CHAPTER I
PRELIMINARIES

In this chapter we shall give some definitions and theorems

which will be needed in the sequq; 5,
f /// //
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In this sectiom,/ﬁe/ méy'bﬂct ourselves to the sequences: »f

real numbers. % A
The set of real nm‘tﬁerswiﬂ:l be denoted by R._

1.1 Definition. Agggmggginaset j,safunctionfrmﬂ-, the

positive integers, mﬁ%.\ = ’/{7 g‘j

Instead of ugdng the functional notation £(n), n € 3%, for a

sequence, we will write {x,}, where x, = f£(n).

1.2 Definition. A sequence {x,} inR is said to be
(a) monotonically nondecreasing if x, & Xp+y for all nj
(b) monotonically nonincreasing if x, Y x ;3 foralln.

Tha class of monotonic sequences cma:i.ataé‘ of the monotonically
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nondecreasing and the monotonically ngb:l.&‘#ng sequences .
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1.3 Lefinition. A sequenhce {xn} in R is said to gonverge to a
point x if for any & >0 there is a positive integer N such that
< £ whenever n 2 N, In this case we write

bo= =}
lim'x, = X OF Xnp=—) X

n-300

If {x,} does not converge,it is said to diverge.

The set of numbers x, (n = 1,2,3,..s) is called the range of

{xn} . The range may be a finite get, or it may be infinite,
- L
The sequence {xp}is said to be bounded if its range is bounded.

The sequence {xn} is said to be bounded gbove (below) if

3y £ M &N 2 1) for some M (m) and all n,

A bagic criterion for deciding when some sequences converge

is as follows.
1.4 Theorem. Every bounded monotone sequence convergesSs

Proof. It suffices to consider the case where {xn} is
nonincreasing and bounded. Let x be the infimum of the range of the
sequence, Then for any € >0, there is an N such that x £ Xy £x+8,

Fa

The monotonicity of {xn} now yields x = x & Xy Lx+¢ forn= N,

and the convergence is proved,

QeEJDs

The following theorem is needed later, ®



1.5 Ltheorem, Let {xn} be a nonincreasing sequence of real
numbers and bounded below by 0, If {xn} does not converge to 0,

then there exists an £>0 such that |x} ¢ for all n,

Proof, Since {xn} does not converge to 0, hence there is
an € » 0 such that

(%) B 2 § for infinitely many n.

Now if there is an ny such that ’Xﬁol £ § 5 then, by the
nonincreasing property of {xh; 3
o = M
lxnl < £ for alln, = ng.
This contradicts to (¥),hence the result,

Q.E.D.
We will also need the notion of a subsequence of a sequence.

[ Y
1.6 Definition. Let n(k) be an inereasing function from 2" into 7'
(i.esy n(k+l) > (") for all k), and let f(n) define the sequence
{xn} . The function f[n(k)] then defines a sequence which is a

subsequence of {x,}; it is designated {th} . .

1,7 Definition, A point x is called a cluster point (or accumulation
point) of the sequence {xn} if there is a subsequence of {xn} that

converges to X,

If a sequence has a limit x, then x is also a cluster point,

the converse is not usually true,



1.8 _xample. The sequence in R defined by

& B8 /5 o 050,355, 9ns

1-1/n, n=2,4,6,800a

has O and 1 as cluster points but has no limit,

1.9 Definition, Let E be a subset of R. A neighborhood of a point
¥ € Eis a sct
N(xgy €) = {x€ E[ | x - xol<e} .

We note that every neighborhood is an open set.

1,10 Definition. Let B be a subset of R, A point Xg is a limit point
of E if every neighborliood of 3 contains a point x # xj such that

x € E,

1,11 Theorem, If X4 ig a limit point of a set E, then every

neighborhood of X, contains infinitely many points of E,

Proof. Suppose there is a neighborhood N of x5 which contains
only a finite number of points of E. Lebt X;,X55e0eyX, be those points
of NNE, which are distinct frou Xj, and put

r = min { {x= %5 seees 1%~ X0} } .
Clearly r > 0. The neighborhood N(xy,r) contains no point x of E
such that x # x5, so that xy is not a limit point of E, This

contradiction establishes the theorem,



L.e state without prove the following wail—known theorem,

1,12 Theorem, ( Bolzano-lieierstrass,) Every bounded infinite

subset E of R has a limit point,
For the proof of .this theorem see e.g. LJ.O] o

1.13 Theorem. Every bounded sequence {xn} contains a convergent

subsequence,

*

Proof. Let E be the range of {x,} . Then E is bounded,
If E is finite, then there is at least one point in E, say X9
d : 3 h soa hat = = eew — .
and a sequence {nkf » where ny t n, < s such tha an xcl2 . X

The subsequence {xnk} obtained in this manner clearly converges,

If E is infinite, then E has a limit point (Theorem 1,12),
Let X, be the limit point of E. Consider the neighborhoods N(XO,(%JK)
k = 1,7 ,3,..., of x5 Each. such neighborhood contains infinitely
many points of E (Theorem 1,11), Thus I(xy,%) contains some xn 5
N(xo, (-%) ) contains some Xy n, > nq, N(xo,(g)B) contains some
xn3 » B3 > ny, ete, The resullblng subsequence {_xnk} clearly has limit x .
Q.E.D,
It Mollows from Theorem 1,13 that if {xn} is a bounded

sequence then it has at least one cluster pointe



1,14 Theorem, Let E be a closed and bounded subset of R, Then any

sequence {xn1 C E which has only one cluster point ¥y converges to Xqe

Erodf. Suppose x5 is not the limit of {xn} ; then there
would exist a number £ »0 such that there would be a subseguence
{xhk} of {x,} wvhose points belong to E (N(xq, € ))c. (N denote
the complement of N,) By Theorem 1,13, the subsequence has a cluster
point Yoo and as B~ (N(xy,€ ))® is closed, Yo € Em(N(xo, & Y=,

The sequence {x,} would thus have two distinet cluster points,

contrary to our assumption, This proves the theorem.

1,15 Definition, A subset E of R is compact if every infinite

subset of E-has a limit point in E,

We note that every closed and bounded subset of IR is compact,

1,16 Definition., A sequence {xn} is a Cauchy sequence if, for
every £ > 0, there exists an N such that '[xm- an CA

whenever m,n SN,
We close this section with a few more remarks on sequences,

Let {xn} be a sequence of real numbers, Consider successively

the sequences



,' X ‘! Xayesey s X 415008y 3
2 =3 n
Xas XB,.-I., Eny Xnpdlseeey

LA R RS R R R R R R R R Y N > (*)

Xns Fptlsesey

If {x,} is bounded below, these 'scquences have infima
lcl, Koy eesy Kgaee s

For-all n, &, £ k.1, S350 (%, Femens+} O { Xus1sXsgseea} »
Hence k,  tends either to a finite limit or to + e,

If {x,} is not bounded below, none of the sequences (¥*) is
bounded below, i.ei im:nxr = «~ 0 for all n, We are therefore
led to the following ]cie:f'-inition.

2

1,17 Definition., Let {x,} be a sequence of rcal numbers, If {xn}

is bounded below,

b = addny 16 in7 &)
n-$c0 r>n

is called the lower limit ( or limit inferior ) of {xn} and we write

}.j.'E x, = b  or lin infxn = hiy’

nedoc Bogres

RE ;5 { xn} is not bounded below, we write

1im 3¢, S =00 or 1Hm Iinfx = -,
—— n
n—-oeo n-—s o

We note that lower limit of the sequence {xn} always exists.,
This follows from the monotonicity of the sequence {kn}, where

o o= sl iR oap =
* rénAr '



1,18 Rcmark, If a real number b is the lower limit of the
sequence {x, }, then given £ >0, x, > b - ¢ for all sufficiently
large n,

Proof, Suppose that b = lim dinf x, = lim kn s where

Ny & n-yo0c
k. 7 inf x. o Then, given £€>0, there is N such that
r=n
ke > b ~€

and so

x >b-€ for n 2N,

* N-dimensional Euclidcan Spaces

.

1.19 Definition., Let N be a positive integer, An ordered set

(xl,...,xm) of N real numbers is called a vector with N components,

or a point of N-dimendional Fuclidean gpace lﬂm.

: ! N
For any two points x = (X15eeesxy)s ¥ = (yl,...,yN) of R,

we define

x + y = (xl + yl,cn.’ xN *+ yN)

ox'= (cxl,...,cxN)
for any real c, .
The zero element of IRN is

O = (O}lliyo).



: : > L
We define the porm (or lggg‘oh) of x by lxl = (:m:?L toest xﬂ)%.-_

Metric Spaces

1.20 Definition. A metric gpace is a set M with a real-valued
function d(x,y) om M>XM called a distance function. This function is
required to have the properties:

) alx,y) ¥ 0; alx,y) =0 if and only if x =y,

() alx,y) = dsx),

(¢) alx,y) £ d(x,z) + d(z,y), for any z € Me

\ ;

1.21 Definition. A sequence {x } in'a metric space (M,d);-:’g:it.ga‘aid to
converge to a point x if for any €20 there is & positive :Lnieger N

such that d(x,,x) < € whenever n SN, A sequence {xn} is said to be

a Cawchy seauence if for any £3>0 there exists an N ms;h that d(x,,x ) <E
whenever m,n Y N. A metric space (M,d) is said to be gml_tg if every

Cauchy sequence in (M,d) converges to & limit'in ‘M,d).

Normed Vector Spaces

1.22 Definition. A set X of elements is called a vector space over
the reals if we have a function + on XXX to X and & function * on
BXX to X which satisfy the following conditionss:

. x+y=y+x3; x,5€ X%

20 (x+y)+z = x+(y+z); x, vy, 2€ Lo

3, There is & vector O im X such that, for all x in X, x¥0 = X.

4be alxvy) =ax +ay; a€R, x, Y€ Xo
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5 (a+b)x =ax +bx; a, b€R, x& X,

6. a(bx) = (ab)x; a, b&R, x€ X.
T Oex = 0,
8. lex S ineg

1,23 Example. ®Y is a vector space under the operation.s
X+ 7= (XpreeesXy) ¥ (Fpseeesyy) = (X1#77500esXytyy), and
c(xl,...,xN) = (cxl,...,cxN):
where c € R, x, y('IRN o

1,24 Definition, A normed vector space is a vector space X with

a real-valued function x~—3f x | satisfying the conditions:
(a) #x¥ > ©0; [ix|} = O 4f and only if x = 0;
(b) fax]|
(e) |} =*v)l £ Pl +holh

1

laj it =i} for each real number aj

1,25 Theorem, Let X be a normed vector space, Then d(x,y) = il %=y ||

is a metric on X,

Proof. Let x, y, 2z be any elements in X, Then
d(x,y) = fl==yll * o,
and
d(x,y) = || x=y|| = 0 if and only if x=y = 0 i.e. X =y,
By (e¢) in definition 1.2, we have

[l 2=z i
so that  d(x,z)

Nzl + |ly-=ll
d(x,y) e d(Y,Z)-

M 1P



Finally by teking 2 = -1 in (b) in Definition 1,24, we have
=yl = ffy=x
so that d(x,y) = d(y,x).

QvED,

1,26 Definition. A Banach space is a normed vector space which is

complete in the metric defined by its normn.
1,27 Example, ERN is a Banach space,

Convex Sets in Normed Vector Spaces

1.28 Definition. A subsgt/E of IRY is cohvex if
{#) £x/+/ (1~t)y € E

whenever x @& Z, y€ E, 20d 0 G J.

The set of points () is called the scgment between x and y.

By the gloscd Ii-disk with center at x, and radius r we mean
the set
i i £
o= {xelﬁ ! |x—::o £ r_}

2
where |x| =.\/x§ teeetX Ty o

If we define the norm of %€ izt by

Hxlil = r-.!a::{ | %] ""’].XN‘} ’
then the set

| N
B = { ¥€ R ! [|x—x0”1 £ r}
ig called the closed N-cell,
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1,29 Theorem, Closed N-disks are convex,

Proof, Let E be a closed N-=disk center at Xy with radius r,

If jxxyl £ 1, ly-xg] £ 1, and 0 £t 41, then

1l

| tx+ (1=t)y=x5| = | £ )+ (A=t) (x|

£ 4 | x| + (1-t)} y=x5)|

£ '+ (-t)r = r,

Q.E.D,

S

The proof is the same if E is a closed N=cell,

Equivalence of Norms

For any x = (:;l, ...,XN) £ TRN, we define the Euclidean norm

of x by

2
lx_‘ = ,\/x‘]z. T + X e
The following two functions are also norms on EN:
IFxih = W{'xll seves | XN‘}

Hxﬂ2= ixll+ ane "]"‘}{Nt!

The purpose of this section is to prove that inMRN ( or in
any finite dimensional vector space ) the limit definitions are
independent of the choice of norms, For example, if Xy is a limit
point of a set E with respect to one norm, then it is a limit point
of E with respect to every norm, and the same goes for the othet

limit definitions,
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We first give the following definition.

1.30 Definition, For any two norms || “l and I I, on ERN",- we define
il “l to be gouivalent to || ||, if there exist positive real numbers
k and K such that, for any x inf[N,

el xlf; £ Hxla & Klxlly eea(®)

Tt can be shown that this is a true equivalence relation,
that is, it satisfies the three recuirements:
Reflexivity: Every norm is equivalent to itselfs
Symnetry: || ||; is oquivalent to I n2 if and only if |} ||, is
equivalent to || Hl"
Transitivity: If || ||; is equivalent to || || and if || ||, is

ﬁquivalep.t to || |13» t‘hen || I} is equivalent tol} [|3._

We now verify the preceding contention, let W “l’ and || H2 be
equivelent norms, and suppose X5 is a limit point of E with respect
to || Hye Then, for any € 1> 0, there exists a point x in E such that
0 < Hx=xyl| € €1+ Thus, if £,> 0 is given arbitrarily, ve may '
set € 1 = 52/1{ and obtain, by inequality (¥*),

o 0 Hx—-xoli 5 L g Iii-xDii l{' K€y =£2.

Hence, X, is a limit point of E with respect toll li,a

" We now turn to the principal theorem,



1,31 Theorem, Any two norms on RV are equivalent,

Proof. Letil || be an arbitrary nofm on 'RN. Choose a basis

{el, eseyey} for IRN, and define a Zuclidean norm on R by set'bing

‘:{l bt ’JX% Toaet .xﬁ 3

for any X = ¥187 * eee * Xyeys We shall show that!l Il is equivalent

to| |, that is, there exist positive real numbers k and K such
that k|x| £ §x )| £ Klx|, for/all x in®', By the transitivity
property of the equivalence rclation between norms, it then follows
that any two norms on R are equivalent,

For any X = XjejtesetXyey » we have

I~

WA e 3
%lxi“leiﬂ 2 E‘i“ei“ )mix {'Xﬂ}

i) N 1
( S llesliT iz_;:f ¥ - =k|x|

i=1

Il =il

I~

where K = .%;1!eill)0 + We now prove that k exists. We contend that
as a funct;;n of x the real-valued function I | is continuous with
respect to the Euclidean norm | ] « For if € > 0 is given, we pick
& =E/K. Then, if |x-xy| <8, '

Pl =x] £ sl & Klxexgl< €
Ret k be the minimua value of the function || || restricted to the

Buclidean unit sphere | x| = 1o Then, for any x # 0, it follows that
Hx/]xl | = k, and hence that

x|l 2 k|x|, for any x inmY,
k]



Inner Product Spaces

1.32 Definition. An inner product on a real vector space X is &
real-—-valuedl function on X X X, whose values are denotcd by <XZy¥> s
which has the following properties: |

(a) <x,x> 20; €x,x%» =0 if and only if x = 0;

(b) <xy> = ¥x> 3

(c) Lxtyyz> = Cxyz > +/K¥52>

(d) <aX,y) = alX,y> , for any real number a,
A vector space with inner product defined on it is called an inner

produc;b Space.

The following properties are immediate consequences of the
definition of an inner product,
{xyytan = 7 ¥ x,n AE 1O
JUJ LU L
: (x!aY> a{",:y}
{02 =05 K0,x 7 0

1.33 Theorem., If X is an inner product space, then |ixll "—‘,‘ x5

defines a norm on X,and for all x and y in X,

| oy | £ i) v ( Schwarz inequality ).

Proof. The properties |l ax|l = |al |l x|| and Nxll =0 if and
only if x = 0 crc immediate, The inequality |<£x,y 7| £ 0zl vl

is truc if either x = 0 or y = 0; otherwise it can be written

117671127



|<x||xn“l,yﬂyﬂ'l>| £ 1, and thus it suffices to show that
l<x,y>| £1 whenever ||xlf = 1|l yll =1.

Now, for any real number a, we have

0 ¢ {xtay,xtayy = <x,x> + aly,xy + alxyy * a*{y,y)
or

0€ 1+ 2a<x,y> + I'alzo
Choosing a = = {x,y» , we obtain

041 - [{x,}"

or |{x,7»| £ 1, as desired,

The triangle inequality is now easily established; we have

iyl 2 = Lary ey
= {xyx+ gy + Kyxp + <Y’3’;)
= WxR + 2&gy> + iyl
L+ 2 [¢n) o 12
£ AR+ 2l Y iV
=gl AT i

so that
| x+yl]  Zlxl| + Iyl o

”

QoEonn

The norm associated with an inner product satisfies the

parallelogram law:

Nl + flxsi? = 20 p=® + o).



This is easily verified:
e+ x = yif = Coyyxnyd + Coxxry
: =2 LgED v Xy By Ly
+&,xD = KXy 7D =~ XFyxD> + <Gy
C=2(0xIf + R ).

Geometrically the parallelogram law expresses the fact thatv
in a parallelogram the sun of the squares of the lengths of the
disgonals is equal to the sum of the squares of the lengths of the

four sides,

1434 Definition, An innér product space which is complete is called

a Hilbért SpaCE.

1.35 Rxauple, 1'1;?.1\I is a Hilbert spacc,.
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