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CHAPTER III
MEAN VALUE ITERATIONS ON THE CLOSED UNIT N-DISK (N-CELL)
3.1 Introduction, In chapter II, we considered a mapping T which

continuously mops the closed interval E ==[0,1] into itself and we

proved that the iterative scheme =

(1) G Tvn 4;:;I = 1_;;,1/
(2) vl'l. s "' (x‘l +/1l0 + xn)’ Il = 1,2,3’30-’
(3)  oss, xiff/E

converges to a fixed polgt,ofAQ;gg-E.

In this chapter, we wish“to‘consider the case where E is the
closed unit N-cell or the cloSed unit N-dlsk ofIRH It will be
shown that, with some_;EEfflctlons on T‘ th@ iterative scheme (1)-(3)

converges to a fixed p01nt of T.

The statement that the iterative scheme (1)-(3) converges
means that each of {xh} and .{ } converges and they converge
to the same point. It has been shoun, Theorem 2.4, that their common
limit is a fixed point of T.

3.2 Egmgxk, InJRg, only continuity of T is not an adequate restriction
to guarantee convergence of the iterative scheme (1)-(3) to a fixed
péint of T on the closed unit disk or the closed square, In fact,
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we have the following theorems,
3.3 Theorem. Let E be the closed unit disk of R%, Then there exists

a continuous mapping T of E into itself such that the iterative schemne

1) X1 T th’

(2) U %‘ (i e * Bdy wE 052580 wen
(3) v = xle E 1 x4 £ 0,

does not converge, i /,

\—.
J

An analogous result ﬁ%{; the cleaé& unit square of lR%, we have
/ /// [ 3 a NS

3e4 Theorem, Let E be 1;113 elosegi unit square r::f‘lR2 Then there
exists a continuous mappmg g ef 3 :Lpto itself such that the iterative

scheme /’jL:f> =

@ g

(2) e %\ﬁ_..; +,xn?»,3n =23, ey
(3) vy —xleﬁ, x, # 0,

does not converge,

3.5 Notation. For any (x,y)€ TRZ, by the norm | |, we shall mean

the usual or Euclidean‘norm, i.04y

,(X’Y)' = (332 - Yz)%o

Proof, ( of Theorem 3,3) Let E be the closed unit disk centered
at O in the complex plane, suppose that 0 { @ < 9/4, and let T be the
mapping defined on E by




T(I‘eig) X (21, e r2)ei(9"‘¢) 3

Then T is continuous, since : Yaeh

I(v) = T(re'®) = (2r - 2?)e (@)
= (re'®)(2r)e?
= v(2 = | v| Jeig
= f£(v)g(v)
where £(v) = v and g(v) = (2 - lvj/@are continuous, hence T is

‘continuous, In fact, T maﬂmt:’o i‘tﬁﬁ‘g" since 0 £ 2r - r° £1
for all r € [0,1] . Them/;? N
04 ]T(relg)r 9 l(zr rz) 1(9*15)! <,

Hence T continuously maps E into i‘bself.

/4 /»“’ﬂ\;; { A ¢
The only fixed polnt af. 11;3 EL, since if v # 0 and Tv = v, then
vr{.‘a ]'_v] )eiﬁ"' v,_)
o 2 R J{tm
2 fvk Xiio 8 oo - dding-

Hence ainﬂ' 0, which is impossible since 0L @F<9/4 and O £ sing <

J

:.?m-

If v; = 0, then clearly { } converges to 0, We will show

that, for eny vy # 0, the iterative scheme '(l)-(3) does not eanvevge.

Suppose, on the contrary, that the iterative scheme (1)-(3)
converges, Since 0 is the ;anly fixed point of T, we have by virtue
of Theorem 2.4 that {v.n} must converge to O,
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Now, for each n, we have

Vsl T n+1 x1+ o tﬂh%ﬂ)

ey
* +j_(nvnfTvn)

n+l /n o B =
N /j/ s 1 .
gt e U R
\_,/2/ T s
4 am _4 ,/'/ :///(, >
,.// / /llb'..'js ) iﬂ Y
T -_,/"ﬁ(/??“il"pf}")e’ S
Therefore, for each n, *’“.Y~.~;'.l§‘f
) pe o= 1w c:@an) . cn(z - vl e |
Since 1> cosf > coszﬂ, so that ‘7 NN«
| Goghvo (o kDB
A T [UM]

[(2mey)? + 26, (1mey) (2= vy deosh + e2(2=kvy)?] 2

b [(1—cn)2+2cn(1-cn) (2-\ v, Jeospch (2-1 vy )2°°=2ﬁ] ;

11

[((1-ep) + op(2d vyl )oosd 2]E

I

(1—cn) + cn('z— lvn‘ )cosg
1+ ep((2=] vyl Yeos@ = 1),
Substituting this last expression into (4), we obtain

1
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(5) [Voea] > 17l Q7 ¢, ((2= I vyl Jeos - 1)),
Hence by induction
(6) l Vn+1| > -rr(l + Ok( (2~ | Vk| )c°3¢ 1)) | Vl'
Let £>0 be such that (2=€ )e JJ% > 1. Then there exists
an N such that | v,|<E for all n& N. Since cost)f , ‘then
(2—-le )@)(gﬂ /l>1
< for all n =N, ////' N ‘ =
’// i // \ & \:J:S;f' I
Now from (6), we havé for \13’}_)
/7

y

n
| Voeq| > |V1!—rr(1-ek+ck(2ﬁfv ] )cos¢ )k'INE:(ll-l-ck((z-wkl Jeos@=1))

f;tk Bioost) T Tr(1+ mpl-e) 2 =)

————— !_ ?‘
since each factor in the second product is greater than unity,

therefore, for all n > N,

| k> lvllTT( k+l * E:I.LE(Z - || Jeosy) =m,

where m ie a positive real number independent of n,

This is contradictory to the supposition that {vn} converges
o 0. Consequently, the iterative schome (1)-(3) doos not converge,
Q.E.D.

[ -k - e 1 . # = F =" - . 4 3 :
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Proof, (of Theorem 3.4) Let E denote the square [-1,1]x[-1,1]
of M2, Tor any tuo points (x,y), (x5 )& %, define
J 7/ y,
(x,7) + (x,y/) (1"'1’3’*?/)

il

o) ay) = (w5 x vy )
Suppose that 0 < # < /4, and let T be the mepping defined on B by
T(x,7) = (%7)(2 = (=7 ) (cosp, sing).
Here, by the norm |l (x,y) I L{x,y) é/f')ve nean
lr(?as")’g /=’-'/ nax {tﬂ:’rﬂ}

////‘.“

The mapping T is copitlm.w\m slnce

T(x,y) = (x,y}(z N (x,3)1} ) (cos@,sing)
f(x,y)g(awf
where f(x,y) = (2 - H(x,y)\\ ’Hxa?} and g(x,:r) = (cosf@,sinfl) are

continuous, hence T isicontinuouss
e g g
"o now show that “Q} carrics B into itself, Since
C 0 A G = G yIDH £ 1,
therefore

£ Gy =Gy (2= Wy MDIH Keos@,sing)ll £ 1,
Hence T continuously maps B into itselfs

We observe that 0 = (0,0) is a fixed point of T. We cleim that
0 is a unique fixed point of T. Suppose there exists (x,y) # O such

that T(x,y) = (x,y)s Then, by definition of T,
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G s Wil S eodoniodl = (arr)
(2- "(xﬁ')“ _)(cqﬂﬁaSM) = (13'0).
Hence ; .‘;

*
(2= W1G9)| )sing ]
or
s:l.nﬁ O
But this is sbsurd, since 0<g <{3f//¢/a.nd_ 0 < sing i;/% -
Therefore 0 = (0,0) is t@y e, int of T. |
=
\ N
Ve prmve that { }/f//pwgs conver,gp to O by contradiction,
S h e/gé /\[ \
uppose t a.t {v } conver, to;\ ?’3‘(\, \\
For each n, we have/ // r
and
v, = vp(2 = || v, li )(cos@,sing).
Therefore,for each n 3
AR P R
(4) LA v ( n+1(1’0) + n+l(2 ||vn|| ) (cos@ysing)) - £
= v ( =B+ o2 llv))eosg, E-(2-|jv, || Jsing)s B
UL ) n+l | i
3 0
;'I . =) e 2 3 1 p




Therefore

i ' 1 o
(5) ” +1|{ n” “ ( ﬁ; ik ;:-];-;(2- “'Vn")COBﬁ, E(E—”VJ‘)SW) ",
Shoglifima s ﬁ-;(z- v Il Jeos).
Hence by induction

(6) I 7geall = TT( o iCad WU BLE U IE

Let £> 0 be such that (2 -€ %’) . 1, Then there exists an N such th. -

| vyl <€ for all n AN, Slnce/ecsﬁ‘ } therefore

tz-uvnlr)cesﬁ) (z-e )= Rt

5

for all n > N,

Now, from (6}, we have =fbi:' :;L}ﬁ,

vl ‘“"1||Tr( k+1(2" ﬂvkll )0039')_”' (1+ -l—((Z—-nka)eosﬁ-l))

S il i

T 71(2' (v, ‘)coagsi'erT% ((2-€) 2 1)

/Z

Since each factor in the second product of the last expression is

greater than unity, therefore, for n > N,

v 1l > v IITT'( e+ (2= vl Jeosl) = m

where m is a positive real number independent of n,.

This is contradictory to the supposition that { } converges to 0.

L Y A . . e - 2 o = 1 :.; y
- g L R N 1= Dyl e R g ST da g ke ol By
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Therefore {vn} does not converge to O. Consequently, the iterative

scheme (1)-(3) does not converge by virtue of Theorem 2.4 o

QuE.Ds

To give a partial genefalization of Theorem 2,3 , we first

define some classes of mappings.

3.6 _QMLetEbeasubseZ/éme Amapp:ngTE—ﬁEia

sald %o be Mﬁ ~—
|Tx/.,»f§4’;__§ : :xf— 7| i

for all x,y € E, and is Said tow W’W provided T
‘has at least one fixed ﬁou{'t,;,x;E*, an;ilf p€ E is a.nyf:.xed point

1_\

Of T’ then ," - : -".’/

: {z = £ x-s],

———

for all x ¢ E (1.e., & i‘-s nonexpansive apéﬁt each of its fixed points).

4+
LTI L ]
|

e note that every nonexpansive mapping is continuous, since

it follows from condition (*) that T(xn) —= T(x) whenever X —> %,

It is clear that al nonexpansive mapping which has at least one
fixed point in B is quasi-nonexpansive, since if p is a fixed point
of T, then

|Tx - p| = |T®-Tp| £ |x - p|
for all x € E.
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surthermore, & linear qu.asi—nonéxpansive mapping is nonexpansive,
since if p is a fixed point of T, then
| 7% -~ Ty| = [Tx - Ty + Tp - Pl
{T(x -y * 0) - p|

1l

for al.l x, v € E. : ‘::) L
= ;:’7 16 f:\—\’_
4 However, there exist ¢ ﬁt:umous quasi—nonexpansive nappings
which are not nonexpansz.:/ // /h hi&" =
3.7 Example, Let rt be/ﬁhareag.*line and let IT be defined as follows
7(0) = 0 T f.fil";' :
T(x) 8 (x/?iéigillxh x # kg
) The only fixed point o 31' is 0, since if‘st‘ 40 and x = Tx, then
x = (x/2)sian(1/x),
or s ginlifR)

which is impossible,

T is quasi-nonexpansive since if y élRl, p=0, :bhen
| ty-] =|my=0l= |@/2)|sin(/3)| € V/2)<|7] = |7-ple
However, T is not a nonexpansive mapping. This is seen by choosing
x = 2/5% , y = 2/79, for then ‘
| Tx - Ty| = | (1/5)sin(59/2) - (1/79)sin(79/2)] = 12/35% ,
whereas |x -y| = 4/35% o




we shall consider a more general class of contractive-type

nappings.

3.8 Definition. Lot E be a subset of B, A mapping T:E —> E is

said to be strictly pseudo-contractive mapping if there exists a
number k satisfying 0 € k < 1 such that

Irx - 1y|* £ lx-yt -;k | Gl s (g® 2 yadkt)

for all x, y € E, is one satisfying (*)

4 with k = 1.

The class of nonexpahsi‘v'é mppmga is a proper subclass of
strictly pseudo—contractive mppings.. This is seen by taking k = 0O

in (¥ e

However, the class of qxzas.t—-nﬁne@anslve mappings and the class

"A\

. of strictly pseudo-&mtracfiﬁé mapping‘sk are independent,

The T in Example 3.7 is quasi-nonexpensive but not strictly
pseudo-contractive., To show that T does not belong to the class of
strictly pseudo-contractive mappings, we pici: x = 2/(4n+l)T and
y = 2/(4n+3)7 , n = 1. Then

| Tx=Ty)® =}(1/(4n+1)T)sin(4n+1)3/2 - (1/(n+3)T)sin(4n+3)7/2]
| /(1) + 1/(4n+3)3]? |
(8n:+4)°/[ () (4n+3) )%

T T R SO AN L RY s e R STV LS| O SO g T - L A e A
B S A e e ey E 0 il Tl ety e T b B S ¥ o Ll (R el Nt e g L S



wherea”
|y |2 + 1(I-1)x = (I-T)y|?
Jxmy|? + |(xy) - (Tx=ty)|?

1l

g A #r AT R Rk Lo
(4n+1)T  (4n*3)9 (4n+1)T  (4033)q  (4n+1)(4n+3)9)
2 4 r s 7 gy |2 e
(4n1) (ae3) T} | (4nvd) (43 ) (1) (40+3)q R
ez &
[(4n+1)(*éﬁj¥§,ﬁ:lf &= g
' : NN :
Hence # /'/ 7, / ;;:13 ' N e
[ Txety) 2yl 4 () = (217 B
Slxyl? t:}c,xaﬂ)r- (1-7)y]? =
for a1l k€ [0,1). g - y
Now consider theﬁ £elﬁwiiig_@1§1§o, ’ ;’ g ~
: m— T &
3,9 uxample. Let/R' be the real line and let T be defined as =
follows: : : ;-
T(x) = =x/a +1, 0£xta, %<ja<% ’
(x)= 0, agx%1, 3
The mapping T is strictly pseudo-contractive but not -
quasi-nonexpansive. Ve first show that T is not quasi-nonexpansive. !
Note that ~—yf-— is a fixed point of T, Siige | ; . 1

a

Wige ) s =omig Y2 = 40 R




At the point p = i—%; , we have, for x< a,
= = Jw & o =. -
IT:_xp{. } A ml ‘ﬁ a.l
= tia x| =1 ...._5_|
a | 1+a xl al™ " 1%
XyE=-amll = o
since 1 >2 ©
Next, we show 'I:.hat '&?@ a at%éy pseudo-contractive mapping.,
For Oéx, yéa., we
l1e-1y]? = ;
| x=y|* + k| (I-T)x/ /(I-ﬁfwl
= Jay]*@ + K lgﬁ )2)- :
Let k= 18 . Then ' EUNH
1+a
A 2 2 :
|metyl® = |3 = pey]” r k(T-1)x - (T-)y|? .
For 0 £ x £ a, a(yél, we have
é a-x<Ly~-x
and
il 2
]a-—xt2<y-'x| %
¢
- 2 e "7‘:_-'!-_‘. = \.‘I' .- "'.‘ _-f- 4 ;":;! -: 3 I i .- ._FI




Thereiore
Kl - (@02 ¢ eyl

= k| zay e E-1f? oyl

1l

kI(Y—x) * ?Iz L x|?

> kl(ﬂ.—-x) + §:§'2 +|-a-x|2
' a
1..-3'; Wil 1+ (2 5
= "ﬂ'\laﬁxﬁ /_5 ) il g |

©

et A - 2

/ / // / ," ;\‘ p
. Finally. 2ce ad % 4 ¥, a,,/ (/Iﬁ;,\, :ﬁlt)yie have
(B 2
Mo}

Y

N ———— —— — — e — /-.(‘_‘
Hence T is a strictly‘fﬁwdwl pping.
| 2

¥ E A

—

Cur main theorems are the following.

3,10 Theoren. Let E be a closed unit N-disk or a closed unit N-cell
of [RN and let T he a contimious quasi-nonexpensive mepping of E into

itself. Then the iterabive schene

@) ¥l - = I¥q s
(2) M}_‘), s %(xl"'""*xn)f n = 1’2’3’ veey
(3) SRR o R

converges to o fixed point of T,




3,11 Zorollary. Let E be a claaed unit N-disk or a closed unit
N-cell of RN , and let T:E —=> E be continuous, If T satisfies
either

(4) |x 2 Ty|

¥

Kffx-1mx) + |y -191} , 0 £X£3,

I~

or

IN

@ |x-1| £ A1yl +ly-m=I} , 0 €8 ¢4
for all x, y € E, then the 1tarat3;v7 scheme (1)-(3) of Theorem 3.10
converges to a fixed point efi e / &

( g
f ™~ =

// = .‘\.,_,_ =

7/ R

For a strictly psetgib-;nc;{;ﬂtractive mapp:.ng we have the following,
/ /] A :

3,12 Theorem, Let E be & closed unit II-disk or a closed unit N-cell
of B and let T be a continnous a‘hriétly p:aeudo—contra.ctlve mapping

of E into itself. Then the itqg’ﬁ;meheme

-

1) X+l le‘-‘n_ = ._:: '
(2) n i %(Xj_ FeneT xn»)r’ﬂ %31: 335003
(3) vy = % €L

converges to a fixed point of T.
To prove the above tuo theorems we need the following lemmas.

3.13 Lemma. Let x, y and z be any three points inTR' and let t be

a real number, Then

|zt (1b)y-2|? = t}v—zlz + (1-t)|y-2|? ~t(1-)] =] 2.
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roof, For any x = (xl,.,a,qu)_*, ¥y = (yl,an,yg) mlRN, we set

R R

Then
|2yl = Lzey,xy> | |
= Liyx> = <yy> - x>+ <yary
= xR - 2<zydelylR .,
Therefore

| tx+ (1-t)y—e]? = j}(x-wi///cy-a}iz

/E/zﬁx-y |2\*\i \jz + 2‘t {X=Fsy~2 )

,./ : .
i/ﬁ—-yﬁ I R (CLEE N
R = 2 3P - 2> I?I"'J]

/’GQL‘E"EE + y=al? |
"';’i-‘;t_—_i_:: f_—;t:(}?“" = [x—ﬂ = Py"zrz )

;r |:¢:—§]2 + (1=t ﬁmy-z l‘:2 <t (1=t)] x«y*z

QeBDe

3-14 Lomma, Let {Ixn-p_l-}.' be a nonincreasing sequence of real
numbers, If there cxists a subsequence {xuk} of{xh }-tha-’h converges
to p, then the sequence {"n} also converges to the point pe

Proof, Sincc {| pl} is nonincreasing, we see that if n E"I.\IT,
then -




|51 - 2| £ |% -7l cows (%)
Let £> 0 be given, Then there is an m  such that

|xnk0—p[< : R

and nk 2 N, Hence from (*) ; i
| x, = P f < E 2
e O, 1 o
forn = Dy
il / A
,_‘Jj/‘ A A
L\l\f“ | //%, adiells =
: Proof. ( of Theor:w//@fy wa fiﬁﬂ‘b show that v, € & by
induction on n, /I 7/ HO® 4

= ’4.

Since vy = X3 € E, ’wc/a, havéﬁﬁnished t.he first step.

A = Ly —l-.l-.Tv € B v
n+l B ooy B T

by induction hypothesis. ( Recall that if x and y are points in E, e
a convex set, then the point : | .

2(t) = tx+ (-t)y, 04 té1,

lies on the straight linc segment joining x and y with z(0) =y, ~_ ,:._
2(1) = x.) e g

Hence by :Lnduction, v, € E for all positive 1ntegral values

of n.




f we sat ¢
n

L =

(4) s '(.lmcn)vn * 0 ey BZ 1,2535000 y
If for some n, Vv, = Tvn , then clearly {vn} converges to V. ‘_
Hence we may assume that Tv, # v, for each n, . —

From Brouver's fixed point theoren, F(T), the set of fixed
point of T, is not empiye.
Lot g denote any poin‘b\\n‘f r(x/f

¢ ' For any v, € T, we't //' ‘; AN N
| /// X
(5) l"n+1 -~ q#/"/ Nl—n;;)v + chvn‘ af «

At

The Lenma 3.18 and (5)s ’41&1 gﬁ“ﬂ%ﬁ

2 G 2 -
(6) AT al® £ Mfﬁn“’g - q =

Since T is quasi-nonexpansive, so thet

o AR al®* Elv ~dl", C
y

This inequality, 2long with (6), gives _'i

(1) v~ al? £ Jvamal? - on@e) vl 3

%

Therefore adding hese inequalities with mym+l, veesh fOr
derive the following inequality



2 _
|V l—ql é T_'\rm—ql - g&k(l-ck)lrka_vk'z ’

—

from which we have

© e bmatnl® £ | val - | - of?

We clain that lim inf|Tv -v,| = 0, We prove by contradictions
n—oo

W [/
Suppose that lin :mf, Tvn—vni\\ ’b g.//Then, by Remark 1.18, for any
n—¢ o=
given § > 0, there ex:Lsts/Hj’ay.ch ( th&t‘\

n)/%% "for all >N,

Since (8) is true for all h, tﬁen,lf n>nuX> N, wve get

chu-ek)(b;s/) é IY* -ql e
le=m j _

/
or

e

l?ln

(2

This g_ves a contradiction since the series on the left hand side
is unbounded whereas the last member is bounded (in fact, it is
bounded by 4). Therefore

lin inf|Tv,-v,| =0

n—
i.04y ﬁ'lw nk-vhk' = 0 for some subsequence {vnk}. Since E is
compact, there exists a subsequence of {?ﬁi}, {Vm} say, such that

limvm = De
mnyck
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‘Hence {l v -pl) is nonincreasing.

=
'-Il'T.':' ] : ‘Ih-:— .-'.I ""‘-—"f e " H - -I ‘G‘ <

47
Since T is continuous on E, (I-T) is also continuous on E,.
Therefore
lim (I—T)v = (I-7)p,
™ Ses
but l:.m (I—T) nk = 0, so that
(I-T)p = 0, or Ip = p

iseey P is a fixed point of T,

iy,

Kow from (4), we hafigx

e | *?F :Q’"’If‘f\\fv q

/== U&e v p)+e(Tv-p)|

[ g \,,\y‘f

The two conditions lim v, = p and {|v vp-pl} 4 in n yield
=00
Lim v, = p, Oy Lemma 3,14. -
n 300 !
QlE!Dl

Proof, (of Corollary 3,11) We need only to prove that if T

satisfies either (A) or (L), then T is quasi-nonexpansive.

Since T is continuous, F(T),the set of fixed points of T, is
nonenpty by the Brouver's fixed point theorm, Let p € F(T),




If T satisfies (A) then; with y = p,

| Tx-p| = | Tx-Tp| 4 o|x-Tx|

£ of pep| + |p-Tx|].
Therefore :
| Tx-p| £ l-?_“?h-fpl € |xpl, i
since -~ —.i- £ s :
In view of (B), we hzwe} fo y/éf:p,, _ o

2 - Jﬂ;fi Jﬁ? |+ pre]

= .
&
A\\g,
D)
ey
".‘
\._...l
fill f‘J v

!."" il _“ il

Therefore _
E Iﬁ‘i/;sbpt ¢ ax-pt :

l /! / : .- ,!‘.

since == =1, R [ oon . v

Wiz Q.E.D, -

Proof. ( of Theoz% 3.12) For “each xg;, we have
(4) v&l = (l'cn)."n_ + el 4
where O = %. i e . ._

From Brouwer's fixed point theorem, F(T), the set of fixed R
point of T, is nonempty, Let q denote any point of F(T).

The Lemma 3.13 and (4) then gives

(5) l ne1=al® = (1‘°n.)l ”"n"q'lz i ".n‘T"n‘dz = “m(l‘cn)t“n’-vn‘zi



Since T is a strictly pscudo-contractive mapping, there exists

a number k, 0 £ k& 1 such that if x, y € E, then
Ieetyf? £ [xey]? ¢ k[T - (D)l

Thus, if y = q and x = v,, , then

(6) |Tvmal? & v -3|? + kv v i® ;
Substituting (6) into (5\};@ ob'l;,aiﬁ——/ e 3

: (7) Rt %’q’{‘ N (1”" )| Ty | S

s‘ w:.th m,m'*ln-uﬂ for n, ' 5
‘.‘. ] ) QN l_. ‘A( :

we derive the following : Pqua@i

/ "\ ol
-
e

Therefore adding these }ﬁe(ﬁ

(8) zci(l—cﬂk:)lw 12 Zi*fvm—ss}lz ~foge1 -alt?

ey | 8

%ince k < 1, there exists £ > 0 such that 0 €< 1k, e

For sufficiently large n, n = N say, we have cy = -l— (&< 1=k,
Since {cn}is decreasing, therefore c <& < 1-k for alln >N
Then if n>m = N, (8) becomes .

(9) %Gi (1-€ =k )‘ Tvi"?j_‘.z £ | v;ﬁ"Q' % -Ivn-l-l -Q-l 5

(1-& -L)ie:ﬁ Ivi—vy Po< ® =jvain -af? -
= , —



{.t

) NI s "L [ '.* T %
e ™ o T = et
u > ¥ M= = e £ -
".l-'. W s / h 3 =W, ' S|

~he last member is bounded, therefore the series on the left

oD
hand side is boundeds But since > c. diverges, this should implics
i=1 -

that 1lim inf ITvn-vnl = Oy which in turn implies from the compactness

e
of E gp&"ﬁ;ﬁ&are is a subsequence {vnk} of {v'n}_ that converges to

a certain point p of F(T).

| W 2
Since p is a fixed point of Ty from (7), we see that if n* N,

Y Y. ) e
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