CHAPTER III

NEUTRON DIFFRACTION

A detailed survey of the principles and uses of neutron

_diffiaction is given in the book by Baéon.({g) A brief survey
of the principles employed in this work will be ‘given in this

chapter.

The wavelength ) associated with a particle of mass m

and velocity VN is

my (5)

Neutrons which have attained thermal equilibrium in a reactor

at a temperature T will have a mean kinetic energy given by

Z myv? = 3/2 J’LT 6)

where y* is the mean square velocity.

(19) Bacon, G.E}, Neutron Diffraction, Oxford University Press

1962
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Combination of equation (5) and (6) gives the wavelength

corresponding to the root mean square velocities as

)\ = -z ) ‘(7)
| V3 mh]
]
The wavelength corresponding to 20°C ig ~ 1.5 A, which

.is just the right wavelength for diffraction by crystalline so-
1ids.

The intensity of a beam of unpolarized neutrons, scattered
at an angle 67 by a powder sample in the form of a vertical cir-
cular cylinder fully /bathed in the neutron beam, is given by the

relation.

S = 2B A OfN
I o(_jFA(@)JZ, A B A 28

(8)

The formula is made up of the follawing parts:

(1) The multiplicity factor j is the number of cooperating

planes of the same form for the particular reflection being measured.

(2) The structure factor F (hkl) for each set of planes in-

dicatedtby the Miller indices h, k and 1 can be expressed in term

g
’ A



of the atomic scattering. factor b'r of coordinates Xy I YY and

75.‘. in the unit cell as

F(hkl) = 7, b, xp 271 (-hx,,%y,»rl}y) L

The summation is over one unit cell.

(3) A (B), the absorption factor, varies very slowly with

angle, and for most materials can be ignored.

(4) The temperature factor, exp (-1D 'Mze/)\z) can only
apply strictly to monatomic cubic crystals, but reasonable agreement
can usually be obtained for polyatomic crystal. Values of the fuactions
exp ( -.?.[’)er/xl ) are tabulated in the International Tables fér X-ray

Crystallography, Volume 2.(20)

(5) The geometrical factors, 1/%2_’@ which is known as the
Lorentz factor, is a measure of the duration that a particular plane
will be in a reflecting position. The '/MG is a measure of fraction

of the radiation scattered at an angle & .

(20) Macqillavry, C.H. and Rieck, G.D., (Ed.), International

Tables for X-ray Crystallography, Vol II, The Kynoch Press,

Birmingham (England) 1967



III. 1 Nuclear Scattering of Neutrons

The fundamental scattering body in nuclear scattering is the
nucleus, and this leads to the immediate result that, since the
dimensions of the nucleus are small compared with wavelength of the

“incident thermal neutrons, the scattering is then isotropic, and
there is no form factor fall-off with A&M"QAA. .The neutron
scattering power of a nucleus is usually expressed in terms of a
scattering length b which take both positiée and negative values,
and different values for different isotopes. The scattering length
b for nickel, mangan;se and germanium are shown in table 3 (from

' (16))

Bacon

III. 2 Magnetic Scattering of Neutrons

In addition to its mass, a neutron possesses a spin %, and
a magnetic moment of 1.9 nuclear magnetons. The interaction of
this moment wi;h that of a magnetic atom produces an‘additional
magnetic scattering of the neutron. Since the magnetic scattering
is due to the unpaired électrons, and not the nucleus, the magnetic
scattering amplitude ,p, eghibits a form factor fall-off with

Aﬁ&e//A . The magnetic form factor used for manganese is shown in

figure 2 (from 20 a)

The magnetic scattering amplitude p is defined as
. 2
P i= (.JQQL_)fgs .

mct (10)

(20 a) Webster, P.J., Ph.D. Thesis, Sheffield University, (1968)
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and germanium.

Scattering
Elements Atomic Specific length (b)
Number Nucleus e 1.2
(10 cm)-
55
Manganese 25 Mn - 0.36
Nickel 28 - 1.03
N1 1.44
Ni6o 0.30
n152 - 0.87
Germanium 32 - 0.84
Table 3 Neutron séattering length for manganese, nickel

¢ g
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Fig. 2 Magnetic form factor of manganese. ( From 204Q)



where e and m are the electronic charge and mass respectively,

‘X is the magnetic moment of the neutron, S 1is the spin quantum
number and f 1is the magnetic form factor. In term of the Bohr

magneton number of the atomic magnetic moment, the magnetic scatter-

ing amplitude can be expressed as

‘ -12
F . o.zé‘?/uef X106 em (11)

where /Aie>is the magnitude of the atomic magnetic moment in Bohr

magneton.

In ordered magnetic crystals the magnetic moments are oriented
in a regular manner and coherent Bragg reflections occur. The total

scattering cross-section A0 of ‘an unpolarized neutron beam is

(i(f ) b2—+ }?¥f

(12)

where %, is the magnetic interaction vector defined by

(13)
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é, is a unit scattering vector normal to the rebflecting planes,

and ’)_Q is a wnit vector in the direction of the magnetic moment.

Consequently,

2 . . e |
‘% = He(E.X) = Awm o (14)

- where ol is the angle betweéen & and X ,

The total scattering intensity for any reflection is obtained
‘by calculating the total structure factor F for the unit cell.

The nuclear struc”t'lure/fa,c‘tor Fn is given by
/

¥

Fe (Llé{i([) =5 by ﬂxjo Z’W{MXYJZHvH%) (15)

and the magnetic structure factor Fm by

F'M. ( /I’\-/{(/(.) — % (T)Y.Z’(F 271 ( L\;X'~f*/&j«""’£57>(l6)

The resultant intensity is proportional to F2, which is given by

F&= Fnz gk Cg F::\

(17)

B i vl
L D
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Thus if q2 is known for a particular reflection, the orientation
of the magnetic moment may be in pfinciple be determined. However,
for polycrystalline materials only a mean value of q2 from all

. reflecting planes of the same form is 6btained, and the most fhat
can be calculated is the orientation of the moments with respect
to the unique axis. If no unique axis exists, as in a cubic
crystal for example, it is impossible to determine the moment
orientations from measurements on polycrystalline sample using

unpolarized neutrons, and q2 takes a mean value of 2/3.

In antiferromagnetic materials the magnetic unit cell can
be either equal or larger than the chemical unit cell, in the lattee
case the magnetic and nuclear diffraction peaks are not superimposed.
In ferromagnetic materials the magnetic and chemical unit cells are
usually the same size and the magnetic and nuclear peaks are super-
imposed at the same Bragg angle. The magnetic and nuclear contribu-
tions to the diffraction peaks may be determined by three methods.
The best method is to vary q2. This may be done by applying a magnetic
field, sufficiently large to saturate the sample along or perpendicular
to the scattering vector. In the first case q2 = 0, and in fhe second
q2 = 1, and the difference between the two diffraction patterns is the
magnetic scattering. If suitable magnetic field: -is not available,
measurements may be made above and below the Curie temperature, but

this method suffers from the disadvantage that other parameters may '%
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change with temperature, and corrections have to be applied. The
third method is to compare the intensities of diffraction lines

at low and high angles. At low angle the magnetic contribution

may be large, but there is a rapid fall-off in magnetic contribution
with angle due to the magnetic form factor, and high angle lines have
virtually no magnetic component. The disadvantage of this method is

that intensities cannot be measured as accurately at high angles
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