CHAPTER V

SOLUTION OF $f(x+y)=f(x) f(y)$ AND $f(x y)=f(x) f(y)$

In determining solutions of the functional equation
(A)

$$
g\left(x_{0} y^{-1}\right)=g(x) g(y)+f(x) f(y)
$$

treated in the previous chapters, it turns out that certain solutions of (A) are expressible in terms of homomorphisms from an abelian group G into the multiplicative group $M(F)$, where F is a field of characteristic different from 2. In this chapter, we shall characterize these homomorphisms for the case where $G=\mathbb{R}^{n}, F=\Delta$ and $G=\mathbb{R}^{*}, F=\mathbb{C}^{*}$.

$$
5.1 \text { Solution of } f(x+y)=f(x) f(y)
$$

Theorem 5.1.1 Let V be a vector space over a field F with $\mathcal{B}=\left\{V_{\alpha}, \alpha \Theta^{I}\right\}$ as a basis. Let f be a function on V into a commutative group G^{\prime}. Then f satisfies
(5.1.1.1) $f(x+y)=f(x) \hat{x}(y)$,
iff there exists a family $\left\{f_{d}: \in I\right\}$ of homomorphisms from the additive group of F into G such that for any

$$
x=\sum_{i=1} a_{i} v_{i} \quad \text { in } V, \text { we have }
$$

$$
f(x)=f\left(\sum_{i=1} \quad a_{i} V_{\alpha_{i}}\right)=\prod_{i=1} f_{\alpha_{i}}\left(a_{i}\right) .
$$

Proof Assume that $f: V \longrightarrow G^{\prime} \quad$ satisfies (5.1.1.1), for each $V_{\alpha} \in \mathbb{B}$, define $f_{\alpha}(a)=f\left(a V_{\alpha}\right)$.
Observe that for each $\alpha \in I, f_{\alpha}: F \longrightarrow G^{\prime}$, and

$$
\begin{aligned}
f_{\alpha}(a+b) & =f\left((a+b) V_{\alpha}\right) \\
& =f\left(a V_{\alpha}+b V_{\alpha}\right) \\
& =f\left(a V_{\alpha}\right) f\left(b V_{\alpha}\right) \\
& =f_{\alpha}(a) \frac{f_{a}(b)}{n}
\end{aligned}
$$

For any $x \in V$, we have $x=\sum_{i=1} a_{i} \sigma_{i}$, where $\left.a_{i} \in F, V_{\alpha_{i}} \in\right\}$.
Hence

$$
f(x)=\quad f\left(\sum_{i=1} \quad a_{i} v_{i}\right)
$$

By $(5.1 .1 .1)$, we have

Hence

$$
\left.f(x)=\frac{\prod_{i=1}^{n} f\left(a_{i} \|_{n}\right)}{n}\right)_{i}^{n}
$$

$$
f(x) \text { ®ากรร } \prod_{\alpha_{\alpha}}^{n}\left(a_{i}\right) \text { ! ! }
$$

Conversely, assume that $\left\{f_{\alpha}: \alpha \in I\right\}$ is a family of homomorphisms on the additive group of F into G^{\prime} and f is given by $f\left(\sum_{i=1} a_{i} V_{\alpha_{i}}\right)=\prod_{i=1} f_{\alpha_{i}}\left(a_{i}\right)$. Then for any $x, y \in V$, we -may write

$$
x=\sum_{i=1}^{n} a_{i} V \alpha_{i}, \quad y=\sum_{i=1}^{n} \quad b_{i} v_{\alpha_{i}},
$$

where $a_{i}, b_{i} \in F$ and $v_{\alpha_{i}} \in \mathcal{B}$.

Hence,

$$
\begin{aligned}
& \text { n n } \\
& f(x+y)=f\left(\sum_{i=1} a_{i} V \alpha_{i}+\sum_{i=1} b_{i} V \alpha_{i}\right) \text {, } \\
& \text { n } \\
& =f\left(\sum_{i=1}^{\Sigma}\left(a_{i}+b_{i}\right) v_{\alpha_{i}}\right) \text {, } \\
& =\prod_{i=1}^{n} f_{\alpha_{i}}\left(\mathbf{a}_{i}+b_{i}\right), \\
& \prod_{i=1}^{n}\left(e_{\alpha_{i}}\left(a_{i}\right) f_{\alpha_{i}}\left(b_{i}\right)\right) \text {, } \\
& \prod_{i=1}^{n} f_{i}\left(a_{i}\right) \prod_{i=1}^{n} f_{\alpha_{i}}\left(b_{i}\right) \text {, } \\
& n \text { n } \\
& \left.\frac{f\left(\sum\right.}{i=1} a_{i} V \alpha_{i}\right) \quad f\left(\sum_{i=1} b_{i} V \alpha_{i}\right), \\
& =\quad f(x) f(y) \text {. }
\end{aligned}
$$

Lemma 5.1.2 Let h be a homomorphism from the additive group Q of rational numbers into a commutative group G^{\prime}. Then $h(n a)=(h(a))^{n}$, for all $a \in Q$ and all $n \in \mathbb{Z}$, where \mathbb{Z} is the set of all integers.

Proof Let $a \in Q$. Since h is a homomorphism, hence $h(0)=1$

Therefore

$$
h(0 \cdot a)=h(0)=1=(h(a))^{0}
$$

Assume that k is a non-negative integer such that

$$
h(k \cdot a)=(h(a))^{k} .
$$

Then

$$
\begin{aligned}
h((k+1) a) & =h(k a+a) \\
& =h(k a) h(a) \\
& =(h(a))^{k} h(a) \\
& =(h(a))^{k+1}
\end{aligned}
$$

Hence $\quad h(n a)=(h(a))^{n}$ for all non-negative integers n.
For any negative integer m, is a positive integer.

Hence

Therefore

Thus

$$
\begin{aligned}
1=h(0) & =\quad \begin{array}{r}
h(m a+(-m) a) \\
\\
\end{array} \quad \begin{aligned}
h(m a)(h(a))^{-m}
\end{aligned}
\end{aligned}
$$

$h(n a)=(h(a))^{n}$ จุพาลงกรณ์มหาวิทย่าลัย
Theorem 5.1.3 Ch b is a homomorphism from Q into G, where G^{\prime} is R^{+}or \triangle, iff there exists $r \in G^{\prime}$ such that $h(a)=r^{a}$, for $a \in Q$.

Proof Assume that h is a homomorphism from Q into G^{\prime} Let $a \in Q$. Then $a=\frac{p}{q}$, where p, q are integers, $q \neq 0$.

We have

$$
\begin{aligned}
\left(h\left(\frac{p}{q}\right)\right)^{q} & =h\left(q \cdot \frac{p}{q}\right) \\
& =h(p) \\
& =h(p \cdot 1) \\
& =(h(1))^{p}
\end{aligned}
$$

Hence

$$
h\left(\frac{p}{q}\right)
$$

$$
=(h(1))^{\underline{p}},
$$

i.e. we have $h(a)=r^{2}$ where $r=h(1) E G^{\prime}$.

Conversely, assume that there exists $r \in G^{\prime}$ such that

Then

$$
h(a)=r^{a}, \text { for } r \in G^{\prime}
$$

$$
\begin{aligned}
h(a+b) & =x^{a+b}=r^{a} \cdot r^{b}, \\
& =h(a) h(b) .
\end{aligned}
$$

จฬาลงกรณ่มหาวิทยาลัย

Hence h is a homomorphism. \&Korn University

Theorem 5.1.4 Let $H=\left\{V_{\alpha}: \alpha \in I\right\}$ be a Hamel basis of \mathbb{R} over Q. A function $f: \mathbb{R} \longrightarrow G^{\prime}$, where G^{\prime} is \mathbb{R}^{+}or Δ, satisfies
(5.1.4.1) $f(x+y)=f(x) f(y)$

Iff there exists a function b on $H \quad$ into G^{\prime} such that for each $x=\sum_{i=1} a_{i} V_{\alpha_{i}} \in \mathbb{R}$, where $V_{a_{i}} \in H$, we have

$$
f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)=\prod_{i=1}^{n} b\left(V_{\alpha}\right)^{a_{i}}
$$

Proof Assume that $f: \mathbb{R} \longrightarrow G^{\prime}$ satisfies (5.1.4.1) By Theorem 5.1.1, we see that f must be of the form

$$
f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)=\prod_{i=1}^{n} f_{\alpha_{i}}\left(a_{i}\right)
$$

where $f_{\alpha_{i}}$ is a homomorphism from Q into G.
By Theorem 5.1.3, each $f_{\alpha_{i}}$ must be of the form

Let $\mathrm{b}: \mathrm{H} \longrightarrow \mathrm{G}^{\prime}$ be defined by $\mathrm{b}\left(\mathrm{V}_{\alpha_{\mathrm{i}}}\right)=\mathrm{b}_{\alpha_{i}}$.
Then we have,
Chulalongioorn University

$$
=\prod_{i=1}^{n} b\left(v_{\alpha}\right)_{i}^{a_{i}}
$$

Conversely, assume that there exists a function b on H to G^{\prime} such that f is defined by

$$
f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)=\prod_{i=1}^{n} b\left(V_{\alpha_{i}}\right)^{a_{i}}
$$

then, for any $x=\sum_{i=1} a_{i} V_{a_{i}}, y=\sum_{i=1} a_{i}^{\prime} V_{i} \quad$ in \mathbb{R}, we have

$$
\begin{aligned}
& f(x+y)=f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}+\sum_{i=1}^{n} a_{i}^{\prime} V_{\alpha_{i}}\right) \text {, } \\
& =\quad f\left(\sum_{i=1}^{n}\left(a_{i}+a_{i}^{\prime}\right) v_{a_{i}}\right) \text {, } \\
& =\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}+a_{i}^{\prime}} \text {, } \\
& \left.\prod_{i=1}^{n} \frac{b\left(v_{a}\right.}{a_{i}}\right)^{a} \prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}, \\
& \text { (} n \\
& \int_{i=1}^{\sum\left(a_{i} a_{i}\right)} f\left(\sum_{i=1} a_{i}^{\prime} V_{a_{i}}\right),
\end{aligned}
$$

Corollary 5.15 Let $H=\left\{V_{\alpha}: \alpha \in I\right\}$ be a Hamel basis of \mathbb{R} over Q. A function $f: \mathbb{R} \longrightarrow C$ satisfies

จุฬาลงกรณ์มหาวิทยาลัย

(5.1.5.1) $\quad f(x+y)$ ILO $=\operatorname{GKO} f(x) f(y)$ ERSITY
iff there exists a function c on H into C * such that for each $x=\sum_{i=1}^{n} \quad a_{i} V_{\alpha_{i}} \in \mathbb{R}$, we have

$$
f\left(\sum_{i=1}^{n} a_{i} V \alpha_{i}\right)=\prod_{i=1}^{n} c\left(V \alpha_{i}\right)^{a_{i}}
$$

Proof Assume that $f: \mathbb{R} \rightarrow C^{*}$ satisfies (5.1.5.1).
Let $g(x)=|f(x)|$ and $h(x)=\frac{f(x)}{g(x)}$
Observe that $B: \mathbb{R} \rightarrow \mathbb{R}^{+}$, and $\mathrm{h} \quad: \quad \mathbb{R} \longrightarrow \Delta$.

$$
\begin{aligned}
& =\frac{f(x)}{g(x)} \cdot \frac{f(y)}{g(y)}, \\
& =\quad h(x) h(y)
\end{aligned}
$$

Therefore, by using Theorem 5.1.4 there exists a function b, on H into \mathbb{R}^{+}and a function b_{2} on H into Δ such that for each
$x=\sum_{i=1}^{n} a_{i} V \alpha_{i} \in \mathbb{R}$, we have

$$
g(x)=\prod_{i=1}^{n} b_{1}\left(v_{\alpha_{i}}\right)^{a_{i}}
$$

and

$$
h(x)=\prod_{i=1}^{n} b_{2}\left(v_{a_{i}}\right)^{a_{i}} .
$$

Let $c: H \longrightarrow C$ be defined by

$$
c\left(v_{\alpha_{i}}\right)=b_{1}\left(v_{\alpha_{i}}\right) b_{2}\left(v_{\alpha_{i}}\right)
$$

So we have,

CHULALONGKORN UNIVERSITY

Conversely, if c is a function on H into C^{*}, and f is defined by

$$
f\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)=\prod_{i=1}^{n} c\left(v_{\alpha_{i}}\right)^{a_{i}}
$$

then it $c_{a} n$ be verified in the same way as in Theorem 5.1.4, that $f(x+y)=f(x) f(y)$.

Theorem 5.1.6 Let $f: \mathbb{R}^{n} \longrightarrow \triangle$ be function. f satisfies
(5.1.6.1)

$$
f(x+y)=f(x) f(y),
$$

iff for each $i=1, \ldots, n$, there exists a function f_{i} on \mathbb{R} to Δ satisfying

$$
f_{i}(x+y)=f_{i}(x) f_{i}(y)
$$

such that for each $x=\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$, we have

$$
f(x) \quad=\prod_{i=1}^{n}\left(f_{i} \circ p_{i}\right)(x)
$$

where the $p_{i}^{\prime s}$ are given $b y p_{i}\left(x_{1}, \ldots, x_{n}\right)$
Proof Assume that satisfies $(5.1 .6 .1)$
For each $i=1, \ldots, n$, Let $\pi, \mathbb{R} \rightarrow \mathbb{R}^{n}$ be defined by

$$
\pi_{i}(x)=x_{i},
$$

where

$$
e_{i}=\left(\delta_{i 1}, \cdots, \delta_{i n}\right), \delta_{i j}=1 \text { if } i=j \text {, and }
$$

$$
\delta_{i j}=0 \text { if } i \neq j_{A}
$$

Set

$$
f_{i}=f \circ \pi_{i}
$$

hence

$$
\begin{aligned}
f_{i}: \mathbb{R} \longrightarrow \Delta & \text { and } \\
f_{i}(x+y) & = \\
& =f\left(f \circ \pi_{i}\right)(x+y) \\
& =f\left(\pi_{i}(x+y)\right) \\
& =f\left((x+y) e_{i}\right) \\
& \\
& f\left(x e_{i}+y e_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =f\left(x \theta_{i}\right) f\left(y e_{i}\right), \\
& =f\left(\pi_{i}(x)\right) f\left(\pi_{i}(y)\right), \\
& =f_{i}(x) f_{i}(y) .
\end{aligned}
$$

Also, from $f_{i}=f \circ \pi_{i}$, we have

$$
\left(f \circ \pi_{i}\right) \circ p_{i},
$$

where p_{i} is defined by $p /\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ 。

Hence, for any x

$$
\begin{aligned}
f_{i} \circ p_{i}(x) & =f\left(\pi_{i}\left(p_{i}\left(x_{1}, \ldots, x_{n}\right)\right)\right), \\
& =f\left(\pi_{i}\left(x_{i}\right)\right), \\
& =f\left(x_{i} e_{i}\right) .
\end{aligned}
$$

Therefore

$$
f_{i} o p_{i}=
$$

จุฬาลงกรณ์มหาวิทยาลัย

$$
\begin{aligned}
\prod_{i=1}^{n} f_{i} \circ p_{i}(x) & =\prod_{i=1} f\left(x_{i} e_{i}\right) \\
& =f\left(x_{1} e_{1} \rho_{\ldots} \ldots f\left(x_{n} e_{n}\right)\right. \\
& =f\left(x_{1} e_{1}+\ldots+x_{n} e_{n}\right) \\
& =f\left(x_{1}, \ldots, x_{n}\right) \\
& =f(x)
\end{aligned}
$$

Conversely, assume that $f(x)=\prod_{i=1}^{n} f_{i} \circ p_{i}(x)$, where each
$f_{i}, i=1, \ldots, n$, satisfies $f_{i}(x+y)=f_{i}(x) f_{i}(y)$ for all $x, y \in \mathbb{R}$.

We have

$$
\begin{aligned}
& f(x+y)=\quad \prod_{i=1}^{n}\left(f_{i}\left(p_{i}(x+y)\right),\right. \\
& =\prod_{i=1}^{n} \prod_{i} \sum_{i}^{\left(x_{i}+y_{i}\right)}, \\
& =\quad \begin{array}{l}
\prod_{i=1}^{n}\left(f_{i}\left(x_{i}\right) f_{i}\left(y_{i}\right)\right), \\
\prod_{i=1}^{n} f_{i}\left(x_{i}\right) \prod_{i=1}^{n} f_{i}\left(y_{i}\right),
\end{array} \\
& =\prod_{i=1}^{n} f_{i}\left(p_{i}(x)\right), \prod_{i=1}^{n} f_{i}\left(p_{i}(y)\right),
\end{aligned}
$$

จุนาลงกรณ์มหาวิทยาลัย

Corollary 5.1.7 By using Theorem 5.1.4, we see that $\mathrm{f}: \mathbb{R}^{n} \triangle$ satisfies $f(x+y)=f(x) f(y)$ if, and only if for $j=1, \ldots, n$, there exist functions b_{j} on H, where H is a Camel basis of \mathbb{R} over Q, into \triangle such that for each $x=\left(\sum_{i=1}^{m} a_{1 i} V_{\alpha_{i}}, \ldots, \sum_{i=1}^{m} a_{n i} v_{\alpha_{i}}\right)$ we have

$$
f(x)=\prod_{j=1}^{n} \prod_{i=1}^{m} b_{j}\left(v_{a_{i}}\right)^{a_{j i}}
$$

5.2 Solution of $f(x y)=f(x) f(y)$

Lemma 5.2.1
Let $H=\left\{v_{\alpha}: \alpha \in I\right\}$ be a Hame basis of \mathbb{R} over Q. A function $f:\left(\mathbb{R}^{+}, Q\right) \longrightarrow G^{\prime}$, where G^{\prime} is \mathbb{R}^{+}or Δ, satisfies (5.2.1.1)

$$
f(x y)=f(x) f(y)
$$

iff there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$and a function b on H into G^{\prime} such that for each x_{0} in \mathbb{R}^{+}, if $g^{-1}(x)=\sum_{i=1}^{n} a_{i} v_{\alpha_{i}} \in \mathbb{R}$, where $v_{\alpha_{i}} \in H ;$ we have

$$
f(x)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}} .
$$

Proof Assume that $f: \mathbb{R}^{+} \longrightarrow G^{\prime}$ satisfies (5.2.1.1).
Since \mathbb{R} is isomorphic to \mathbb{R}^{+}, hence there exist an isomorphism g from \mathbb{R} onto \mathbb{R}^{+}such that for each x in $\mathbb{R}^{+}, g^{-1}(x)=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}} \in \mathbb{R}$.

Put $\quad h=f o g$. Since f and g are homomorphisms, so is h. By Theorem 5.1.4, there exists a function b on H into G^{\prime} such that for each $x=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}} \in \mathbb{R}$, where $v_{\alpha_{i}} \in H$, we have

$$
h\left(\sum_{i=1}^{n} a_{i} V \alpha_{i}\right)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}
$$

Hence for each x in \mathbb{R}^{+},

$$
\begin{aligned}
f(x) & =f g\left(g^{-1}(x)\right) \\
& =h\left(g^{-1}(x)\right) \\
& =h\left(\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}\right)
\end{aligned}
$$

$$
=\underbrace{\prod_{i}^{n} b\left(v_{1}\right)^{i}}_{i=1} .
$$

Conversely, assume that there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$ and a function $b: H \rightarrow G$ such that for each x in \mathbb{R}^{+}, $g^{-1}(x)=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}} \quad$ and f is defined by $f(x)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}$. Since g is an isomorphism so is g^{-1}. Then for any x, y in \mathbb{R}^{+}, $g^{-1}(x)=\sum_{i=1}^{n} a_{i} v_{\alpha} g^{-1}(y)=\sum_{i=1}^{n} a_{i}^{\prime} v_{\alpha_{i}}$, we have $g^{-1}(x y)=g^{-1}(x)+g^{-1}(y)=\sum_{i=1}^{n} a_{i} v_{\alpha_{i}}+\sum_{i=1}^{n} a_{i}^{\prime} v_{\alpha}$

$$
=\sum_{i=1}^{n}\left(a_{i}+a_{i}^{\prime}\right) v_{\alpha_{i}} .
$$

Hence,

$$
\begin{aligned}
f(x) f(y) & =\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}} \prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}^{\prime}} \\
& =\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}+a_{i}^{\prime}} \\
& =f(x y) .
\end{aligned}
$$

Theorem 5.2.2 Let $H=\left\{V_{\alpha}: \alpha \in I\right\}$ be a Hame basis of \mathbb{R} over Q.

A function $\mathrm{f}:\left(\mathbb{R}^{*},.\right) \longrightarrow\left(\mathbb{R}^{+},.\right)$, satisfies (5.2.2.1) $f(x y)=f(x) f(y)$,
iff there exist an isomorphism $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$and a function
$b: H \rightarrow \mathbb{R}^{+}$such that for each x in \mathbb{R}^{*}, if $g^{-1}(|x|)=\sum_{i=1}^{n} a_{i} v^{v} \alpha_{i} \mathbb{R}^{n}$ where $v_{\alpha_{i}} \in H$; we haver $f(x)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}$.

Proof Assume that $f=\left(\mathbb{R}^{*}, .0\right) \rightarrow\left(\mathbb{R}^{+},\right.$.) satisfies (5.2.2.1).
Then

$$
\begin{aligned}
(f(-1)) & =f(-1) f(-1) \\
& =f((-1)(-1)) \\
& = \\
& =f(1)
\end{aligned}
$$

จุหาลงกรณัมหาวิทยาลัย

Hence

$$
f(-1)=1
$$

Let $\quad f_{1}=\left.{ }^{f}\right|_{\mathbb{R}^{+}}$. Observe that f_{1} is a homomorphism from \mathbb{R}^{+}to \mathbb{R}^{+}. By Lemma 5.2.1, there exist an isomorphism
$\mathbb{E}: \mathbb{R} \longrightarrow \mathbb{R}^{+}$and a function $\mathrm{b}: \mathrm{H} \longrightarrow \mathbb{R}^{+}$such that for
each x in $\mathbb{R}^{+}, \quad \mathcal{B}^{-1}(x)=\sum_{i=1}^{n} \quad a_{i} V \alpha_{i} \in \mathbb{R} \quad$ we have
$f(x)=f_{1}(x)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}$.

Let x be any element of $\mathbb{R}^{-}=\mathbb{R}^{*}-\mathbb{R}^{+}$. Therefore $-\mathrm{x} \in \mathbb{R}^{+}$. It follows that $g^{-1}(|x|)=g^{-1}(-x)=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}} \in \mathbb{R}$, where $V_{\alpha_{i}} \in H$.

Thus,

$$
f(x)=f((-1)(-x))
$$

Hence for each x in $\mathbb{R}^{*}, g^{-1}(|x|)=\sum_{i=1} a_{i} V \alpha_{i}$, we have $f(x)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a} i$ ลงกรณัมหาวิทยาลัย Conversely, assume that there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$ and a function $b: H \rightarrow \mathbb{R}^{+}$such that for each x in \mathbb{R}^{*}, $g^{-1}(|x|)=\sum_{i=1}^{n} \quad a_{i} V_{\alpha_{i}}$, we have $f(x)=\prod_{i=1}^{n} b\left(v_{\alpha}\right)_{i}^{a_{i}}$. For any x, y in $\mathbb{R}^{*}, g^{-1}(|x|)=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}, g^{-1}(|y|)=\sum_{i=1}^{n} a_{i}^{\prime} V_{\alpha_{i}}$, it follows that $g^{-1}(|x y|)=g^{-1}(|x||y|)=g^{-1}(|x|)+g^{-1}(|y|)$ n $=\sum_{i=1}\left(a_{i}+a_{i}^{\prime}\right) V_{\alpha_{i}}$. Hence

$$
\begin{aligned}
f(x) f(y) & =\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}} \prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}^{\prime}} \\
& =\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}+a_{i}^{\prime}} \\
& =f(x y) .
\end{aligned}
$$

Theorem 5.2.3 Let $H=\left\{V_{\alpha} ; \alpha \in I\right\}$ be a Hame basis of \mathbb{R} over Q.
A function $\mathrm{A}:\left(\mathbb{R}^{*}, \ldots\right)(\mathbb{O})$, satisfies
(5.2.3.1)

$$
f(x y) \quad=f(x) f(y)
$$

ifs there exist an isomorphism $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$and a function
$b: H \rightarrow \Delta$ such that for each x in \mathbb{R}^{*}, if $g^{-1}(|x|)=\sum_{i=1} a_{i} V_{d} \in \mathbb{R}$,
where $\mathrm{V}_{\alpha_{i}} \in \mathrm{H}$; we have
(5.2.3.2)

$$
\begin{aligned}
& \mathrm{f} \text { ค) } \mathrm{x})=\prod_{i=1}^{n} \mathrm{~b}\left(\mathrm{v}_{\alpha}\right)^{)^{a_{i}}} \text { for all } \mathrm{x} \text { in } \mathbb{R}^{*} \text {; or } \\
& \text { ChuLalongii=1 UniinRsity }
\end{aligned}
$$

(5.2.3.3)

$$
f(x)= \begin{cases}\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}} & \text { if } x>0 \\ -\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}} & \text { if } x<0 .\end{cases}
$$

Proof Assume that $\mathrm{f}: \mathbb{R}^{*} \longrightarrow \triangle$ satisfies (5.2.3.1).

By using the same argument as in the proof of Theorem 5.2.2,

It can be shown that $(f(-1))^{2}=1$. Hence $f(-1)=1$ or -1 . Let $f_{1}=\left.f\right|_{\mathbb{R}^{+}}$. Then f_{1} is a homomorphism from \mathbb{R}^{+}into \triangle. By Lemma 5.2.1, there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$and a function $\mathrm{b}: \mathrm{H} \longrightarrow \triangle$ such that for each x in $\mathbb{R}^{+}, \mathrm{g}^{-1}(|\mathrm{x}|)=\mathrm{g}^{-1}(\mathrm{x})=$ $\sum_{i=1}^{n} a_{i} V \alpha_{i} \in \mathbb{R}$, where $V_{\alpha_{i}} \in H$, we have $f(x)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}$. Let x be any element of $\mathbb{R}^{-}=\mathbb{R}^{*}-\mathbb{R}^{+}$. Again, by using the same argument as in the proof of Theorem 5.2.2, it can be shown that $f(x)=f(-1) f(-x) /=(-1) \prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}$ where
$G^{-1}(|x|)=g^{-1}(-x)=\sum_{i=1}^{n} a_{i} v \alpha_{i} \cdot$ If $f(-1)=1$, then
$f(x)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}} \cdot \frac{1 f(-1)=-1}{}$, then $f(x)=-\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}$.
Hence f is of the forms (5.2.3.2) or (5.2.3.3).
Conversely, assume that $\mathcal{E}: \mathbb{R} \longrightarrow \mathbb{R}^{+V E}$ is an isomorphism,
$\mathrm{b}: \mathrm{H} \longrightarrow \Delta$, and $\mathrm{f}: \mathbb{R}^{*} \rightarrow \Delta$ is given by
(5.2.3.3)

$$
\begin{align*}
& f(x)=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}} \quad \text { for all } x \text { in } \mathbb{R}^{*} ; \text { or } \\
& f(x)=\left\{\begin{array}{l}
\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}, \quad x>0 \\
-\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}, \quad x=0,
\end{array}\right.
\end{align*}
$$

where a_{i} 's are such that $g^{-1}(|x|)=\sum_{i=1}^{n} a_{i} V \alpha_{i}$.

By using the same argument as in the proof of Theorem 5.2.2 it can be shown that f given by (5.2.3.2) satisfies (5.2.3.1). Suppose that f is given by (5.2.3.3). Let x, y be any elements of \mathbb{R}^{*}. Therefore $g^{-1}(|x|)=\sum_{i=1}^{n} a_{i} V_{\alpha_{i}}, \quad g^{-1}(|y|)=\sum_{i=1}^{n} a_{i}^{\prime} V_{d_{i}}$ n
and hence $g^{-1}(x y)=\sum_{i=1}\left(a_{i}+a_{i}^{\prime}\right) V_{\alpha_{i}}$ 。 If both x and y belong to \mathbb{R}^{+}we are done. First, let us assume that $x, y \in \mathbb{R}^{-}$. Therefore $x y \in \mathbb{R}^{+}$. Hence

$$
=\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}}
$$

Next, we assume that $x \in \mathbb{R}^{+}, y \in \mathbb{R}^{-}$. Then $x y \in \mathbb{R}^{-}$. It follows
that

$$
\begin{aligned}
f(x) f(y) & =\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{\alpha_{i}}\left(-\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}^{\prime}}\right) \\
& =-\prod_{i=1}^{n} b\left(v_{\alpha_{i}}\right)^{a_{i}+a_{i}^{\prime}} \\
& =f(x y) .
\end{aligned}
$$

Note that if $x \in \mathbb{R}^{-}, y \in \mathbb{R}^{+}$, then a similar argument
shows that

$$
f(x) f(y)=f(x y)
$$

In any case we have $f(x) f(y)=f(x y)$ for all x, y in \mathbb{R}^{*}.

Theorem 5.2.4 Let $H=\left\{V_{\alpha}: \alpha \in I\right\}$ be a Hamel basis of \mathbb{R} over Q. A function $f:\left(R^{*}, o\right) \longrightarrow\left(\mathbb{C}^{*},.\right)$ satisfies

$$
(5 \cdot 2 \cdot 4 \cdot 1) \quad f(x y)=f(x) f(y)
$$

iff there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$and a function $c: H \longrightarrow \mathbb{C}^{*} \quad$ such that for each x in $\mathbb{R}^{*}, \quad \mathbb{g}^{-1}(|x|)=\sum_{i=1}^{n} a_{i} V_{\alpha}{ }_{i}^{\epsilon} \mathbb{R}$ where ${ }_{V_{\alpha_{i}}} \in H$, we have

$$
(5 \cdot 2 \cdot 4 \cdot 2)
$$

$$
(5 \cdot 2 \cdot 4 \cdot 3)
$$

 Let $\phi(x) \stackrel{C H U L}{=}|f(x)|$ and $h(x)=\frac{f(x)}{\phi(x)}$

Observe that $\varnothing: \mathbb{R}^{*} \longrightarrow \mathbb{R}^{+}$,
and

$$
\mathrm{h}: \quad \mathbb{R}^{*} \longrightarrow \Delta
$$

Hence

$$
\begin{aligned}
\phi(x y) & =|f(x y)|, \\
& =|f(x) f(y)|, \\
& =|f(x)||f(y)| \\
& =\phi(x) \phi(y) .
\end{aligned}
$$

By Theorem 5.2.2, there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$and a function $b_{1}: \mathbb{H} \longrightarrow \mathbb{R}^{+}$such that for each x in \mathbb{R}^{*},
$g^{-1}(|x|)=\sum_{i=1}^{n} a_{i} V_{i} \in \mathbb{R}$,
we have

$$
\phi(x)=\prod_{i=1}^{n} b_{1}\left(v_{\alpha}\right)^{a_{i}} .
$$

Observe that

By Theorem 5.2.3, there exist an isomorphism $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$and a function $\mathrm{b}_{2}: \mathrm{H} \longrightarrow \triangle$ such that for each x in \mathbb{R}^{*},
$E^{-1}(|x|)=\sum_{i=1}^{n} a_{i} V \alpha_{i} \in \mathbb{R} \mid$,
where $V_{\alpha_{i}} \in H$, we have
$\begin{array}{ll}\text { (5.2.4.4) } h(x)=\prod_{i=1}^{n} b_{2}\left(v_{\alpha}\right)_{i}^{a_{i}} \quad \text { for all } x \text { in } \mathbb{R}^{*} ; \text { or } \\ (5.2 .4 .5) & h(x)= \begin{cases}\prod_{i=1}^{n} b_{2}\left(v_{a_{i}}\right)^{a_{i}}, & x=0 \\ \prod_{i=1}^{n} b_{2}\left(v_{\alpha_{i}}\right)^{a_{i}}, & x<0 .\end{cases} \end{array}$

Let $\mathrm{c}: \mathrm{H} \longrightarrow \mathbb{C}^{*} \quad$ be defined by

$$
c\left(v_{\alpha_{i}}\right)=b_{1}\left(v_{\alpha_{i}}\right) b_{2}\left(v_{\alpha_{i}}\right) .
$$

So we have

$$
h(x)=\phi(x) h(x)
$$

$$
=\left(\prod_{i=1}^{n} b_{1}\left(v_{a_{i}}\right)^{a_{i}}\right) h(x)
$$

If $h(x)$ is of the form (5.2.4.4), then

$$
(5 \cdot 2 \cdot 4 \cdot 2)
$$

$$
\begin{aligned}
f(x) \quad & =\prod_{i=1}^{n} b_{1}\left(v_{\alpha}\right)^{a_{i}} \prod_{i=1}^{n} b_{2}\left(v_{a_{i}}\right)^{a_{i}}, \\
& =\prod_{i=1}^{n} b_{1}\left(v_{\alpha_{i}}\right)^{a_{i}} b_{2}\left(v_{\alpha_{i}}\right)^{a_{i}}, \\
& =\prod_{i=1}^{n} c\left(v_{0} \alpha_{i}\right)^{a_{i}} .
\end{aligned}
$$

จพาลงกรณ์มหาวิทยาลัย

If $h(x)$ is of the form (5.2.4.5), then we have
(5.2.4.3)

$$
f(x) \quad= \begin{cases}\prod_{i=1}^{n} c\left(v_{\alpha_{i}}\right)^{a_{i}} & , x>0 \\ \prod_{i=1}^{n} c\left(v_{\alpha_{i}}\right)^{a_{i}} & , x<0 .\end{cases}
$$

Conversely, assume that $f: \mathbb{R} \longrightarrow \mathbb{C}^{*}$ is given by (5.2.4.2) or (5.2.4.3)

It can be verified in the same way as in the proof of Theorem 5.2.3 that f satisfies (5.2.4.1).
5.3 Continuous Solution of $f(x+y)=f(x) f(y)$

In this section, we shall determine all the continuous solutions of $f(x+y)=f(x) f(y)$, where f is a function from \mathbb{R}^{n} into Δ.

Lemma 5.3 .1 Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function satisfying
$(5 \cdot 3 \cdot 1.1) \quad g(x+y)=\int J / g(x)+g(y)$.
Then $g(x)=b x$ for some, b in $T R$.
Proof We first claim that $g(n a)=n g(a)$ for all integers n and $a \in \mathbb{R}$.

Since g is a homomorphism, hence $g(0)=0$.
Therefore

Assume that k is a non-negative integer such that

$$
C g(\mathrm{ka}) \quad \operatorname{lon}=(0 R \| \mathrm{kg}(\mathrm{a})
$$

Then,

$$
\begin{aligned}
g((k+1) a) & =g(k a+a) \\
& =g(k a)+g(a) \\
& =k g(a)+g(a) \\
& =(k+1) g(a)
\end{aligned}
$$

For any negative integer m, -m is a positive integer. Hence

$$
\begin{aligned}
0=g(0) & =g(m a+(-m) a) \\
& =g(m a)+g((-m) a) \\
& =g(m a)+(-m) g(a),
\end{aligned}
$$

Thus

Therefore
$\mathrm{g}(\mathrm{na}$

for all integer n.

For $r=\frac{p}{q}$, where p, are integers and $q \neq 0$. we have $q g(r)$
 จุหาลงกรณัมหา ${ }^{g}(p \cdot 1)$, CHULALONGYORN pg(1).RSITY

Thus

$$
g(r) \quad=\quad \frac{p}{q} g(1)=r g(1)
$$

Let $x \in \mathbb{R}$. Since the set of rational numbers is dense in \mathbb{R}, we can find a sequence $\left\{r_{n}\right\}$ of rational numbers converging to x. Since E is continuous, hence

$$
\lim _{n \rightarrow \infty} g\left(r_{n}\right)=g(x)
$$

But

$$
\lim _{n \rightarrow \infty} g\left(r_{n}\right)=\lim _{n \rightarrow \infty} r_{n} g(1)=\operatorname{xg}(1)
$$

Therefore

$$
E(x)=x g(1), \quad x \in \mathbb{R}
$$

Thus

$$
g(x)=b x \text {, where } b=g(1) \in \mathbb{R}
$$

Theorem 5.3.2 Let $g:(\mathbb{R},+) \longrightarrow\left(\mathbb{R}^{+},.\right)$be a continuous function. g satisfies
(5.3.2.1)

$$
g(x+y)=g(x) g(y)
$$

if
f is of the form
(5.3.2.2)

$$
g(x)
$$

Assume that satisfies (5.3.2.1).
Let $h(x) \quad=\quad \ln x, 0$,
Put
f

Since both h and g are continuous, hence f is also continuous. We also have

$$
\begin{aligned}
\text { จหาลงกรณัมหาวิทยาลัย } \\
\begin{aligned}
f(x+y) & =h(g(x+y), \\
& =\ln (g(x+y)), \\
& =\ln (g(x) g(y)) \\
& =\operatorname{lng}(x)+\operatorname{lng}(y) \\
& =h(g(x))+h(g(y)), \\
& =f(x)+f(y)
\end{aligned}
\end{aligned}
$$

Therefore, by Lemma 5.3.1, there exists a $\in \mathbb{R}$ such that for all
$x \in \mathbb{R}, \quad f(x)=a x$.

Then,

$$
\ln (g(x))=h(g(x))
$$

$$
=\quad f(x),
$$

Therefore

Conversely, let
 $g(x)=e^{a x}$ for some a in \mathbb{R}.
Thus

จุพาลงกรณ์มหาวิทยาลัย
Remark 5.3 .3 Observe that the function given in (5.3.2.2)
is an isomorphism jiff the element a is different from zero.

Theorem $5 \cdot 3.4$ Let $I:(\mathbb{R},+) \longrightarrow \Delta$ be a continuous function.
I satisfies
(5.3.4.1)

$$
I(x+y)=I(x) I(y)
$$

iff there exists $k \in \mathbb{R}$ such that $I(x)=e^{i k x}$.

Proof Assume that $I: \mathbb{R} \longrightarrow \triangle$ is given by $I(x)=e^{i k x}$ for some k in $\mathbb{R} \cdot$ Then $I(x+y)=e^{i k(x+y)}=e^{i k x} \cdot e^{i k y}=I(x) I(y)$.

Conversely, assume that I satisfies (5.3.4.1).
Let $f: \underset{\mathbb{Z}}{\mathbb{Z}} \underset{\longrightarrow}{\longrightarrow}$ be given by $f(\ddot{x})=e^{2 \pi i x}$ where \bar{x} denotes the equivalence class containing x. Observe that f defines an open isomorphism on \mathbb{R} / \mathbb{Z} to Δ.

Put

$$
\beta=f^{-1} 0 I .
$$

Since both I and f^{-1} are continuous, hence β is also continuous. We also have

$$
\begin{aligned}
\beta(x+y) \quad & =f^{-1} O I(x+y) \\
& =f^{-1}(I(x) I(y)) \\
& =f^{-1}(I(x))+f^{-1}(I(y)) .
\end{aligned}
$$

จุหาลงกรณ์มหาวิทยาลัย

$=\beta(x)+\beta(y)$.

Therefore by Theorem 2.3.1, there exists $a \in \mathbb{R}$ such that $\beta(x)=(\rho(a x)$ where φ is the canonical mapping from \mathbb{R} onto \mathbb{R} / \mathbb{Z} Thin

$$
\begin{aligned}
f^{-1} \circ I(x) & =\beta(x) \\
& =\varphi(a x) \\
& =\overline{a x} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
I(x) & =f(\overline{a x}) \\
& =e^{2 \pi i a x} \\
& =e^{i k z} \quad \text { where } k=2 \pi a \in \mathbb{R}
\end{aligned}
$$

Therefore $I(x)=e^{i k x} \quad$ where $k \in \mathbb{R}$.

Theorem 5.3 .5 Let $h:(\mathbb{R},+) \longrightarrow\left(\mathbb{C}^{*}\right.$, 。) be a continuous function. h satisfies
(5.3.5.1) $\quad h(x+y)=h(x) h(y)$
iff there exists $c \in C$ such that $h(x)=e^{c x}$.

Proof Assume that $h: \mathbb{R} \rightarrow \mathbb{C}^{*}$ is given by $h(x)=e^{c x}$ for some $c \in \mathbb{C}$ 。 Then
$h(x+y)=e^{c(x+y)}=e^{c x}+c y$ คมาดา $e^{c x} e^{c y}=h(x) h(y)$.

Conversely, assume that h satisfies $(5 \cdot 3 \cdot 5 \cdot 1)$.

Let $g(x)=|h(x)|$ and $I(x)=\frac{h(x)}{g(x)}$.
Observe that $g: \mathbb{R} \longrightarrow \mathbb{R}^{+}$,
and

$$
I: \mathbb{R} \longrightarrow \Delta .
$$

Since h is continuous, so are g and I.

Also,

$$
\begin{aligned}
g(x+y) & =|h(x+y)| \\
& =|h(x) h(y)| \\
& =|h(x)| \operatorname{h}(y) \mid \\
& =g(x) g(y) .
\end{aligned}
$$

By using Theorem 5.3.2, we get $g(x)=e^{a x}$ for some $a \in \mathbb{R}$.

Observe that

By using Theorem 5.3.4, we get $I(x)=e^{i k x}$ for some $k \in \mathbb{R}$ 。

Thus

$$
\begin{aligned}
& \text { Ch(x)LONGKOPNUNI } I(x) g(x) \\
&=e^{i k x} \cdot e^{a x}, \\
&=e^{(a+i k) x} \\
&=e^{c x}, \text { where } c=(a+i k) \in \mathbb{C} .
\end{aligned}
$$

Theorem 5.3.6 Let $f: \mathbb{R}^{n} \rightarrow \Delta$ be a continuous function. f satisfies

```
f(x + y) = f(x)f(y)
```

iff there exist $k_{i} \in \mathbb{R}$, $i=1$, n, such that for each $x=\left(x_{1}, \ldots, x_{n}\right)$ we have $f(x)=e^{i\left(k_{1} x_{1}+\ldots+k_{n} x_{n}\right)}$.

Proof Assume that f satisfies (5.3.6.1).

Using Theorem 5.1.5, there exist $f_{i}: \mathbb{R} \rightarrow \Delta$ satisfying

$$
f_{i}(x+y)=f_{i}(x) f_{i}(y), i=1, \ldots, n,
$$

such that for each $x \in \mathbb{R}^{n}$, we have

$$
f(x)=\frac{n}{i=7}\left(f_{i} \circ p_{i}\right)(x)
$$

where $p_{i}, i=1, \ldots, n$, is given by $p_{i}\left(x_{1}, \ldots, x_{n}\right)-x_{i}$.

Such an f_{i} is given by $f_{i}=f 0 \pi_{i}$, where π_{i} is defined as in the proof of Theorem $5.1 .6 \%$

Since f and π_{i} are continuous, hence each f_{i} is continuous.
จุหาลงกรณ์มหาวิทยาลัย

By using Theorem $5 \cdot 3 \cdot 4$, we have

$$
f_{j}\left(x_{j}\right)=e^{i k_{j} x_{j}}
$$

for each $j=1, \ldots, n$ and $k_{j} \in \mathbb{R}$ 。
Hence,

$$
\begin{aligned}
f(x) & =\prod_{i=1}^{n}\left(f_{i} \circ p_{i}\right)(x), \\
& =f_{1}\left(x_{1}\right) \ldots f_{n}\left(x_{n}\right) \\
& =e^{i k_{1} x_{1}} \ldots e^{i k_{n} x_{n}}, \\
& =e^{i\left(k_{1} x_{1}+\ldots+k_{n} x_{n}\right)} .
\end{aligned}
$$

Conversely, assume that there exist $k_{j} \in \mathbb{R}, j=1, \ldots, n$ such that $f(x)=c^{i\left(k_{1} x_{1}+\ldots+k_{n} x_{n}\right)}$ for each $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Then we have

$$
\begin{aligned}
f(x+y) & =e^{i\left(k_{1}\left(x_{1}+y_{1}\right)+\ldots+k_{n}\left(x_{n}+y_{n}\right)\right)}, \\
& =e^{\left.i\left(k_{1} x_{1}+\ldots+k_{n} x_{n}\right)+\left(k_{1} y_{1}+\ldots+k_{n} y_{n}\right)\right),}
\end{aligned}
$$

$$
=e^{i\left(k_{1} x_{1}+\cdots+k_{n} x_{n}\right)} e^{i\left(k_{1} x_{1}+\cdots+k_{n} x_{n}\right)}
$$

$$
=f(x) f(y) .
$$

5.4 Continuous solution of $f(x y)=f(x) f(y)$

In this section, we shall determine all the continuous solutions of $f(x y)=f(x) f(y)$, where f is a function from R^{*} into C^{*} 。

Lemma $5,4,1$ Let $f{ }^{*}:\left(\mathbb{R}^{+}, \boldsymbol{\theta}\right) \rightarrow \mathbb{Q}^{*}$ ยา be a continuous function. f satisfies CHULALONGKORN UNIVERSITY
(5.4.1.1)

$$
f(x y)=f(x) f(y)
$$

iff there exists $c \in \mathbb{C}$ such that $f(x)=x^{c}$, where $x^{c}=e^{c} \ln x$. Proof Assume that $f:\left(\mathbb{R}^{+}, 0\right) \longrightarrow C^{*}$ is given by $f(x)=x^{c}$ for some c in G. It can be verified that I satisfies $(5.4 .1 .1)$ Conversely, assume that f satisfies (5.4.1.1).

Let $g: \mathbb{R} \rightarrow \mathbb{R}^{+}$be given by $g(x)=e^{x}$. Hence δ is a
continuous isomorphism from \mathbb{R} onto \mathbb{R}^{+}

Put

$$
h=f o g .
$$

Since f and g are continuous, hence h is also continuous. We also have

$$
h(x+y)=f \circ g(x+y),
$$

Therefore by Theorem 5.3.5, there exists $c \in \mathbb{C}$ such that for $\operatorname{all} x \in \mathbb{R}$

$$
f(x) \text { จุศาดงกระ } f\left(E\left(g^{-1}(x)\right)\right. \text { ลัย }
$$

$$
\begin{gathered}
\text { CHULALONGKORN-1 } \\
=\quad h\left(g^{-1}(x)\right)
\end{gathered}
$$

$$
=e^{\operatorname{cg}^{-1}(x)}
$$

$$
=\quad e^{c \ln x}
$$

$$
=x^{c} .
$$

Theorem 5.4 .2 Let $f:\left(R^{*},.\right) \longrightarrow \mathbb{C}^{*}$ be a continuous function . f satisfies
(5.4.2.1)
$f(x y)=f(x)_{\hat{I}}(y)$
iff there exists $c \in \mathbb{C}$ such that
$f(x)=|x|^{c}$
for all x in \mathbb{R}^{*}; or
(5.4.2.3)

, $x>0$
, $x<0$.

Proof Assume that $\mathrm{f}:\left(\mathbb{R}^{*}, \cdot\right) \longrightarrow \mathbb{C}^{*}$
is given by $(5 \cdot 4 \cdot 2.2)$ or (5.4.2.3). Then it can be verified that f satisfies (5.4.2.1). Conversely, assume that satisfies (5.4.2.1). Then it can be verified in the same way as in the proof of theorem 5.2 .2 that $(f(-1))^{2}=1$. Hence $f(-1)=1$ or -1 . Let $f_{1}=f \mid \mathbb{R}^{+}$. Then f_{1} is a continuous homomorphism from \mathbb{R}^{+}to \mathbb{C}^{*}. By Lemma 5.4.1, $f_{1}(y)=y^{c}=|y|^{\text {chULALONGKORN }}$ for some $c \in \mathbb{C}$.

Let X be any element of $\mathbb{R}^{-\quad}=\mathbb{R}^{*}-\mathbb{R}^{+}$. Therefore $-\mathrm{x} \in \mathbb{R}^{+}$ Thus,

$$
\begin{aligned}
f(x) & =f((-1)(-x)), \\
& =f(-1) f(-x), \\
& =f(-1)(-x)^{c}, \\
& =f(-1)|x|^{c} .
\end{aligned}
$$

If $f(-1)=1$, then $f(x)=|x|^{c}$, hence f is of the form (5.4.2.2). If $f(-1)=-1$, then $f(x)=-|x|^{c}$, hence f is of the form (5.4.2.3). Hence f is of the forme (5.4.2.2) or (5.4.2.3).
5.5 Existence of Discontinuous Solution of $f(x+y)=f(x) f(y)$

The purpose of this section is to provide some examples of a discontinuous solution of $f(x+y)=f(x) f(y)$, where f is a function from $\left(\mathbb{R}_{2}{ }_{2}+\right.$) into ($\left.\Delta, \ldots\right)$. For simplicity, we give examples of discontinuous solutions from \mathbb{R}^{3} to Δ.

Let $H=\left\{V_{\alpha}: a \in I\right\}$ be a Hamel basis of \mathbb{R} over Q. By using corollary 5.1.7, any function $f: \mathbb{R}^{3} \longrightarrow \Delta$ satisfying $f(x+y)=f(x) f(y)$ must be $x f$ the form $f\left(\sum_{i=1}^{m} a_{1 i} V_{\alpha_{i}}, \sum_{i=1}^{m} a_{2 i} \alpha_{i}, \sum_{i=1}^{m} a_{3 i} \alpha_{i}\right)=\prod_{j=1}^{3} \prod_{i=1}^{a} b_{j}\left(v_{\alpha_{i}}\right)^{a_{j i}}$, where $\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}$ are functions on H into Λ.

Let us denote such function f by $f_{b_{1}}, b_{2}, b_{3}$. Hence each triple $b=\left(b_{1}, b_{2}, b_{3}\right)$, where $b_{j}: H \longrightarrow \Delta, j=1,2,3$, defines a function f_{b} satisfying $f_{b}(x+y)=f_{b}(x) f_{b}(y) \cdot A$ discontinuous function f_{b} satisfying this equation can be obtained by choosing suitable functions b_{1}, b_{2} and b_{3}. We shall first constructed $b_{j}: H \longrightarrow \Delta, j=1,2,3$, which will make f_{b} a discontinuous solution of $f(x+y)=f(x) f(y)$.

Choose three distinct elements $V_{\alpha_{1}}, V_{\alpha_{2}}, V \alpha_{3}$ of H and three nonzero complex number z_{1}, z_{2}, z_{3}, such that $\left|z_{i}\right|=1, i=1,2,3$, and not all $z_{i}^{\prime} s$ are 1 . Define

$$
\begin{array}{r}
b_{j}: H \rightarrow \Delta, j=1,2,3, \quad \text { by putting } \\
b_{1}\left(v_{\alpha_{1}}\right)=z_{1}, b_{1}\left(v_{\alpha}\right)=1 \text { for all } \alpha \neq \alpha_{1} \\
b_{2}\left(v_{\alpha_{2}}\right)=b_{2}\left(v_{\alpha}\right)=1 \text { for all } \alpha \neq \alpha_{2} \\
b_{3}\left(v_{\alpha_{3}}\right)= \\
b_{3}\left(v_{\alpha}\right)=1 \text { for all } \alpha \neq \alpha_{3} .
\end{array}
$$

$$
\text { By Corollary } 5 \cdot 1 \cdot 7 \quad f_{b} \text { satisfies } f_{b}(x+y)=f_{b}(x) f_{b}(y)
$$

Next, we show that f_{b} is not continuous.
Suppose that $\frac{f}{6}$ is continuous. By Theorem 5.3.6, there exist $k_{i} \in \mathbb{R}$, $i=1,2,3$, such that for any $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}$ we have

$$
f_{b}\left(x_{1}, x_{2}, x_{3}\right)=e^{i\left(k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}\right)}
$$

Observe that $f_{b}\left(V_{\alpha_{1}}, 0,0\right)=b_{1}\left(V_{\alpha_{1}}\right)^{1}=z_{1}$,
and $f_{b}\left(V_{\alpha_{1}}+V \alpha_{\alpha_{2}}, 0,0\right)=b_{1}\left(V_{\alpha_{1}}\right)^{1} b_{1}\left(V_{\alpha_{2}}\right)^{1}=z_{1} \cdot 1=z_{1}$
Therefore

$$
f_{b}\left(v_{\alpha_{1}}, 0,0\right)=f_{b}\left(v_{\alpha_{1}}+v_{\alpha_{2}}, 0,0\right)
$$

Since

$$
\begin{aligned}
f_{b}\left(x_{1}, x_{2}, x_{3}\right) & =e^{i\left(k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}\right)} \\
e^{i k_{1} V c_{1}} & =f_{b}\left(V_{\alpha_{1}}, 0,0\right) \\
& =f_{b}\left(V_{\alpha_{1}}+V \alpha_{2}, 0,0\right) \\
& =e^{i k_{1}\left(V \alpha_{1}+V \alpha_{2}\right)}
\end{aligned}
$$

some integer k. Since y/ $\alpha \in V I$, we have $V_{\alpha_{2}} \neq 0$.
Therefore $k_{1}=\frac{2 k \pi}{V_{a}}$ similarly we can show that
$k_{1}=\frac{2 k^{\prime} \pi}{V \alpha_{3}}$ where k is an integer. Hence

$2 \mathrm{k}^{\pi} V_{\alpha_{3}}=2 \mathrm{k}^{\prime} \pi V_{\alpha_{2}}$ But $V_{\sigma_{2}}{ }^{\circ} V_{\alpha_{3} ย}$ are linearly independent.
Hence $k=k^{\prime}=0$. Therefor $k_{1}=0$. By a similar argument we can show that $k_{2}=k_{3}=0$. Therefore $f_{b}(x)=1$ for all
$x=\left(x_{1}, x_{2}, x_{3}\right)$.
By the choice of z_{i}^{\prime} s, we may assume that $z_{1} \neq 1$. Hence $f_{b}\left(V_{\alpha}, 0,0\right)=z_{1} \neq 1$, which is a contradiction. Therefore $f_{b}(x)$ cannot be of the form $e^{i\left(k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}\right)}$, ie. f_{b} is not continuous. Hence there exists a discontinuous solution of $f(x+y)=f(x) f(y)$.

It can be seen that if we choose n distinct elements $V_{\alpha_{1}}, \ldots, V_{\alpha_{n}}$ in H and any n non-zero complex numbers z_{1}, \ldots, z_{n} such that $\left|z_{i}\right|=1, i=1, \ldots, n$, and not all $z_{i}{ }^{\prime}$'s are 1 and define $b_{j}: H \longrightarrow \Delta$ by

then
$f_{b}: \mathbb{R}^{n} \longrightarrow \Delta$, defined by

$$
f_{b}\left(\Sigma_{i} a_{1 i} v a_{i} \cdots \sum_{i} a_{n i} v_{a_{i}}\right)=\prod_{j} \prod_{i} b_{j}\left(v_{\alpha_{i}}\right)^{a_{j i}},
$$

is a discontinuous solution of $f(x+y)=f(x) f(y)$.

5.6 Existence of Discontinuous Solution of $f(x y)=f(x) f(y)$

Theorem 5.6.1

Chulalongkorn University

There exist discontinuous solutions of

$$
f(x+y)=f(x) f(y)
$$

on \mathbb{R} to \mathbb{C}^{*}.

Proof Let $H=\left\{V_{\alpha}: \alpha \in I\right\}$ be a Hame basis of \mathbb{R} over Q. By using Corollary 5.1.5, any function $£: \mathbb{T} \longrightarrow \mathbb{C}^{*}$ satisfying $f(x+y)=f(x) f(y)$ must be of the form

$$
f\left(\sum_{i=1}^{n} a_{i} V \alpha_{i}\right)=\prod_{i=1}^{n} c\left(V_{\alpha_{i}}\right)^{a_{i}}
$$

where c is a function on H into C^{*}.

Choose two distinct elements $V_{\alpha_{1}}, V_{\alpha_{2}}$ of H and nonzero complex number z_{1} such that $z_{1} \neq 1$.

Define

$$
\mathrm{c}: \mathrm{H} \longrightarrow \mathbb{C}^{*} \text { by putting }
$$

$$
c\left(v_{\alpha_{1}}\right)=z_{1}, \quad c\left(v_{a}\right)=1, \text { for all } \alpha \neq \alpha_{1}
$$

By Corollary 5.1.5, c defines a flunction f_{c} satisfying
$f_{c}(x+y)=f_{c}(x) f_{c}(y)$. Simila arguments as given in the proof
in section 5.5 can bo used to show that f_{c} is not continuous. Hence there exist discontinuous solutions of $f(x+y)=f(x) f(y)$.

Theorem 5.6.2 Let $g: R^{+} C^{*}$ be a function such that $g=h \circ \ln$ where h is a function on \mathbb{R} into \mathbb{C}. Then g is continuous if and only if h is continuous.

Proof Assume that h is continuous $\frac{\text { Then } g=\text { holn, being the }}{}$ composition of two continuous function, is $^{\text {is }}$ also continuous.

Coversely, Assume that G is continuous. Let O be any open set in \mathbb{C}^{*}. Since g is continuous and \ln is open, hence $\ln \left(G^{-1}(0)\right.$) is an open set in \mathbb{R}. However $h^{-1}(0)=\ln \left(E^{-1}(0)\right.$, which implies that $h^{-1}(0)$ is open. Hence h is continuous. Theorem 5.6.3 Let $f: \mathbb{R} \xrightarrow{*} \mathbb{C}^{*}$ be a function such that $f=$ goh where g is a function on \mathbb{R}^{+}into \mathbb{C}^{*} and $h: \mathbb{R}^{*} \rightarrow \mathbb{R}^{+}$is defined by $h(x)=|x|$. Then f is continuous if and only if s is continuous.

Proof Since $h: \mathbb{R}^{*} \mathbb{R}^{+}$, defined by $h(x)=|x|$, is continuous and open, hence we can verify in the same way as in the proof of Theorem 5.6.2 that f is continuous if and only if g is continuous

Theorem 5.6.4 There exist discontinuous solutions of
on \mathbb{R}^{*} to \mathbb{C}^{*}.

Proof Let $h: \mathbb{R} \rightarrow C^{*}$ be a discontinuous solution of

$$
h(x /+y)=h(x) h(y) .
$$

The existence of such h is guaranteed by Theorem 5.6.1 Let $E=$ holn, $f=80 \mathrm{k}$ where $k: \mathbb{R}^{*} \longrightarrow \mathbb{R}^{+}$is defined by $k(x)=|x|$. By Theorem 5.6 .3 , is is continuous if and only if g is continuous. By Theorem $5.6 .2, g$ is continuous if and only if his continuous. Hence f is discontinuous. Therefore discontinuous solutions of $f(x y)=f(x) f(y)$ on \mathbb{R}^{*} to \mathbb{C}^{*} exist .

