cap P_a = \phi$ and $b \neq a$, $b \notin P_a \cup \{a\}$. Hence, since $S - \{b\} = P_b \cup Q_b$, $P_a \cup \{a\} \subseteq P_b \cup Q_b$. As above, since $P_a \cup \{a\}$ is connected and $P \in P_b \cap (P_a \cup \{a\})$, $P_a \cup \{a\} \subseteq P_b$. Since $A \in P_a$, $A \in P_a$.

3.3 Corollary. If a and b are any two distinct points of E(p, q) - $\{p, q\}$, then $P_a \subset P_b$ is equivalent to a $\in P_b$, where P_a and P_b are as defined in the lemma 3.2.

Proof. In the proof of lemma 3.2, it was established that

 $b \in P_a$ implied that $a \in Q_b$. It follows from this then that if $a \notin Q_b$, then $b \notin P_a$. Hence, if $a \notin Q_b$, $b \in Q_a$. It was also shown that $b \in Q_a$ implied that $P_a \subset P_b$. Thus it follows that if $a \in P_b$, then $a \notin Q_b$, and so $P_a \subset P_b$. Conversely, let $P_a \subset P_b$. Then $P_b \notin P_a$. From the proof lemma 3.2, this means that $b \notin P_a$. Thus, $b \in Q_a$. This was proved to imply that $a \in P_b$. #

By a <u>linearly ordered set</u> we mean a pair (L, <*), where L is a set, and <* is an order relation on L which is (1) x <* x for no x in L, (2) x <* y implies y * x, (3) x <* y and y <* z implies x <* z, and (4) x <* y or y <* x for any two distinct points x and y in L. We write x <* y if x = y or x <* y. Let S be a connected space. Let p and q be distinct points of S. A relation <* on E(p, q) is defined as follows. <* = $\{(x, y) \mid (x = p \text{ and } y \neq p)\}$ or $\{y = q \text{ and } x \neq q\}$ or $\{P_x \subset P_y\}$, for $\{p \neq x \neq q\}$ and $\{p \neq y \neq q\}$ where of course $\{P_x \cup Q_x\}$ is any separation of S - $\{x\}$ such that $\{p \in P_x\}$ and $\{p \in Q_y\}$.

The following lemma follows from lemma 3.2 and the definition of <* on E(p, q).

3.4 <u>Lemma</u>. <* is a linear order relation on E(p, q) in the connected space S. #

Thus, in any connected space S, each two-point set $\{p, q\}$ determines a linearly ordered subset (E(p, q), <*).

3.5 <u>Lemma</u>. Let S be a compact, connected T_1 -space with exactly two non-cut points, p and q. Then, S = E(p, q).

<u>Proof.</u> Let $x \in S$ and $x \notin E(p, q)$. Then $p \neq x \neq q$. Hence x is a cut point of S. Since x does not separate p and q in S, there exists a separation $A \cup B$ of S - x such that p and q are both in A. Since S has no non-cut points but p and q, it is a contradiction by corollary 2.41. Thus, every point of $S - \{p, q\}$ separates p and q in S, and so S = E(p, q). #

The lemma 3.5 established then that any compact, connected T_1 -space with exactly two non-cut points is linearly ordered by <*.

Let S be a set and < any linear order relation on S. Let the topology on S be the topology having as a subbase $\{A \mid (A \subseteq S)\}$ and $\{A = \{x \mid x < b\} \text{ or } A = \{x \mid a < x\} \text{ for a and b in S}\}$. This topology is called the <u>order topology</u> for S determined by <. The following lemma is clear.

- 3.6 <u>Lemma</u>. Let S be any non-empty set and < any linear order relation on S. The order topology determined by < is Hausdorff. #
- 3.7 Theorem. Let (S, Υ) be a compact, connected, Hausdorff space with exactly two non-cut points. Then the original topology Υ on S is an order topology for S.

<u>Proof.</u> By lemma 3.4 and 3.5, S can be linearly ordered by the relation <*. S = E(p, q), where p and q are the two non-cut

points of S. Let $0-\Upsilon$ denote the order topology for E(p, q) determined by <*. Let B be a base element determined by the defining subbase for the order topology. $B \subseteq S = E(p, q)$, $B = \{x \mid x <* b \}$ for $b \in S\}$, $B = \{x \mid a <* x \}$ for $a \in S\}$ or $B = \{x \mid a <* x <* b \}$ for $a, b \in S\}$. Now $a \in T$. If $a \neq q$ and $a \neq b \neq q$, then by the definition of <* and by corollary 3.3, $a \in T$ for $a \in S$ such that $a \in T$ for $a \in T$

3.8 Theorem. If (D, <*) is a countable, linearly ordered set and if <* has the following two properties: (1) <* determines no first and no last element in D, and (2) for any two distinct elements a and bo in D such that a <* b, there is at least one other element c such that a <* c <* b; then there exists a one-one order-preserving function from D onto the rational numbers in the open interval (0, 1).

<u>Proof.</u> Since both D and the set Q of rational in (0, 1) are countable, D can be represented as $\{d_1, d_2, \ldots\}$, where $d_i \neq d_j$

for $i \neq j$, and Q can be represented as $\{r_1, r_2, \ldots\}$, where $r_i \neq r_j$ for $i \neq j$. The given linear ordering on D will be denoted, as in the hypothesis, by <*. The natural ordering on the set of all natural numbers and on the set Q of rational numbers in (0, 1) will both be denoted by <.

A. A one-one function f from D into Q is defined. Let $f(d_1) = r_1$. Let $f(d_2) = r_1$, where i_2 is the smallest natural number in the set $\{n \mid r_n < r_1, \text{ if } d_2 < * d_1; \text{ and } r_1 < r_n \text{ if } d_1 < * d_2\}.$ This set is not empty since the natural ordering on Q does not determine a first or a last element. Thus, if d₁ <* d₂, f(d₁) < $f(d_2)$; and if $d_2 < d_1$, $f(d_2) < f(d_1)$. Assume, now, that $f(d_1)$, $f(d_2)$, ..., $f(d_{k-1})$, where $k \ge 3$, have all been defined in Q so that $f(d_i) < f(d_j)$, if $d_i < d_j$ for $1 \le i$, $j \le k-1$. Consider d_k . Since D is linearly ordered by <*, the subset $\{d_1, d_2, \dots, d_{k-1}\}$ is also linearly ordered by <*. Let $d_1 <* d_2 <* ... <* d_k$ be the linear ordering on $\{d_1, d_2, \dots d_{k-1}\}$ induced by <* on D. $d_k \ll d_i$ for all i = 1, 2, ..., k-1; then, since Q has no first element, there is a rational number r in (0, 1) such that r $r < f(d_{j_1}) < f(d_{j_2}) < < f(d_{j_k})$. Hence, if $A = \{t \mid r_t < f(d_{j_1})\}$, then $A \neq \phi$. Let q be the smallest natural number in A. Define $f(d_k) = r_q$. Similarly, if $d_{j_{k-1}} < d_k$, then $d_{j_i} < d_k$ for i = 1, 2, ..., k-1. Since Q has no last number, $\{s \mid f(d_{j_{k-1}}) < r_{s} \neq \emptyset$. Let m be the smallest natural number in this set. Define $f(d_k)$ = r_m . Then $f(d_j) < ... < f(d_k)$. Lastly, for some one

 $i=1,\ 2,\ \ldots,\ k-2;\ let\ d_j\ ^{*}\ d_k\ ^{*}\ d_j\ _{i+1}$ two rationals lies a third rational, $\{n\mid f(d_j)< r_n< f(d_j)\}\neq \emptyset.$ Let p be the smallest natural number in this set. Define $f(d_k)=r_p$. Thus f has been defined by induction on all of p in such way that (1) if p if p if p is the smallest subscript in the given listing p is the smallest subscript in the given listing p in that p is the smallest subscript in the given listing p is such that p is the smallest subscript in the given listing p is such that p is the smallest subscript in the given listing p is the smallest subscript in the given listing p in that p is the smallest subscript in the given listing p in that p is the smallest subscript in the given listing p in that p is the smallest subscript in the given listing p in that p is the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p is the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given listing p in the smallest subscript in the given p

B. Next it is shown that f is onto. r_1 is in the range of f since $f(d_1) = r_1$. Let $r_1, r_2, \ldots, r_{k-1}$ be in the range of f for some natural number $k \geq 2$. Then $\{m \mid \{r_1, r_2, \ldots, r_{k-1}\} \subseteq \{f(d_1), f(d_2), \ldots, f(d_m)\}\} \neq \emptyset$. Let q be the smallest natural number in this set. $\{r_1, r_2, \ldots, r_{k-1}\} \subseteq \{f(d_1), f(d_2), \ldots, f(d_q)\}$. If $r_k \in \{f(d_1), f(d_2), \ldots, f(d_q)\}$ then, of course, r_k is in the range of f. Assume, then, that $r_k \notin \{f(d_1), f(d_2), \ldots, f(d_q)\}$. There are three cases to consider : (1) $r_k < f(d_1)$ for all $j = 1, 2, \ldots, q$; (2) $r_k > f(d_1)$ for all $j = 1, 2, \ldots, q$; and (3) $f(d_1) < r_k < f(d_1)$ for some i, j such that $1 \leq i$, $j \leq q$.

Case (1): Let $r_k < f(d_j)$ for all $j=1,\,2,\,\ldots,\,q$. Since D has no first element, $\{m \mid d_{q+m} <^* d_j \text{ for all } j=1,\,2,\,\ldots,\,q\}$ $\neq \phi$. Let m^* be the smallest natural number in this set. Then d $d_{q+m^*} <^* d_j$ for all $j=1,\,2,\,\ldots,\,q$. If $m^*=1$, then it is clear that $f(d_{q+m^*}) = r_k$ and r_k is in the range of f. Assume $m^*>1$. Then for each natural number t such that $1 \le t < m^*$, there is at

least one natural number j such that $d_j < * d_{q+t}$ for 1 < j < q. By assumption, $f(d_j) \neq r_k$ for all $j = 1, 2, \ldots, q$. Furthermore, $f(d_{q+t}) \neq r_k$ for $1 < t < m^*$ since f preserves order. Now, the domain of f is D; hence, $f(d_{q+m}*)$ is defined as a rational number. Let $f(d_{q+m}*) = r_p$. Since f is order-preserving, f is a one-one function. Furthermore, by the definition of q, $\{r_1, r_2, \ldots, r_{k-1}\}$ $\subseteq \{f(d_1), \ldots, f(d_q)\}$. Hence, k-1 < p. If k < p, then the definition of f is contradicted. Hence, $f(d_{q+m}*) = r_k$ and so r_k is in the range of f.

The proof of case (2) is exactly analogous but depends on the fact that D has no last element instead of the fact that D has no first element.

Case (3): Let $\{d_1, d_2, \ldots, d_q\}$ and k be as defined in the proof of case (1). Let $f(d_i) < r_k < f(d_j)$ for some natural numbers i and j such that $1 \le i$, $j \le q$. Let $\{\rho_1, \rho_2, \ldots, \rho_q\}$ denote the set $\{f(d_1), f(d_2), \ldots, f(d_q)\}$, where $\rho_1 < \rho_2 < \ldots < \rho_q$. There is then a smallest natural number $t^* \ne 1$ such that $r_k < \rho_{t^*}$. Hence $\rho_{t^*-1} < r_k < \rho_{t^*}$. By hypothesis, $\{n \mid f^{-1}(\rho_{t^*-1}) < ^* d_n < ^* f^{-1}(\rho_{t^*})\} \ne \emptyset$. Let n^* be the smallest natural number in this set. Since $r_k \notin \{f(d_1), f(d_2), \ldots, f(d_q)\}$, if $j \le q$, then $f(d_j) \ne r_k$. Furthermore, by the definition of n^* , if $q < j < n^*$, $f(d_j) \ne r_k$ since f preserves order. Now $f(d_{n^*})$ is defined since the domain of f is D. Let $f(d_{n^*}) = r_p$. Since $\{r_1, r_2, \ldots, r_{k-1}\} \subseteq \{f(d_1), f(d_2), \ldots, f(d_q)\}$, $p \ge k$. If p > k, then the definition of f is

again contradicted as it was in the proof of case (1). Thus, if $r_1, r_2, \ldots, r_{k-1}$ are in the range of f, r_k is also. Hence the range of f is Q. Thus a one-one order preserving function from D onto Q has been established. #

In any linearly ordered set (L, <), cuts are defined. A cut is an order pair (A, B) of subsets of L such that (1) L = AUB,

(2) A ≠ φ ≠ B, and (3) for any x in A and any y in B, x < y. There are three types of cuts. A cut (A, B) is jump if A has a last element and B has a first element. A cut is called a gap if A has no last element and B has no first element, A cut is called a filled cut if A has a last element and B has no first element, or A has no last element and B has a first element. A linearly ordered set

(L, <) with no jumps is called order-dense in itself, and a linearly ordered set with neither jumps nor gaps is called order-connected. The following lemma follows immediately from the definition.

3.9 <u>Lemma</u>. A linearly ordered set (L, <) is order-dense in itself if and only if for each two elements α and β in L, there exists at least one element γ in L such that α < γ < β . #

Let (L, <) be a linearly ordered set and let D be a subset of L. D is called <u>order-dense</u> in (L, <) if for each two elements α and β in L, there exists at least one element δ in D such that $\alpha < \delta < \beta$.

3.10 Theorem. Let (L, <) be a linearly ordered set and let $0-\mathfrak{I}$ be the order topology for L. If (L, $0-\mathfrak{I}$) is a connected space, then (L, <) is order-connected.

proof. Let (L, 0-7) be connected and let (A, B) be a cut in (L, <). Assume first (A, B) is a gap. By the definition of the order topology, $\{x \mid x < z \text{ for } z \text{ in } L\}$ is open in (L, 0-7). Let $\alpha \in A$. Since A has no last element, then there exists a z in A such that $\alpha < z$. Hence, every point of A is an interior point of A and A is open. A similar procedure establishes that B is open. Hence (L, 0-7) is not connected. This is a contradiction, so L has no gap. Assume next that (A, B) is a jump. Let γ be the last point in A and β be the first point in B. By the definition of the order topology, $\{x \mid x < \beta\}$ and $\{x \mid \alpha < x\}$ are both open in (L, 0-7). Since $A = \{x \mid x < \beta\}$ and $B = \{x \mid \alpha < x\}$, $B = \{x \mid \alpha < x\}$, is not connected. This is a contradiction; hence, $B = \{x \mid \alpha < x\}$ has no jumps. #

3.11 Theorem. Any compact, connected, metrizable space (S, T) with exactly two non-cut points is an order-connected set relative to the ordering which determines the topology. Furthermore, there exists a denumerable subset D which is order-dense in S.

<u>Proof.</u> By lemma 3.5, (S, \mathcal{T}) is an E(p, q) where p and q are the two non-cut points. Hence \mathcal{T} is the order topology defined from the linear order relation <*. By lemma 3.10, (S, <*) is

order-connected. Furthermore, by theorem 2.48 and 2.49, (S, \mathcal{T}) is separable. Hence, (S, \mathcal{T}) has a countable subset D which is dense in the space (S, \mathcal{T}) . Since (S, <*) is order-connected, there are no jumps. Hence, by the definition of the order topology, between any two distinct points of S lies a point of D. D is then order-dense in (S, <*). #

3.12 Theorem. If (L, <*) is a non-empty linearly ordered set with the following properties: (1) <* determines no first and no last element on L, (2) (L, <*) is order-connected, and (3) there exists a countable subset D which is order-dense in (L, <*); then (L, <*) is order-isomorphic to $\{x \mid x \text{ is a real and } 0 < x < 1\}$, i.e., to (0, 1), with the usual ordering.

Proof. A. First a function f^* from $(L, <^*)$ into (0, 1) is defined. By lemma 3.8, there is a one-one, order-preserving function f from the order-dense subset $(D, <^*)$ of $(L, <^*)$ onto the set \mathbb{Q} of rational numbers in (0, 1), with the usual ordering. (Note: $<^*$ will be used ambiguously to denote the given order relation on L and also its restriction to D.) Thus, for every element d in D, f(d) is a unique rational number in (0, 1). Now, let $\alpha \in L - D$, let $B_{\alpha}^{\dagger} = \{y \text{ in } L \mid \alpha <^* y\}$. Let $H^{\alpha} = \{t \text{ in } (0, 1) \mid r \in f(B_{\alpha}^{\dagger} \cap D)$ implies $t < r\}$ and let $M^{\alpha} = (0, 1) = H^{\alpha}$. Since f is order-preserving and f is order-dense, f is f in f is order-dense, f is such that f is f in f and f is f in f is f in f is f in f in

 $t \in H^{\alpha}$ or $t \in M^{\alpha}$ and so (H^{α}, M^{α}) is a cut in (0, 1). Since (0, 1) is order-connected, H^{α} has a last element or M^{α} has a first element. Now, let m be any element in M^{α} . By the definition of M^{α} , there exists an r such that $r \in f(B_{\alpha}^{!} \cap D)$ and $r \leq m$. Consider $f^{-1}(r)$ in $B_{\alpha}^{!} \cap D$. By the definition of $B_{\alpha}^{!}$, $\alpha < *f^{-1}(r)$. Since D is orderdense in (L, < *), there exists a d in D such that $\alpha < *d < *f^{-1}(r)$. By the definition of $B_{\alpha}^{!}$, $d \in B_{\alpha}^{!} \cap D$. Hence $f(d) \in f(B_{\alpha}^{!} \cap D)$ and f(d) < r, by the definition of f. This means that f(d) < m. Since $f(d) \in f(B_{\alpha}^{!} \cap D)$, $f(d) \notin H^{\alpha}$. Hence, $f(d) \in M^{\alpha}$ and f is not the first element of f. Thus f has a last element f and f an

B. Secondly, it is shown that f^* is order-preserving, and hence it is one-one. First, let $d \in D$ and let $\alpha \in L - D$ be such that $\alpha <^*d$. $d \in B'_{\alpha} \cap D$ by the above definition of B'_{α} . Hence $f(d) \in f(B'_{\alpha} \cap D)$, and so $f(d) \in M^{\alpha}$ which was defined above in part A. Now by definition of f^* , $f^*(\alpha)$ is the last element of H^{α} . Hence, $f^*(\alpha) < f(d) = f^*(d)$. Similarly, if $d \in D$, $\alpha \in L - D$ and $d <^*\alpha$, then f(d) < r for all r in $f(B'_{\alpha} \cap D)$ by definition of B'_{α} and f. Hence, $f(d) \in H^{\alpha}$, by definition of H^{α} . Since $f^*(\alpha)$ is the last element in H^{α} , $f^*(d) = f(d) < f^*(\alpha)$. Lastly, let α_1 , α_2 be both in L - D and let $\alpha_1 <^*\alpha_2$. Since D is order-dense in $(L, <^*)$, there exists $d \in D$ such that $\alpha_1 <^*d <^*\alpha_2$. Thus, by what was just proved above, $f^*(\alpha_1) < f^*(d) < f^*(\alpha_2)$. Therefore,

 $f^*(\alpha_1) < f^*(\alpha_2)$ and f^* is order-preserving and hence it is one-one.

C. Lastly, it is shown that f* is onto. Let t* be any real number in (0, 1). If t* is rational, then t* is in the range of f and hence in the range of f*. If t* is irrational, let $A_{t*} = \{x \text{ in } (0, 1) \mid x \le t*\} \text{ and let } B_{t*} = \{x \text{ in } (0, 1) \mid t* < x\}.$ Then $Q = (A_{t*} \cap Q) \cup (B_{t*} \cap Q)$, where Q is the set of rationals in (0, 1). Hence $D = f^{-1}(A_{+*} \cap Q) \cup f^{-1}(B_{+*} \cap Q)$ in L. Let $G_{\gamma} = \{y\}$ in $L \mid d \in f^{-1}(A_{+*} \cap Q)$ implies d <* y and let $F_{\gamma} = L - G_{\gamma}$. Since D is order-dense and f is order-preserving, $F_{\gamma} \neq \phi \neq G_{\gamma}$. If $y_1 \in F_{\gamma}$, then $y_1 \notin G_{\mathfrak{A}}$ Hence, there exists a d in D such that $d \in f^{-1}(A_{t} \wedge Q)$ and $y_1 \le d$. Now, let $y_2 \in G_{\gamma}$. By the definition of G_{γ} , $d < y_2$. Hence $y_1 <* y_2$, and (F_{γ}, G_{γ}) is a cut in (L/<*). Since (L, <*) is order-connected, F_{γ} has a last element, or G_{γ} has a first element but not both. Denote this element by γ . Assume first that $f*(\gamma) < t*$. Since Q is order-dense in (0, 1), there exists an r in Q such that $f^*(\gamma) < r < t^*$. Hence $r \in A_{t^*} \cap Q$ and $f^{-1}(r) \in$ $f^{-1}(A_{+*} \cap Q)$ and $\gamma < f^{-1}(r)$. Therefore, $\gamma \notin G_{\gamma}$, and so $\gamma \in F_{\gamma}$. Furthermore, since $f^{-1}(r) \in f^{-1}(A_{t*} \cap Q)$, $f^{-1}(r) \notin G_{\gamma}$ and so $f^{-1}(r) \in F_{\gamma}$. Thus, γ is not the last element of F_{γ} . This contradicts the definition of γ . Hence, $t^* \leq f^*(\gamma)$. Assume, next, that $t^* < f^*(\gamma)$. Again, since Q is order-dense in (0, I), there exists an r in Q such that $t^* < r < f^*(\gamma)$. This means that if $d \in f^{-1}(A_{t*} \cap D)$, $f(d) \in A_{t*}$, and hence $f(d) \le t*$. Thus, f(d) < r< $f*(\gamma)$, and so d <* $f^{-1}(r)$ <* γ . This means that $f^{-1}(r)$ and γ are

both in G_{γ} . Thus γ is in G_{γ} but is not the first element of G_{γ} . This is a contradiction. Hence, $f^*(\gamma) = t^*$ and f^* is onto. #

3.13 Theorem. Any compact, connected metrizable space (S, T) with exactly two non-cut points is an arc.

Proof. By lemma 3.4 and 3.5, S is E(p, q) where p and q are the two non-cut points. The natural linear ordering <* on E(p, q) determines the topology 5 for S by theorem 3.7, and determines p as the first element and q as the last element. Furthermore, by theorem 3.11, (S, <*) is order-connected and there exists a countable order-dense subset D in (S, <*). Now, let x & S and $x \neq p$. Since D is order-dense (S, <*), there exists d \in D such that p <* d <* x. Hence $S - \{p\} = n(p, q) - \{p\}$ has no first element. Similarly $S - \{q\} = E(p, q) - \{q\}$ has no last element. Hence, S - {p, q} is linearly ordered by the restriction <* to S - {p, q} and <* determines no first element and no last element on $S - \{p, q\}$. Let $L = S - \{p, q\}$. Then (L, <*) is a linearly ordered set with no first and no last element. Furthermore, D \(\cappa\) L is denumerable and order-dense in (L, <*) since D is order-dense in (S, <*). Also, (L, <*) is order-connected because any jump or gap in (L, <*) would yield a jump or gap in (S, <*) which is impossible. Thus, (L, <*) is a linearly ordered, order-connected set with no first element, no last element and with a denumerable orderdense subset. Hence, by theorem 3.12, (L, <*) is order-isomorphic to the open interval (0, 1) with the usual ordering. Let h be a

one-one function from (L, <*) onto (0, 1) which preserves order. Define $h^*: (S, <*) \xrightarrow{\text{onto}} [0, 1]$ as follows: $h^*(p) = 0$, $h^*(q) = 1$ and $h^*(x) = h(x)$ for $p \neq x \neq q$. By definition of the ordering on (S, <*) and [0, 1], h^* is an order-isomorphism from (S, <*) onto [0, 1]. By definition of the order topology, h^* is a homeomorphism from (S, \mathcal{T}) onto [0, 1], and (S, \mathcal{T}) is, then, an arc. #